Липиды и липидные структуры. Что такое липиды их основные функции

Главная / Максим Горький

Липиды — это жироподобные органические соединения, нерастворимые в воде, но хорошо растворимые в неполярных растворителях (эфире, бензине, бензоле, хлороформе и др.). Липиды принадлежат к простейшим биологическим молекулам.

В химическом отношении большинство липидов представляет собой сложные эфиры высших карбоновых кислот и ряда спиртов. Наиболее известны среди них жиры. Каждая молекула жира образована молекулой трехатомного спирта глицерола и присоединенными к ней эфирными связями трех молекул высших карбоновых кислот. Согласно принятой номенклатуре, жиры называют триацилглщеролами.

Атомы углерода в молекулах высших карбоновых кислот могут быть соединены друг с другом как простыми, так и двойными связями. Из предельных (насыщенных) высших карбоновых кислот наиболее часто в состав жиров входят пальмитиновая, стеариновая, арахиновая; из непредельных (ненасыщенных) — олеиновая и линолевая.

Степень ненасыщенности и длина цепей высших карбоновых кислот (т. е. число атомов углерода) определяют физические свойства того или иного жира.

Жиры с короткими и непредельными кислотными цепями имеют низкую температуру плавления. При комнатной температуре это жидкости (масла) либо мазеподобные вещества (жиры). И наоборот, жиры с длинными и насыщенными цепями высших карбоновых кислот при комнатной температуре становятся твердыми. Вот почему при гидрировании (насыщении кислотных цепей атомами водорода по двойным связям) жидкое арахисовое масло, например, становится мазеобразным, а подсолнечное масло превращается в твердый маргарин. По сравнению с обитателями южных широт в организме животных, обитающих в холодном климате (например, у рыб арктических морей), обычно содержится больше ненасыщенных триацилглицеролов. По этой причине тело их остается гибким и при низких температурах.

В фосфолипидах одна из крайних цепей высших карбоновых кислот триацилглицерола замещена на группу, содержащую фосфат. Фосфолипиды имеют полярные головки и неполярные хвосты. Группы, образующие полярную головку, гидрофильны, а неполярные хвостовые группы гидрофобны. Двойственная природа этих липидов обусловливает их ключевую роль в организации биологических мембран.

Еще одну группу липидов составляют стероиды (стеролы). Эти вещества построены на основе спирта холестерола. Стеролы плохо растворимы в воде и не содержат высших карбоновых кислот. К ним относятся желчные кислоты, холестерол, половые гар-моны, витамин D и др.

К липидам также относятся терпены (ростовые вещества растений — гиббереллины; каротиноиды — фотосинтетичские пигменты; эфирные масла растений, а также воска).

Липиды могут образовывать комплексы с другими биологическими молекулами — белками и сахарами.

Функции липидов следующие:

  1. Структурная. Фосфолипиды вместе с белками образуют биологические мембраны. В состав мембран входят также стеролы.
  2. Энергетическая. При окислении жиров высвобождается большое количество энергии, которая идет на образование АТФ. В форме липидов хранится значительная часть энергетических запасов организма, которые расходуются при недостатке питательных веществ. Животные, впадающие в спячку, и растения накапливают жиры и масла и расходуют их на поддержание процессов жизнедеятельности. Высокое содержание липидов в семенах растений обеспечивает развитие зародыша и проростка до их перехода к самостоятельному питанию. Семена многих растений (кокосовой пальмы, клещевины, подсолнечника, сои, рапса и др.) служат сырьем для получения растительного масла промышленным способом.
  3. Защитная и теплоизоляционная. Накапливаясь в подкожной клетчатке и вокруг некоторых органов (почек, кишечника), жировой слой защищает организм животных и его отдельные органы от механических повреждений. Кроме того, благодаря низкой теплопроводности слой подкожного жира помогает сохранить тепло, что позволяет, например, многим животным обитать в условиях холодного климата. У китов, кроме того, он играет еще и другую роль — способствует плавучести.
  4. Смазывающая и водоотталкивающая. Воск покрывает кожу, шерсть, перья, делает их более эластичными и предохраняет от влаги. Восковой налет имеют листья и плоды многих растений.
  5. Регуляторная. Многие гормоны являются производными хо-лестерола, например половые (тестостерон у мужчин и прогестерон у женщин) и кортикостероиды (альдостерон). Производные холестерола, витамин D играют ключевую роль в обмене кальция и фосфора. Желчные кислоты участвуют в процессах пищеварения (эмульгирование жиров) и всасывания высших карбоновых кислот.

Липиды являются также источником образования метаболической воды. Окисление 100 г жира дает примерно 105 г воды. Эта вода очень важна для некоторых обитателей пустынь, в частности для верблюдов, способных обходиться без воды в течение 10—12 суток: жир, запасенный в горбе, используется именно в этих целях. Необходимую для жизнедеятельности воду медведи, сурки и другие животные, впадающие в спячку, получают в результате окисления жира.

В миелиновых оболочках аксонов нервных клеток липиды являются изоляторами при проведении нервных импульсов.

Воск используется пчелами в строительстве сот.

Источник : Н.А. Лемеза Л.В.Камлюк Н.Д. Лисов "Пособие по биологии для поступающих в ВУЗы"

Липиды (Жиры).

Липидами - называют сложную смесь органических соединений (соединения с углеродом С), с близкими физико-химическими свойствами:

- не растворимость в воде.
- хорошая растворимость в органических растворителях (бензин, хлороформ)

Липиды широко распространены в природе. Вместе с белками и углеводами они составляют основную массу органических веществ всех живых организмов, являясь обязательным компонентом каждой клетки. Липиды - важнейший компонент пищи, во многом определяет ее пищевую ценность и вкусовое достоинство.
В растениях они накапливаются главным образом в семенах и плодах. У животных и рыб липиды концентрируются в подкожных жировых тканях, в брюшной полости и тканях, окружающих многие важные органы (сердце, почки), а также в мозговой и нервной тканях. Особенно много липидов в подкожной жировой ткани китов (25-30 % от их массы), тюлений и других морских животных. У человека содержание липидов колеблется от 10-20% в среднем.

Виды липидов.

Классификаций жиров существует много видов, мы разберем наиболее простую, она разделяет их на три большие группы:

- Простые липиды
- Сложные липиды
- Производные липидов.

Разберем каждую группу липидов в отдельности, что в них входит, и для чего они нужны.

Простые Липиды.

1) Нейтральные жиры (или просто жиры).

Нейтральные жиры состоят из триглицеридов.

Триглицерид - липид или нейтральный жир, в состав которого входит глицерин, соединенный с тремя молекулами жирных кислот.

Глицерин - химическое соединение с формулой C3H5(OH)3, (бесцветная, вязкая, сладковатая жидкость без запаха.)

Жирные кислоты природные или созданные соединения с одной или несколькими группами – COOH (карбоксильные) не создающие циклических связей (ароматических), с числом атома углерода (С) в цепи не менее 6.

Триглицериды производятся из продуктов расщепления пищевых жиров и являются формой сохранения жиров в организме человека. Основная часть пищевых жиров (98%) являются триглицеридами. Жир так же сохраняется в организме в виде триглицеридов.

Виды жирных кислот:

- Насыщенные жирные кислоты - содержат только одинарные связи между атомами углерода со всеми остальными связями, прикрепленными к атомам водорода. Молекула соединяется с максимально возможным количеством атомов водорода, поэтому данная кислота называется насыщенной., они отличаются от ненасыщенных тем, что остаются твердыми при комнатной температуре.

Продукты в которых содержится больше всего насыщенных жиров, это свиное сало и жир, куриный, говяжий и бараний жир, сливочное масло и маргарин. Из продуктов, богатых такими жирами, можно назвать колбасу, сардельки и другие колбасные изделия, бекон, обычную нежирную говядину; сорта мяса, называемые «мраморными»; куриную кожу, бекон; мороженое, кремы, сыры; большую часть мучных и других кондитерских изделий.

- ненасыщенные жирные кислоты - содержат одну или больше двойных связей вдоль главной углеродной цепи. Каждая двойная связь уменьшает число атомов водорода, которые могут связываться с жирной кислотой. Двойные связи также приводят к «изгибу» в жирных кислотах, что предотвращает связь между ними.

Ненасыщенные жирные кислоты содержатся в растительных источниках.

Их можно разделить на два вида:
1) мононенасыщенные – ненасыщенные жирные кислоты с одной двойной связью. (например -оливковое масло)
2) полиненасыщенные – ненасыщенные жирные кислоты с двумя или более двойными связями. (например - льняное масло)

О пищевых жирах будет отдельная большая тема, разбирающая подробно все их свойства.

2) Воски.

Воски – жироподобные вещества, животного или растительного происхождения, состоящие из сложных эфиров одноатомных спиртов и жирных кислот.

Сложные эфиры соединения – СООН (карбоксильные) , у которых атом водорода в НО-группе замещен органической группой.

Спирты соединения –ОН, связанные с атомом углерода.

Простыми словами, воски это – бесформенные, пластичные, легко размягчающиеся при нагревании вещества, плавящиеся в интервале температур от 40 до 90 градусов цельсия.

Пчелиный воск выделяется специальными железами медоносных пчёл, из него пчёлы строят соты.

Сложные липиды.

Сложный липид - это соединение триглицерида с другими химическими веществами.
Всего их выделяют три вида.

Фосфолипиды – глицерин соединенный с одной или двумя жирными кислотами а так же фосфорная кислота.

Из фосфолипидов состоит клеточная мембрана. В продуктах питания наиболее популярен – лецитин.

Гликолипиды – соединения жировых и углеводоводных компонентов. (Содержатся во всех тканях, главным образом в наружном липидном слое плазматических мембран.)

Липопротеиды – комплексы жиров и белков. (Плазма крови)

Производные липидов.

Холестерин - жироподобное вещество, похожее на воск, присутствующее в каждой клетке тела и во многих продуктах питания. Некоторое количество холестерина в крови необходимо, но высокий его уровень может привести к болезни сердца.

Много холестерина содержится в яйцах, жирных сортах мяса, колбасы, жирных молочных продуктах.

С общей классификацией разобрались, какие же функции выполняют липиды?

Функции.

- Структурная функция.

Фосфолипиды принимают участие в построении мембран клеток всех органов и тканей. Они участвуют в образовании многих биологически важных соединений.

- Энергетическая функция.

При окислении жиров высвобождается большое количество энергии, которая идет на образование АТФ. В форме липидов хранится значительная часть энергетических запасов организма, которые расходуются при недостатке питательных веществ. Животные, впадающие в спячку, и растения накапливают жиры и масла и расходуют их на поддержание процессов жизнедеятельности. Высокое содержание липидов в семенах растений обеспечивает развитие зародыша и проростка до их перехода к самостоятельному питанию. Семена многих растений (кокосовой пальмы, клещевины, подсолнечника, сои, рапса и др.) служат сырьем для получения растительного масла промышленным способом.. При полном распаде 1 г жира выделяется 38,9 кДж энергии, что примерно в 2 раза больше по сравнению с углеводами и белками.

- Защитная и теплоизоляционная

Накапливаясь в подкожной клетчатке и вокруг некоторых органов (почек, кишечника), жировой слой защищает организм животных и его отдельные органы от механических повреждений. Кроме того, благодаря низкой теплопроводности слой подкожного жира помогает сохранить тепло, что позволяет, например, многим животным обитать в условиях холодного климата.
Смазывающая и водоотталкивающая.
Воск покрывает кожу, шерсть, перья, делает их более эластичными и предохраняет от влаги. Восковой налет имеют листья и плоды многих растений.

- Регуляторная.

Многие гормоны являются производными холестерина, например половые (тестостерон у мужчин и прогестерон у женщин) и кортикостероиды. Производные холестерина, витамин D играют ключевую роль в обмене кальция и фосфора. Желчные кислоты участвуют в процессах пищеварения. В миелиновых (непроводимых заряд) оболочках аксонов нервных клеток липиды являются изоляторами при проведении нервных импульсов.

- Источник метаболической воды.

Окисление 100 г жира дает примерно 105-107г воды. Эта вода очень важна для некоторых обитателей пустынь, в частности для верблюдов, способных обходиться без воды в течение 10-12 суток: жир, запасенный в горбе, используется именно в этих целях. Необходимую для жизнедеятельности воду медведи, сурки и другие животные, впадающие в спячку, получают в результате окисления жира.

Которые нужны всему живому. В этой статье мы рассмотрим строение и функции липидов. Они бывают разнообразными как по структуре, так и по функциям.

Строение липидов (биология)

Липид — это сложное органическое химическое соединение. Оно состоит из нескольких компонентов. Давайте рассмотрим строение липидов более подробно.

Простые липиды

Строение липидов этой группы предусматривает наличие двух компонентов: спирта и жирных кислот. Обычно в химический состав таких веществ входят только три элемента: карбон, гидроген и оксиген.

Разновидности простых липидов

Они делятся на три группы:

  • Алкилацилаты (воски). Это сложные эфиры высших жирных кислот и одно- или двухатомных спиртов.
  • Триацилглицерины (жиры и масла). Строение липидов этого вида предусматривает наличие в составе глицерина (трехатомного спирта) и остатков высших жирных кислот.
  • Церамиды. Сложные эфиры сфингозина и жирных кислот.

Сложные липиды

Вещества данной группы состоят не из трех элементов. Помимо них, они включают в свой состав чаще всего сульфур, нитроген и фосфор.

Классификация сложных липидов

Их также можно разделить на три группы:

  • Фосфолипиды. Строение липидов этой группы предусматривает, помимо остатков и высших жирных кислот, наличие остатков фосфорной кислоты, к которым присоединены добавочные группы различных элементов.
  • Гликолипиды. Это химические вещества, образующиеся в результате соединения липидов с углеводами.
  • Сфинголипиды. Это производные алифатических аминоспиртов.

Первые два типа липидов, в свою очередь, разделяются на подгруппы.

Так, разновидностями фосфолипидов можно считать фосфоглицеролипиды (содержат в своем составе глицерин, остатки двух жирных и аминоспирт), кардиолипины, плазмалогены (содержат в своем составе ненасыщенный одноатомный высший спирт, фосфорную кислоту и аминоспирт) и сфингомиелины (вещества, которые состоят из сфингозина, жирной кислоты, фосфорной кислоты и аминоспирта холина).

К видам гликолипидов относятся цереброзиды (кроме сфингозина и жирной кислоты, содержат галактозу либо глюкозу), ганглиозиды (содержат олигосахарид из гексоз и сиаловых кислот) и сульфатиды (к гексозе прикреплена серная кислота).

Роль липидов в организме

Строение и функции липидов взаимосвязаны. Благодаря тому, что в их молекулах одновременно присутствуют полярные и неполярные структурные фрагменты, эти вещества могут функционировать на границе раздела фаз.

Липиды обладают восемью основными функциями:

  1. Энергетическая. За счет окисления этих веществ организм получает более 30 процентов всей необходимой ему энергии.
  2. Структурная. Особенности строения липидов позволяют им быть важной составляющей оболочек. Они входят в состав мембран, выстилают различные органы, образуют мембраны нервных тканей.
  3. Запасающая. Данные вещества являются формой сбережения организмом жирных кислот.
  4. Антиокисдантная. Строение липидов позволяет им выполнять и такую роль в организме.
  5. Регуляторная. Некоторые липиды являются посредниками гормонов в клетках. Кроме того, из липидов формируются некоторые гормоны, а также вещества, стимулирующие иммуногенез.
  6. Защитная. Подкожная прослойка жира обеспечивает термическую и механическую защиту организма животного. Что касается растений, то из восков формируется защитная оболочка на поверхности листьев и плодов.
  7. Информационная. Липиды ганглиозиды обеспечивают контакты между клетками.
  8. Пищеварительная. Из липида холестерина формируются участвующие в процессе переваривания пищи.

Синтез липидов в организме

Большинство веществ этого класса синтезируются в клетке из одного и того же исходного вещества — уксусной кислоты. Регулируют обмен жиров такие гормоны, как инсулин, адреналин и гормоны гипофиза.

Существуют также липиды, которые организм не способен производить самостоятельно. Они обязательно должны попадать в организм человека с пищей. Содержатся они в основном в овощах, фруктах, зелени, орехах, злаках, подсолнечном и оливковом маслах и других продуктах растительного происхождения.

Липиды-витамины

Некоторые витамины по своей химической природе относятся к классу липидов. Это витамины А, D, Е и К. Они должны поступать в организм человека с пищей.

в организме
Витамин Функции Проявление недостатка Источники
Витамин А (ретинол) Участвует в росте и развитии эпителиальной ткани. Входит в состав родопсина — зрительного пигмента. Сухость и шелушение кожи. Нарушение зрения при плохом освещении. Печень, шпинат, морковь, петрушка, красный перец, абрикосы.
Витамин К (филлохинон) Участвует в обмене кальция. Активирует белки, ответственные за свертывание крови, принимает участие в формировании костной ткани. Окостенение хрящей, нарушение свертываемости крови, отложение солей на стенках сосудов, деформация костей. Дефицит витамина К случается очень редко. Синтезируется бактериями кишечника. Также содержится в листьях салата, крапивы, шпината, капусты.
Витамин D (кальциферол) Принимает участие в обмене кальция, формировании костной ткани и эмали зубов. Рахит Рыбий жир, желток яиц, молоко, сливочное масло. Синтезируется в коже под воздействием ультрафиолета.
Витамин Е (токоферол) Стимулирует иммунитет. Участвует в регенерации тканей. Защищает мембраны клеток от повреждений. Повышение проницаемости мембран клеток, снижение иммунитета. Овощи, растительные масла.

Вот мы и рассмотрели строение и свойства липидов. Теперь вы знаете, какими бывают эти вещества, в чем заключаются отличия разных из групп, какую роль липиды выполняют в организме человека.

Заключение

Липиды — сложные органические вещества, которые делятся на простые и сложные. Они выполняют в организме восемь функций: энергетическую, запасающую, структурную, антиоксидантную, защитную, регуляторную, пищеварительную и информационную. Кроме того, существуют липиды-витамины. Они выполняют множество биологических функций.

Липиды – сложные органические вещества, характерные для живых организмов, нерастворимые в воде, но растворимые в органических растворителях и друг в друге. В химическом отношении липиды это сборная группа органических соединений. Большинство из них это сложные эфиры многоатомных спиртов и высших жирных кислот. В виде ацильного остатка в липидах может выступать Фн.

Существует несколько классификаций липидов:

I физиологическая

а) резервные липиды или ацилглицерины депонируются в больших количествах в затем расходуются для энергетических целей организма.

б) структурные липиды – все остальные липиды, участвующие в построении клеточной мембраны.

II физико-химическая

а) нейтральные или неполярные жиры,т.е. липиды не имеющие заряда – ТАГ (триацилглицерины).

б) полярные , т.е. несущие заряд (фосфолипиды, ж.к.)

III структурная – наиболее сложная. В соответствии с ней липиды подразделяются на следующие группы.

Функции липидов

1. Структурная. Липиды являются одним из основных компонентов биологических мембран.

2. Энергетическая. При расщеплении 1г. жира выделяется ≈39 кДж энергии, т.е. в 2 раза больше, чем при распаде 1 г. углеводов.

3. Запасная. В виде ацилглицеридов депонируется метаболическое топливо.

4. Защитная. Жировая прослойка предохраняет тело и органы животных от механических повреждений.

5. Регуляторная. Например простагаландины повышая секрецию цАМФ стимулируют образование и секрецию гормонов.

6. Липиды, важные компоненты нервной клетки , участвуют в передаче нервного импульса, создании межклеточных контактов.

Жирные кислоты (ЖК ) – это алифатические монокарбоновые кислоты. Подразделяются на:

Насыщенные (нет двойных связей)

Мононенасыщенные (одна двойная связь)

Полиненасыщенные (две и более двойных связей)

Все они содержат четное число углеродных атомов, главным образом от 12 до 24. Среди них преобладают кислоты, имеющие С16 и С18 (пальмитиновая, стеариновая, олеиновая и линолевая). Растворимость ЖК возрастает с увеличением числа углеродных атомов. Ненасыщенные жирные кислоты человека и животных, участвующие в построении липидов, обычно содержат двойную связь между 9-м и 10-м атомамиуглеводородов.

В полиненасыщенных ЖК расположение двойных связей может быть:

кумулированное – С = С = С –

сопряженное – С = С – С = С –

изолированное – С = С – С – С = С –

Нумерацию углеродных атомов в жирно-кислотной цепи начинают с атома углерода карбоксильной группы. Примерно 3/4 всех жирных кислот являются непредельными (ненасыщенными), т.е. содержат двойные связи.

В соответствии с систематической номенклатурой количество и положение двойных связей в ненасыщенных жирных кислотах часто обозначают с помощью цифровых символов.

например , олеиновую кислоту как 18:1 (9) линолевую кислоту как 18:2 (9,12)


число углеродных атомов, число двойных связей, номера ближайших к карбоксилу углеродных атомов, вовлеченных в образование двойной связи.

ЖК по своему стрению являются амфипатическими , т.е. имеют полярную «голову» СОО- (обращена к воде) и неполярный «хвост» (углеводородная цепь).

Натриевые и калиевые соли ЖК называют мылами . В водных растворах они существуют в виде мицелл (суспензий). Структура мицелл такова, что их гидрофобное ядро (жирные кислоты, моноглицериды и др.) оказывается окруженным снаружи гидрофильной оболочкой из желчных кислот и фосфолипидов. Мицеллы примерно в 100 раз меньше самых мелких эмульгированных жировых капель.

Нейтральные жиры . В соответствии с рекомендацией Международной номенклатурной комиссии их называют ацилглицеринами (а не глицеридами , как раньше)

Ацилглицерины (нейтральные жиры) представляют собой сложные эфиры трехатомного спирта глицерина и высших жирных кислот. Если жирными кислотами этерифицированы все три гидроксильные группы глицерина, то такое соединение называют триглицеридом (триацилглицерол, ТАГ ), если две – диглицеридом (диацилглицерол, ДАГ) и если этерифицирована одна группа – моноглицеридом (моноацилглицерол, МАГ):

Если ацильные радикалы R1, R2 и R3 одинаковы, то ТАГ называют простыми (трипальмитин), если различные, то смешанными (пальмитостеаролеин).

Жирные кислоты, входящие в состав триглицеридов, определяют их физико-химические свойства. Так, температура плавления триглицеридов повышается с увеличением числа и длины остатков насыщенных жирных кислот. Напротив, чем выше содержание ненасыщенных жирных кислот, или кислот с короткой цепью, тем ниже точка плавления.

Животные жиры (сало) обычно содержат значительное количество насыщенных жирных кислот (пальмитиновой, стеариновой и др.) благодаря чему при комнатной температуре они твердые .

Жиры, в состав которых входит много ненасыщенных кислот, при обычной температуре жидкие и называются маслами . Так, в конопляном масле 95% всех жирных кислот приходится на долю олеиновой, линолевой и линоленовой кислот и только 5% – на долю стеариновой и пальмитиновой кислот. В жире человека, плавящемся при температуре 15°С (при температуре тела он жидкий), содержится 70% олеиновой кислоты.

Фосфолипиды это сложные эфиры многоатомных спиртов глицерина или сфингозина с высшими жирными кислотами и фосфорной кислотой . В зависимости от того, какой многоатомный спирт участвует в образовании фосфолипида (глицерин или сфингозин), последние делят на: 1. глицерофосфолипиды

Сфингофосфолипиды.

1. Глицерофосфолипиды - производные фосфатидной кислоты. В их состав входят глицерин, жирные кислоты, фосфорная кислота и обычно азотсодержащие соединения.

R1и R2– радикалы высших жирных кислот, a R3–радикал азотистого соединения или инозитол.

а) в зависимости от характера R3 глицерофосфолипиды подразделяют на

Фосфатидилхолины (лецитины),

Фосфатидилэтаноламины (кефалины)

Фосфатидилсерины

Фосфатидилинозитолы

б) ацетальфосфатиды – R1 – представлен не жирной кислотой, а альдегидом жирной кислоты, называются плазмологены.

в) в структуре имеются 3 молекулы глицерина

Фосфолипиды являются главными липидными компонентами мембран клеток, в животном организме найдены в мозге, печени и легких. При гидролизе некоторых фосфолипидов под действием особых ферментовсодержащихся, например, в яде кобры, отщепляетя R1 и образуется соединение, обладающее сильным гемолитическим действием.

2. Сфинголипиды находятся в мембранах животных и растительных клеток. Главный представитель сфингомиелин . Особенно богата ими нервная ткань. Вместо глицерина сфинголипиды содержат двухатомный ненасыщенный спирт сфингозин .

Гликолипиды – это сложные липиды, содержащие нелипидный компонент – остаток сахара.

а) Цереброзиды – главные сфинголипиды мозга и других нервных тканей, содержат D-галактозу.

б) Ганглиозиды (содержат сложный олигосахарид) в больших количествах находятся в нервной ткани, в сером веществе мозга.

Воска – сложные эфиры высших жирных кислот и высших одноатомных или двухатомных спиртов содержащих ≈ 50% различных примесей.

Природные воска (например, пчелиный воск, спермацет, ланолин ) обычно содержат, кроме указанных сложных эфиров, некоторое количество свободных жирных кислот, спиртов и углеводородов.

Стериды (стероиды) – сложные эфиры циклических спиртов (стеролов или стеринов) и высших жирных кислот. К стероидам относятся:

1. гормоны коркового вещества надпочечников,

2. желчные кислоты,

3. витамины группы D,

4.сердечные гликозиды и др.

Все стероиды в своей структуре имеют ядро (стеран), образованное гидрированным фенантреном (кольца А, В и С) и циклопентаном (кольцо D):

В организме человека важное место среди стероидов занимают стерины (стеролы), т.е. стероидные спирты. Главным представителем стеринов является холестерин (холестерол).

Каждая клетка в организме млекопитающих содержит холестерин, который обеспечивает избирательную проницаемость клеточной мембраны и оказывает регулирующее влияние на состояние мембраны и на активность связанных с ней ферментов. Холестерин – источник образования желчных кислот, стероидных гормонов (половых и кортикоидных), а продукт его окисления –7-дегидрохолестерин, под действием УФ-лучей в коже превращается в витамин D3.

Желчные кислоты - конечный продукт метаболизма холестерина.

Желчные кислоты являются производными холановой кислоты:

В желчи человека в основном содержатся: 1. холевая (3,7,12-триоксихолановая),

2. дезоксихолевая (3,12-диоксихолановая)

и ее конъюгаты: 1. с глицином (гликохолевая)

2. с таурином (таурохолевая)

Функции желчных кислот

1) эмульгирующая

2) активирование липолитических ферментов

3) транспортная, так как, образуя комплекс с жирной кислотойпомогают их всасыванию в кишечнике.

Соли желчных кислот являются амфифильными (голова имеет «-» заряд, хвост 0 заряд), резко уменьшают поверхностное натяжение на поверхности раздела жир/вода, благодаря чему они не только облегчают эмульгирование, но и стабилизируют уже образовавшуюся эмульсию.

В просвет кишечника поджелудочной железой выделяется зимоген – пролипаза .

Активная липаза в присутствии желчных кислот и специфического белка колипазы , присоединяется к ТАГ и катализирует гидролитическое отщепление 1-го или 2-го крайних жирнокислых остатков. Кишечная липаза действует на ТАГ (на ДАГ, МАГ нет).

Т.о. основные продукты расшепления нейтральных жиров в кишечнике это глицерин, жирная кислота и моноглицериды.

Гидролиз сложных липидов происходит под действием специфических липаз на составные части. Тонкоэмульгированные жиры частично могут всасываться через стенки кишечника без предварительного гидролиза. Основная часть жира всасывается лишь после расщепления его панкреатической липазой на жирные кислоты, моноглицериды и глицерин.

§ 4. КЛАССИФИКАЦИЯ И ФУНКЦИИ ЛИПИДОВ

Липиды представляют собой неоднородную группу химических соединений, нерастворимых в воде, но хорошо растворимых в неполярных органических растворителях: хлороформе, эфире, ацетоне, бензоле и др., т.е. общим их свойством является гидрофобность (гидро – вода, фобия – боязнь). Из-за большого разнообразия липидов дать более точное определение им невозможно. Липиды в большинстве случаев являются сложными эфирами жирных кислот и какого-либо спирта. Выделяют следующие классы липидов: триацилглицерины, или жиры, фосфолипиды, гликолипиды, стероиды, воска, терпены. Различают две категории липидов – омыляемые и неомыляемые. К омыляемым относятся вещества, содержащие сложноэфирную связь (воска, триацилглицерины, фосфолипиды и др.). К неомыляемым относятся стероиды, терпены.

Триацилглицерины, или жиры

Триацилглицерины являются сложными эфирами трехатомного спирта глицерина

и жирных (высших карбоновых) кислот. Общая формула жирных кислот имеет вид: R-COOH, где R – углеводородный радикал. Природные жирные кислоты содержат от 4 до 24 атомов углерода. В качестве примера приведем формулу одной из наиболее распространенной в жирах стеариновой кислоты:

CH 3 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -COOH

В общем виде молекулу триацилгицерина можно записать так:

Если в состав триациоглицерина входят остатки различных кислот (R 1 R 2 R 3), то центральный атом углерода в остатке глицерина становится хиральным.

Триацилглицерины неполярны и вследствие этого практически нерастворимы в воде. Основная функция триацилглицеринов – запасание энергии. При окислении1 гжира выделяется 39 кДж энергии. Триацилглицерины накапливаются в жировой ткани, которая, кроме депонирования жира, выполняет термоизолирующую функцию и защищает органы от механических повреждений. Более подробную информацию о жирах и жирных кислотах вы найдете в следующем параграфе.

Интересно знать! Жир, которым заполнен горб верблюда, служит, в первую очередь, не источником энергии, а источником воды, образующейся при его окислении.


Фосфолипиды

Фосфолипиды содержат гидрофобную и гидрофильную области и поэтому обладают амфифильнымы свойствами, т.е. они способны растворяться в неполярных растворителях и образовывать стойкие эмульсии с водой.

Фосфолипиды в зависимости от наличия в их составе спиртов глицерина и сфингозина делятся на глицерофосфолипиды и сфингофосфолипиды .

Глицерофосфолипиды

В основе строения молекулы глицерофосфолипидов лежит фосфатидная кислота, образованная глицерином, двумя жирными и фосфорной кислотами:

В молекулах глицерофосфолипидов к фосфатидной кислоте сложноэфирной связью присоединена НО-содержащая полярная молекула. Формулу глицерофосфолипидов можно представить так:

где Х – остаток НО-содержащей полярной молекулы (полярная группировка). Названия фосфолипидов образуются в зависимости от наличия в их составе той или иной полярной группировки. Глицерофосфолипиды, содержащие в качестве полярной группировки остаток этаноламина,

HO-CH 2 -CH 2 -NH 2

носят название фосфатидилэтаноламинов, остаток холина

– фосфатидилхолинов, серина

– фосфатидилсеринов.

Формула фосфатидилэтаноламина выглядит так:

Глицерофосфолипиды отличаются друг от друга не только полярными группами, но и остатками жирных кислот. В их состав входят как насыщенные (состоящие обычно из 16 – 18 атомов углерода), так и ненасыщенные (содержащие чаще 16 – 18 атомов углерода и 1 – 4 двойные связи) жирные кислоты.

Сфингофосфолипиды

Сфингофосфолипиды по составу сходны с глицерофосфолипидами, но вместо глицерина содержат аминоспирт сфингозин:

или дигидросфингазин:

Наиболее распространенными сфингофосфолипидами являются сфингомиелины. Они образованы сфингозином, холином, жирной кислотой и фосфорной кислотой:

Молекулы как глицерофосфолипидов, так и сфингофосфолипидов состоят из полярной головы (образована фосфорной кислотой и полярной группировкой) и двух углеводородных неполярных хвостов (рис.1). У глицерофосфолипидов оба неполярных хвоста являются радикалами жирных кислот, у сфингофосфолипидов – один хвост является радикалом жирной кислоты, другой – углеводородной цепочкой спирта сфингазина.

Рис. 1. Схематическое изображение молекулы фосфолипида.

При встряхивании в воде фосфолипиды спонтанно формируют мицеллы , в которых неполярные хвосты собираются внутри частицы, а полярные головы располагаются на ее поверхности, взаимодействуя с молекулами воды (рис. 2а). Фосфолипиды способны образовывать также бислои (рис. 2б) и липосомы – замкнутые пузырьки, окруженные непрерывным бислоем (рис. 2в).

Рис. 2. Структуры, образуемые фосфолипидами.

Способность фосфолипидов, образовывать бислой, лежит в основе формирования клеточных мембран.

Гликолипиды

Гликолипиды содержат в своем составе углеводный компонент. К ним относятся гликосфинголипиды, содержащие, кроме углевода спирт, сфингозин и остаток жирной кислоты:

Они так же, как и фосфолипиды, состоят из полярной головы и двух неполярных хвостов. Гликолипиды располагаются на внешнем слое мембраны, являются составной частью рецепторов, обеспечивают взаимодействие клеток. Их особенно много в нервной ткани.

Стероиды

Стероиды являются производными циклопентанпергидрофенантрена (рис. 3). Один из важнейших представителей стероидов – холестерин . В организме он встречается как в свободном состоянии, так и в связанном, образуя сложные эфиры с жирными кислотами (рис. 3). В свободном виде холестерин входит в состав мембран и липопротеинов крови. Сложные эфиры холестерина являются его запасной формой. Холестерин является предшественником всех остальных стероидов: половых гормонов (тестостерон, эстрадиол и др.), гормонов коры надпочечников (кортикостерон и др.), желчных кислот (дезоксихолевая и др.), витамина D (рис. 3).

Интересно знать! В организме взрослого человека содержится около 140 г холестерина, больше всего его находится в нервной ткани и надпочечниках. Ежедневно в организм человека поступает 0,3 – 0,5 г холестерина, а синтезируется – до 1 г.

Воска

Воска – это сложные эфиры, образованные длинноцепочечными жирными кислотами (число атомов углерода 14 – 36) и длинноцепочечными одноатомными спиртами (число атомов углерода 16 – 22). В качестве примера рассмотрим формулу воска, образованного олеиновым спиртом и олеиновой кислотой:

Воска выполняют главным образом защитную функцию, находясь на поверхности листьев, стеблей, плодов, семян они защищают ткани от высыхания и проникновения микробов. Они покрывают шерсть и перья животных и птиц, предохраняя их от намокания. Пчелиный воск служит строительным материалом для пчел при создании сот. У планктона воск служит основной формой запасания энергии.

Терпены

В основе терпеновых соединений лежат изопреновые остатки:

К терпенам относятся эфирные масла, смоляные кислоты, каучук, каротины, витамин А, сквален. В качестве примера приведем формулу сквалена:

Сквален является основным компонентом секрета сальных желез.



© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний