Непрерывные случайные величины. Математическое ожидание непрерывной случайной величины Вероятностно-статистические методы описания неопределенностей в теории принятия решений

Главная / М. Е. Салтыков-Щедрин

Примеры решения задач на тему «Случайные величины».

Задача 1 . В лотерее выпущено 100 билетов. Разыгрывался один выигрыш в 50 у.е. и десять выигрышей по 10 у.е. Найти закон распределения величины X – стоимости возможного выигрыша.

Решение. Возможные значения величины X: x 1 = 0; x 2 = 10 и x 3 = 50. Так как «пустых» билетов – 89, то p 1 = 0,89, вероятность выигрыша 10 у.е. (10 билетов) – p 2 = 0,10 и для выигрыша 50 у.е. – p 3 = 0,01. Таким образом:

0,89

0,10

0,01

Легко проконтролировать: .

Задача 2. Вероятность того, что покупатель ознакомился заранее с рекламой товара равна 0,6 (р=0,6 ). Осуществляется выборочный контроль качества рекламы путем опроса покупателей до первого, изучившего рекламу заранее. Составить ряд распределения количества опрошенных покупателей.

Решение. Согласно условию задачи р = 0,6. Откуда: q=1 -p = 0,4. Подставив данные значения, получим: и построим ряд распределения:

p i

0,24

Задача 3. Компьютер состоит из трех независимо работающих элементов: системного блока, монитора и клавиатуры. При однократном резком повышении напряжения вероятность отказа каждого элемента равна 0,1. Исходя из распределения Бернулли составить закон распределения числа отказавших элементов при скачке напряжения в сети.

Решение. Рассмотрим распределение Бернулли (или биномиальное): вероятность того, что в n испытаниях событие А появится ровно k раз: , или:

qn

pn

В ернёмся к задаче.

Возможные значения величины X (число отказов):

x 0 =0 – ни один из элементов не отказал;

x 1 =1 – отказ одного элемента;

x 2 =2 – отказ двух элементов;

x 3 =3 – отказ всех элементов.

Так как, по условию, p = 0,1, то q = 1 – p = 0,9. Используя формулу Бернулли, получим

, ,

, .

Контроль: .

Следовательно, искомый закон распределения:

0,729

0,243

0,027

0,001

Задача 4 . Произведено 5000 патронов. Вероятность того, что один патрон бракованный . Какова вероятность того, что во всей партии будет ровно 3 бракованных патрона?

Решение. Применим распределение Пуассона : это распределение используется для определения вероятности того, что при очень большом

количестве испытаний (массовые испытания), в каждом из которых вероятность события A очень мала, событие A наступитk раз: , где .

Здесь n = 5000, p = 0,0002, k = 3. Находим , тогда искомая вероятность: .

Задача 5 . При стрельбе до первого попадания с вероятностью попадания p = 0,6 при выстреле надо найти вероятность того, что попадание произойдет при третьем выстреле.

Решение. Применим геометрическое распределение: пусть производятся независимые испытания, в каждом из которых событие A имеет вероятность появления p (и непоявления q = 1 – p). Испытания заканчиваются, как только произойдет событие A.

При таких условиях вероятность того, что событие A произойдет на k-ом испытании, определяется по формуле: . Здесь p = 0,6; q = 1 – 0,6 = 0,4;k = 3. Следовательно, .

Задача 6 . Пусть задан закон распределения случайной величины X:

Найти математическое ожидание.

Решение. .

Заметим, что вероятностный смысл математического ожидания – это среднее значение случайной величины.

Задача 7 . Найти дисперсию случайной величины X со следующим законом распределения:

Решение. Здесь .

Закон распределения квадрата величины X 2 :

X2

Искомая дисперсия: .

Дисперсия характеризует меру отклонения (рассеяния) случайной величины от её математического ожидания.

Задача 8 . Пусть случайная величина задается распределением:

10м

Найти её числовые характеристики.

Решение: м, м 2 ,

М 2 , м.

Про случайную величину X можно сказать либо – ее математическое ожидание 6,4 м с дисперсией 13,04 м 2 , либо – ее математическое ожидание 6,4 м с отклонением м. Вторая формулировка, очевидно, нагляднее.

Задача 9. Случайная величина X задана функцией распределения:
.

Найти вероятность того, что в результате испытания величина X примет значение, заключенное в интервале .

Решение. Вероятность того, что X примет значение из заданного интервала, равно приращению интегральной функции в этом интервале, т.е. . В нашем случае и , поэтому

.

Задача 10. Дискретная случайная величина X задана законом распределения:

Найти функцию распределения F (x ) и построить ее график.

Решение. Так как функция распределения,

для , то

при ;

при ;

при ;

при ;

Соответствующий график:


Задача 11. Непрерывная случайная величина X задана дифференциальной функцией распределения: .

Найти вероятность попадания X в интервал

Решение. Заметим, что это частный случай показательного закона распределения.

Воспользуемся формулой: .

Задача 12. Найти числовые характеристики дискретной случайной величины X, заданной законом распределения:

–5

X 2 :

X 2

. , где – функция Лапласа.

Значения этой функции находятся с помощью таблицы.

В нашем случае: .

По таблице находим: , следовательно:

Проверим, выполняется ли требование равномерной ограниченности дисперсии. Напишем закон распределения :

Найдём математическое ожидание
:

Найдём дисперсию
:

Эта функция возрастает, следовательно, чтобы вычислить константу, ограничивающую дисперсию, можно вычислить предел:

Таким образом, дисперсии заданных случайных величин неограниченны, что и требовалось доказать.

Б) Из формулировки теоремы Чебышева следует, что требование равномерной ограниченности дисперсий является достаточным, но не необходимым условием, поэтому нельзя утверждать, что к данной последовательности эту теорему применить нельзя.

Последовательность независимых случайных величин Х 1 , Х 2 , …, Х n , … задана законом распределения

D(X n)=M(X n 2)- 2 ,

учитывай, что M(X n)=0, найдем (выкладки предоставляются выполнить читателю)

Временно предположим, что n изменяется непрерывно (чтобы подчеркнуть это допущение, обозначим n через х), и исследуем на экстремум функцию φ(х)=х 2 /2 х-1 .

Приравняв первую производную этой функции к нулю, найдем критические точки х 1 =0 и х 2 =ln 2.

Отбросим первую точку как не представляющую интереса (n не принимает значения, равного нулю); легко видеть, что в точек х 2 =2/ln 2 функция φ(х) имеет максимум. Учитывая, что 2/ln 2 ≈ 2.9 и что N – целое положительное число, вычислим дисперсию D(X n)= (n 2 /2 n -1)α 2 для ближайших к числу 2.9 (слева и справа) целых чисел, т.е. для n=2 и n=3.

При n=2 дисперсия D(X 2)=2α 2 , при n=3 дисперсия D(Х 3)=9/4α 2 . Очевидно,

(9/4)α 2 > 2α 2 .

Таким образом, наибольшая возможная дисперсия равна (9/4)α 2 , т.е. дисперсии случайных величин Хn равномерно ограничены числом (9/4)α 2 .

Последовательность независимых случайных величин X 1 , X 2 , …, X n , … задана законом распределения

Применима ли к заданной последовательности теорема Чебышева?

Замечание. Поскольку случайные величины Х, одинаково распределены и независимы, то читатель, знакомый с теоремой Хинчина, может ограничиться вычислением лишь математического ожидания и убедиться, что оно кончено.

Поскольку случайные величины Х n независимы, то они подавно и попарно независимы, т.е. первое требование теоремы Чебышева выполняется.

Легко найти, что M(X n)=0, т.е.первое требование конечности математических ожиданий выполняется.

Остается проверить выполнимость требования равномерной ограниченности дисперсий. По формуле

D(X n)=M(X n 2)- 2 ,

учитывай, что M(X n)=0, найдем

Таким образом, наибольшая возможная дисперсия равна 2, т.е. дисперсии случайных величин Х n равномерно ограничены числом 2.

Итак, все требования теоремы Чебышева выполняются, следовательно, к рассматриваемой последовательности эта теорема применима.

Найти вероятность того, что в результате испытания величина Х примет значение, заключенное в интервале (0, 1/3).

Случайная величина Х задана на всей оси Ох функцией распределена F(x)=1/2+(arctg x)/π. Найти вероятность того, что в результате испытания величина Х примет значение, заключенное в интервале (0, 1).

Вероятность того, что Х примет значение, заключенное в интервале (a, b), равна приращению функции распределения на этом интервале: P(a

Р(0< Х <1) = F(1)-F(0) = x =1 - x =0 = 1/4

Случайная величина Х функцией распределения

Найти вероятность того, что в результате испытания величина Х примет значение, заключенное в интервале (-1, 1).

Вероятность того, что Х примет значение, заключенное в интервале (a, b), равна приращению функции распределения на этом интервале: P(a

Р(-1< Х <1) = F(1)-F(-1) = x =-1 – x =1 = 1/3.

Функция распределения непрерывной случайной величины Х (времени безотказной работы некоторого устройства) равна F(х)=1-е -х/ T (х≥0). Найти вероятность безотказной работы устройства за время х≥Т.

Вероятность того, что Х примет значение, заключенное в интервале x≥T, равна приращению функции распределения на этом интервале: P(0

P(x≥T) = 1 - P(T

Случайная величина Х задана функцией распределения

Найти вероятность того, что в результате испытания Х примет значение: а) меньшее 0.2; б) меньшее трех; в) не меньшее трех; г) не меньшее пяти.

а) Так как при х≤2 функция F(х)=0, то F(0, 2)=0, т.е. P(х < 0, 2)=0;

б) Р(Х < 3) = F(3) = x =3 = 1.5-1 = 0.5;

в) события Х≥3 и Х<3 противоположны, поэтому Р(Х≥3)+Р(Х<3)=1. Отсюда, учитывая, что Р(Х<3)=0.5 [см. п. б.], получим Р(Х≥3) = 1-0.5 = 0.5;

г) сумма вероятностей противоположных событий равна единице, поэтому Р(Х≥5)+Р(Х<5)=1. Отсюда, используя условие, в силу которого при х>4 функция F(x)=1, получим Р(Х≥5) = 1-Р(Х<5) = 1-F(5) = 1-1 = 0.

Случайная величина Х задана функцией распределния

Найти вероятность того, что в результате четырех независимых испытаний величина Х ровно три раза примет значение, принадлежащее интервалу (0.25, 0.75).

Вероятность того, что Х примет значение, заключенное в интервале (a, b), равна приращению функции распределения на этом интервале: P(a

P(0.25< X <0.75) = F(0.75)-F(0.25) = 0.5

Следовательно, , или Отсюда , или.

Случайная величина X задана на всей оси Ox функцией распределения . Найти возможное значения , удовлетворяющее условию: с вероятностью случайная X в результате испытания примет значение большее

Решение. События и - противоложные, поэтому . Следовательно, . Так как , то .

По определению функции распределения, .

Следовательно, , или . Отсюда , или.

Дискретная случайная величина X задана законом распределения

Итак, искомая функция распределения имеет вид

Дискретная случайная величина X задана законом распределения

Найти функцию распределения и начертить ее график.

Дана функция распределения непрерывной случайной величины X

Найти плотность распределения f(x).

Плотность распределения равна первой производной от функции распределения:

При x=0 производная не существует.

Непрерывная случайная величина X задана плотностью распределения в интервале ; вне этого интервала . Найти вероятность того, что X примет значение, принадлежащее интервалу .

Воспользуемся формулой . По условию ,и . Следовательно, искомая вероятность

Непрерывная случайная величина X задана плотностью распределения в интервале ; вне этого интервала . Найти вероятность того, что X примет значение, принадлежащее интервалу .

Воспользуемся формулой . По условию ,и . Следовательно, искомая вероятность

Плотность распределения непрерывной случайной величины Х в интервале (-π/2, π/2) равна f(x)=(2/π)*cos2x ; вне этого интервала f(x)=0. Найти вероятность того, что в трех независимых испытаниях Х примет ровно два раза значение, заключенное в интервале (0, π/4).

Воспользуемся формулой Р(a

Р(0

Ответ: π+24π.

fx=0, при x≤0cosx, при 0

Используем формулу

Если х ≤0, то f(x)=0, следовательно,

F(x)=-∞00dx=0.

Если 0

F(x)=-∞00dx+0xcosxdx=sinx.

Если x≥ π2 , то

F(x)=-∞00dx+0π2cosxdx+π2x0dx=sinx|0π2=1.

Итак, искомая функция распределения

Fx=0, при x≤0sinx, при 0 π2.

Задана плотность распределения непрерывной случайной величины Х:

Fx=0, при x≤0sinx, при 0 π2.

Найти функцию распределения F(x).

Используем формулу

Плотность распределения непрерывной случайной величины Х задана на всей оси Ох равеством . Найти постоянный параметр С.

.

. (*)

.

Таким образом,

Плотность распределения непрерывной случайной величины задана на всей оси равенством Найти постоянный параметр С.

Решение. Плотность распределения должна удовлетворять условию . Потребуем, чтобы это условие выполнялось для заданной функции:

.

. (*)

Найдем сначала неопределенный интеграл:

.

Затем вычислим несобственный интеграл:

Таким образом,

Подставив (**) в (*), окончательно получим .

Плотность распределения непрерывной случайной величины X в интервале равна ; вне этого интервала f(х) = 0. Найти постоянный параметр С.

.

. (*)

Найдем сначала неопределенный интеграл:

Затем вычислим несобственный интеграл:

(**)

Подставив (**) в (*), окончательно получим .

Плотность распределения непрерывной случайной величины Х задана в интервале равенством ; вне этого интервала f(х) = 0. Найти постоянный параметр С.

Решение. Плотность распределения должна удовлетворять условию , но так как f(x) вне интервала равна 0 достаточно, чтобы она удовлетворяла: Потребуем, чтобы это условие выполнялось для заданной функции:

.

. (*)

Найдем сначала неопределенный интеграл:

Затем вычислим несобственный интеграл:

(**)

Подставив (**) в (*), окончательно получим .

Случайная величина X задана плотностью распределения ƒ(x) = 2x в интервале (0,1); вне этого интервала ƒ(x) = 0. Найти математическое ожидание величины X.

Решение. Используем формулу

Подставив a = 0, b = 1, ƒ(x) = 2x, получим

Ответ: 2/3.

Случайная величина X задана плотностью распределения ƒ(x) = (1/2)x в интервале (0;2); вне этого интервала ƒ(x) = 0. Найти математическое ожидание величины X.

Решение. Используем формулу

Подставив a = 0, b = 2, ƒ(x) = (1/2)x, получим

М (Х) = = 4/3

Ответ: 4/3.

Случайная величина X в интервале (–с, с) задана плотностью распределения

ƒ(x) = ; вне этого интервала ƒ(x) = 0. Найти математическое ожидание величины X.

Решение. Используем формулу

Подставив a = –с, b = c, ƒ(x) = , получим

Учитывая, что подынтегральная функция нечетная и пределы интегрирования симметричны относительно начала координат, заключаем, что интеграл равен нулю. Следовательно, М(Х) = 0.

Этот результат можно получить сразу, если принять во внимание, что кривая распределения симметрична относительно прямой х = 0.

Случайная величина Х в интервале (2, 4) задана плотностью распределения f(x)=

. Отсюда видно, что при х=3 плотность распределения достигает максимума; следовательно, . Кривая распределения симметрична относительно прямой х=3, поэтому и .

Случайная величина Х в интервале (3, 5) задана плотностью распределения f(x)=; вне этого интервала f(x)=0. Найти моду, математическое ожидание и медиану величины Х.

Решение. Представим плотность распределения в виде . Отсюда видно, что при х=3 плотность распределения достигает максимума; следовательно, . Кривая распределения симметрична относительно прямой х=4, поэтому и .

Случайная величина Х в интервале (-1, 1) задана плотностью распределения ; вне этого интервала f(x)=0. Найти: а) моду; б) медиану Х.

Определение 13.1. Случайная величина Х называется дискретной , если она принимает конечное либо счётное число значений.

Определение 13.2. Законом распределения случайной величины Х называется совокупность пар чисел ( , ), где – возможные значения случайной величины, а – вероятности, с которыми случайная величина принимает эти значения, т.е. = P{X = }, причём =1.

Простейшей формой задания дискретной случайной величины является таблица, в которой перечислены возможные значения случайной величины и соответствующие им вероятности. Такая таблица называется рядом распределения дискретной случайной величины.

Х
Р

Ряд распределения можно изобразить графически. В этом случае по оси абсцисс откладывается , по оси ординат – вероятность . Точки с координатами ( , ) соединяют отрезками и получают ломаную, называемую многоугольником распределения, который является одной из форм задания закона распределения дискретной случайной величины.

Пример 13.3. Построить многоугольник распределения случайной величины Х с рядом распределения

Х
Р 0,1 0,3 0,2 0,4

Определение 13.4. Говорят, что дискретная случайная величина Х имеет биноминальное распределение с параметрами (n,p )если она может принимать целые неотрицательные значения k {1,2,…,n } с вероятностями Р(Х=х )= .

Ряд распределения имеет вид:

Х k n
Р

Сумма вероятностей = =1.

Определение 13.5. Говорят, что дискретная форма случайной величины Х имеет распределение Пуассона с параметром ( >0),если она принимает целые значения k {0,1,2,…} с вероятностями Р(Х=k )= .

Ряд распределения имеет вид

Х k
Р

Так как разложение в ряд Маклорена имеет следующий вид , тогда сумма вероятностей = = =1.

Обозначим через Х число испытаний, которые нужно провести до первого появления события А в независимых испытаниях, если вероятность появления А в каждом из них равна p (0< p <1), а вероятность непоявления . Возможными значениями Х являются натуральные числа.

Определение 13.6. Говорят, что случайная величина Х имеет геометрическое распределение с параметром p (0< p <1), если она принимает натуральные значения k N с вероятностями Р(Х=k)= , где . Ряд распределения:

Х n
Р

Сумма вероятностей = = =1.

Пример 13.7. Монета брошена 2 раза. Составить ряд распределения случайной величины Х числа выпадений «герба».

P 2 (0)= = ; P 2 (1)= = =0,5; P 2 (2)= = .

Х
Р

Ряд распределения примет вид:

Пример 13.8. Из орудия стреляют до первого попадания по цели. Вероятность попадания при одном выстреле 0,6. произойдёт попадание при 3-м выстреле.

Поскольку p =0,6, q =0,4, k =3, тогда Р(А )= =0,4 2 *0,6=0,096.


14 Числовые характеристики дискретных случайных величин

Полностью характеризует случайную величину закон распределения, однако часто он бывает неизвестен, поэтому приходится ограничиваться меньшими сведениями. Иногда даже выгоднее пользоваться числами (параметрами), описывающими случайную величину суммарно. Они называются числовыми характеристиками случайной величины. К ним относятся: математическое ожидание, дисперсия и др.

Определение 14.1. Математическим ожиданием дискретной случайной величины называют сумму произведений всех её возможных значений на их вероятности. Обозначают математическое ожидание случайной величины Х через МХ =М(Х )=ЕХ .

Если случайная величина Х принимает конечное число значений, то МХ = .

Если случайная величина Х принимает счетное число значений, то МХ = ,

причём математическое ожидание существует, если ряд сходится абсолютно.

Замечание 14.2. Математическое ожидание некоторое число, приближённо равное определённому значению случайной величины.

Пример 14.3. Найти математическое ожидание случайной величины Х , зная её ряд распределения

Х
Р 0,1 0,6 0,3

МХ =3*0,1+5*0,6+2*0,3=3,9.

Пример 14.4. Найти математическое ожидание числа появлений события А в одном испытании, если вероятность события А равна p .

Случайная величина Х – число появления события A в одном испытании. Она может принимать значения =1 (A наступило) с вероятностью p и =0 с вероятностью , т.е. ряд распределения

Отсюда МС=С*1=С.

Замечание 14.6. Произведение постоянной величины С на дискретную случайную величину Х Определяется как дискретная случайная величина СХ , возможные значения которой равны произведениям постоянной С на возможные значения Х , вероятности этих значений СХ равны вероятностям соответствующих возможных значений Х .

Свойство 14.7. Постоянный множитель можно выносить за знак математического ожидания:

М(СХ )=С∙МХ .

Если случайная величина Х имеет ряд распределения

Х
Р

Ряд распределения случайной величины

СХ
Р

М(СХ )= = = С∙М(Х ).

Определение 14.8. Случайные величины , ,…, называются независимыми , если для , i =1,2,…,n

Р{ , ,…, }= Р{ } Р{ }… Р{ } (1)

Если в качестве = , i =1,2,…,n , то получим из (1)

Р{ < , < ,…, < }= Р{ < }Р{ < }… Р{ < }, откуда получается другая формула:

( , ,…, ) = () ()... () (2)

для совместной функции распределения случайных величин , ,…, , которую можно также взять в качестве определения независимости случайной величины.

Свойство 14.9. Математическое ожидание произведения 2-х независимых случайных величин равно произведению их математических ожиданий:

М(ХУ )=МХ ∙МУ .

Свойство 14.10. Математическое ожидание суммы 2-х случайных величин равно сумме их математических ожиданий:

М(Х+У )=МХ У .

Замечание 14.11. Свойства 14.9 и 14.10 можно обобщать на случай нескольких случайных величин.

Пример 14.12. Найти математическое ожидание суммы числа очков, которые могут выпасть при бросании 2-х игровых костей.

Пусть Х число очков, выпавших на первой кости, У число очков, выпавших на второй кости. Они имеют одинаковые ряды распределения:

Х
Р

Тогда МХ У = (1+2+3+4+5+6)= = . М(Х+У )=2* =7.

Теорема 14.13. Математическое ожидание числа появлений события А в n независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании: МХ =np .

Пусть Х – число появлений события А в n независимых испытаниях. –число появлений события А в i -том испытании, i =1,2,…,n. Тогда = + +…+ . По свойствам математического ожидания МХ = . Из примера 14.4 MX i =p, i =1,2,…,n, отсюда МХ = =np .

Определение 14.14. Дисперсией случайной величины называется число DX =M(X -MX ) 2 .

Определение 14.15. Средним квадратическим отклонением случайной величины Х называется число =.

Замечание 14.16. Дисперсия является мерой разброса значений случайной величины вокруг её математического ожидания. Она всегда неотрицательна. Для подсчёта дисперсии удобнее пользоваться другой формулой:

DX = M(X - MX ) 2 = M(X 2 - 2X∙ MX + (MX ) 2) = M(X 2) - 2M(X∙ MX ) + M(MX ) 2 = =M(X 2)-MX∙ MX+ (MX ) 2 = M(X 2) - (MX ) 2 .

Отсюда DX = M(X 2) - (MX ) 2 .

Пример 14.17. Найти дисперсию случайной величины Х , Заданной рядом распределения

X
P 0,1 0,6 0,3

MX =2*0,1+3*0,6+5*0,3=3,5; M(X 2)= 4*0,1+9*0,6+25*0,3=13,3;

DX =13.3-(3,5) 2 =1,05.

Свойства дисперсии

Свойство 14.18. Дисперсия постоянной величины равна 0:

DC = M(С- MС) 2 = M(С- С) 2 =0.

Свойство 14.19. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат

D(СX ) =C 2 DX .

D(CХ)=М(С- CMX ) 2 =М(С(X- MX ) 2) = C 2 M(X - MX ) 2 = C 2 DX .

Свойство 14.20. Дисперсия суммы 2-х независимых случайных величин равна сумме дисперсий этих величин

D(Х+Y )=DХ +DY .

D(X + У )=М((X + Y ) 2) – (M(X + Y )) 2 = M(X 2 + 2XY + Y 2 ) - (MX + MY ) 2 = =M(X ) 2 +2МХ МY +M(Y 2)-(M(X ) 2 +2МХ МY +M(Y ) 2)= M(X 2)-(MX ) 2 +M(Y 2)- (MY ) 2 = = DX +DY .

Следствие 14.21. Дисперсия суммы нескольких независимых случайных величин равна сумме их дисперсий.

Теорема 14.22. Дисперсия числа появлений события А в n независимых испытаниях, в каждом из которых вероятность p) 2 =). Отсюда D +2 ,

Случайной величиной Называется величина, которая в результате испытаний, проводимых в одних и тех же условиях, принимает различные, вообще говоря, значения, зависящие от не учитываемых случайных факторов. Примеры случайных величин: число выпавших очков на игральной кости, число дефектных изделий в партии, отклонение точки падения снаряда от цели, время безотказной работы устройства и т. п. Различают дискретные и непрерывные случайные величины. Дискретной Называется случайная величина, возможные значения которой образуют счетное множество, конечное или бесконечное (т. е. такое множество, элементы которого могут быть занумерованы).

Непрерывной Называется случайная величина, возможные значения которой непрерывным образом заполняют некоторый конечный или бесконечный интервал числовой оси. Число значений непрерывной случайной величины всегда бесконечно.

Случайные величины будем обозначать заглавными буквами конца латинского алфавита: X , Y , ...; значения случайной величины – строчными буквами: Х, у, ... . Таким образом, X Обозначает всю совокупность возможных значений случайной величины, а Х – Некоторое ее конкретное значение.

Законом распределения дискретной случайной величины называется задаваемое в любой форме соответствие между возможными значениями случайной величины и их вероятностями.

Пусть возможными значениями случайной величины X Являются . В результате испытания случайная величина примет одно из этих значений, т. е. Произойдет одно событие из полной группы попарно несовместных событий.

Пусть также известны вероятности этих событий:

Закон распределения случайной величины X Может быть записан в виде таблицы, которую называют Рядом распределения Дискретной случайной величины:

Для ряда распределения имеет место равенство (условие нормировки).

Пример 3.1. Найти закон распределения дискретной случайной величины X – числа появлений «орла» при двух бросаниях монеты.

Функция распределения является универсальной формой задания закона распределения как дискретных, так и непрерывных случайных величин.

Функцией распределения случайной величины X Называется функция F (X ), Определенная на всей числовой оси следующим образом:

F (X )= Р (Х < х ),

Т. е. F (X ) есть вероятность того, что случайная величина X Примет значение меньшее, чем X .

Функцию распределения можно представить графически. Для дискретной случайной величины график имеет ступенчатый вид. Построим, например, график функции распределения случайной величины, заданной следующим рядом (рис. 3.1):

Рис. 3.1. График функции распределения дискретной случайной величины

Скачки функции происходят в точках, соответствующих возможным значениям случайной величины, и равны вероятностям этих значений. В точках разрыва функция F (X ) непрерывна слева.

График функции распределения непрерывной случайной величины представляет собой непрерывную кривую.

X

Рис. 3.2. График функции распределения непрерывной случайной величины

Функция распределения обладает следующими очевидными свойствами:

1) , 2) , 3) ,

4) при .

Будем называть событие, состоящее в том, что случайная величина X Принимает значение Х, Принадлежащее некоторому полузамкнутому интервалу A £ х < B , Попаданием случайной величины на интервал [A , B ).

Теорема 3.1 . Вероятность попадания случайной величины на интервал [A , B ) равна приращению функции распределения на этом интервале:

Если уменьшать интервал [A , B ), Полагая, что , то в пределе формула (3.1) вместо вероятности попадания на интервал дает вероятность попадания в точку, т. е. вероятность того, что случайная величина примет значение A :

Если функция распределения имеет разрыв в точке A , То предел (3.2) равен значению скачка функции F (X ) в точке Х =A , Т. е. вероятности того, что случайная величина примет значение A (рис. 3.3, А ). Если же случайная величина непрерывна, т. е. непрерывна функция F (X ), то предел (3.2) равен нулю (рис. 3.3, Б )

Таким образом, вероятность любого конкретного значения непрерывной случайной величины равна нулю. Однако это не означает невозможности события Х= A , А лишь говорит о том, что относительная частота этого события будет стремиться к нулю при неограниченном увеличении числа испытаний.

А )
Б )

Рис. 3.3. Скачок функции распределения

Для непрерывных случайных величин наряду с функцией распределения используется еще одна форма задания закона распределения – плотность распределения.

Если – вероятность попадания на интервал , то отношение характеризует плотность, с которой вероятность распределена в окрестности точки X . Предел этого отношения при ,т. е. производная , называется Плотностью распределения (плотностью распределения вероятностей, плотностью вероятности) случайной величины X . Условимся плотность распределения обозначить

.

Таким образом, плотность распределения характеризует вероятность попадания случайной величины в окрестность точки Х.

График плотности распределения называют Кривой рас Пределения (Рис. 3.4).

Рис. 3.4. Вид плотности распределения

Исходя из определения и свойств функции распределения F (X ), нетрудно установить следующие свойства плотности распределения F (X ):

1) F (X )³0

2)

3)

4)

Для непрерывной случайной величины в силу того, что вероятность попадания в точку равна нулю, имеют место следующие равенства:

Пример 3.2. Случайная величина X Задана плотностью распределения

Требуется:

А) найти значение коэффициента А;

Б) найти функцию распределения;

В) найти вероятность попадания случайной величины на интервал (0, ).

Функция распределения или плотность распределения полностью описывают случайную величину. Часто, однако, при решении практических нет необходимости в полном знании закона распределения, достаточно знать лишь некоторые его характерные черты. Для этого в теории вероятностей используются числовые характеристики случайной величины, выражающие различные свойства закона распределения. Основными числовыми характеристиками являются Математическое Ожидание, дисперсия и среднее квадратическое отклонение .

Математическое ожидание Характеризует положение случайной величины на числовой оси. Это некоторое среднее значение случайной величины, около которого группируются все ее возможные значения.

Математическое ожидание случайной величины X Обозначают символами М (Х ) или Т . Математическим ожиданием дискретной случайной величины называется сумма парных произведений всех возможных значений случайной величины на вероятности этих значений:

Математическое ожидание непрерывной случайной величины определяется с помощью несобственного интеграла:

Исходя из определений, нетрудно убедиться в справедливости следующих свойств математического ожидания:

1. (математическое ожидание неслучайной величины С Равно самой неслучайной величине).

2. Если ³0, то ³0.

4. Если и Независимы , то .

Пример 3.3. Найти математическое ожидание дискретной случайной величины, заданной рядом распределения:

Решение .

=0×0.2 + 1×0.4 + 2×0.3 + 3×0.1=1.3.

Пример 3.4. Найти математическое ожидание случайной величины, заданной плотностью распределения:

.

Решение .

Дисперсия и среднее квадратическое отклонение Являются характеристиками рассеивания случайной величины, они характеризуют разброс ее возможных значений относительно математического ожидания.

Дисперсией D (X ) Случайной величины X Называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания Для дискретной случайной величины дисперсия выражается суммой:

(3.3)

А для непрерывной – интегралом

(3.4)

Дисперсия имеет размерность квадрата случайной величины. Характеристикой рассеивания, Совпадающей по размерно Сти со случайной величиной , служит среднее квадратическое отклонение.

Свойства дисперсии:

1) – постоянные. В частности,

3)

В частности,

Заметим, что вычисление дисперсии по формуле (3.5) часто оказывается более удобным, чем по формуле (3.3) или (3.4).

Величина называется Ковариацией случайных величин .

Если , то величина

Называется Коэффициентом корреляции случайных величин .

Можно показать, что если , то величины линейно зависимы: где

Отметим, что если независимы, то

Пример 3.5. Найти дисперсию случайной величины, заданной рядом распределения из примера 1.

Решение . Чтобы вычислить дисперсию, необходимо знать математическое ожидание. Для данной случайной величины выше было найдено: M =1.3. Вычисляем дисперсию по формуле (3.5):

Пример 3.6. Случайная величина задана плотностью распределения

Найти дисперсию и среднее квадратическое отклонение.

Решение . Находим сначала математическое ожидание:

(как интеграл от нечетной функции по симметричному промежутку).

Теперь вычисляем дисперсию и среднее квадратическое отклонение:

1. Биномиальное распределение . Случайная величина , равная числу «УСПЕХОВ» в схеме Бернулли, имеет биномиальное распределение: , .

Математическое ожидание случайной величины, распределённой по биноминальному закону, равно

.

Дисперсия этого распределения равна .

2. Распределение Пуассона ,

Математическое ожидание и дисперсия случайной величины с распределением Пуассона , .

Распределение Пуассона часто используется, когда мы имеем дело с числом событий, появляющихся в промежутке времени или пространства, например: число машин, прибывших на автомойку в течении часа, число остановок станков в неделю, число дорожных происшествий и т. д.

Случайная величина имеет Геометрическое распределение с параметром , если принимает значения с вероятностями . Случайная величина с таким распределением имеет смысл Номера первого успешного испытания в схеме Бернулли с вероятностью успеха . Таблица распределения имеет вид:

3. Нормальное распределение . Нормальный закон распределения вероятностей занимает особое место среди других законов распределения. В теории вероятности доказывается, что плотность вероятности суммы независимых или Слабо зависимых , равномерно малых (т. е. играющих примерно одинаковую роль) слагаемых при неограниченном увеличении их числа как угодно близко приближается к нормальному закону распределению независимо от того, какие законы распределения имеют эти слагаемые (центральная предельная теорема А. М. Ляпунова).



© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний