Дифференциальная функция распределения вейбулла справочник. Вероятность и статистика – основные факты

Главная / Н. А. Некрасов

Распределения вероятностей случайных величин ; характеризуется функцией распределения

где - параметр формы кривой распределения, - параметр масштаба, - параметр сдвига. Семейство распределений (*) названо по имени В. Вейбулла , впервые использовавшего его для аппроксимации экспериментальных данных о прочности стали на разрыв при усталостпых испытаниях и предложившего методы оценки параметров распределения (*). В. р. принадлежит к асимптотич. распределению третьего типа крайних членов вариационного ряда. Оно широко используется для описания закономерностей отказов шарикоподшипников, вакуумных приборов, элементов электроники. Частными случаями В. р. являются экспоненциальное (р=1) и рэлеевское (р=2) распределения. Кривые функции распределения (*) не принадлежат семейству распределений Пирсона. Имеются вспомогательные таблицы для вычислений функции распределения Вейбулла (см. ). При квантиль уровня qравна


где - гамма-функция; вариации, асимметрия и эксцесс не зависят от , что облегчает их табулирование и создание вспомогательных таблиц для получения оценок параметров. При В. р. унимодально, равна , а функция опасности отказов не убывает. При функция монотонно убывает. Можно построить так. наз. вероятностную бумагу Вейбулла (см. ). На ней трансформируется в прямую, при образ имеет вогнутость, а при - выпуклость. Оценки параметров В. р. по методу квантилей приводят к уравнениям существенно более простым, чем по методу максимального правдоподобия. Совместная асимптотич. эффективность оценок параметров и (при ) по методу квантилей максимальна (и равна 0,64) при. использовании квантилей уровня 0,24 и 0,93. Функция распределения (*) хорошо аппроксимируется функцией распределения логнормального распределения


( - функция распределения нормированного нормального распределения,):


Лит :Weibull W., A statistical theory of the strength of materials, Stockh., 1939; Гнеденко Б. В., Беляев Ю. К., Соловьев А. Д., Математические методы в теории надежности, М., 1965; Jоhnsоn L., The statistical treatment of fatigue experiments, Amst., 1964; Крамер Г Математические методы статистики, пер. с англ., 2 изд., М, 1975. Ю. К. Беляев, Е. В. Чепурин.


Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

Смотреть что такое "ВЕЙБУЛЛА РАСПРЕДЕЛЕНИЕ" в других словарях:

    распределение - 3.38 распределение (allocation): Процедура, применяемая при проектировании системы (объекта) и направленная на распределение требований к значениям характеристик объекта по компонентам и подсистемам в соответствии с установленным критерием.… …

    распределение Вейбулла - 1.48. распределение Вейбулла; распределение экстремальных значений типа III Распределение вероятностей непрерывной случайной величины Х с функцией распределения: где х ³ а; y = (x a)/b; а параметры ¥ < a < +¥, k > 0, b > 0. Примечание … Словарь-справочник терминов нормативно-технической документации

    Плотность вероятности Функция распределения Обозначение {{{notation}}} Параметры коэффициент масштаба … Википедия


3. ОСНОВНЫЕ МАТЕМАТИЧЕСКИЕ МОДЕЛИ, НАИБОЛЕЕ ЧАСТО ИСПОЛЬЗУЕМЫЕ В РАСЧЕТАХ НАДЕЖНОСТИ

3.1. Распределение Вейбулла

Опыт эксплуатации очень многих электронных приборов и значительного количества электромеханической аппаратуры показывает, что для них характерны три вида зависимостей интенсивности отказов от времени (рис. 3.1), соответствующих трем периодам жизни этих устройств .

Нетрудно увидеть, что этот рисунок аналогичен рис. 2.3, так как график функции l (t) соответствует закону Вейбулла. Указанные три вида зависимостей интенсивности отказов от времени можно получить, используя для вероятностного описания случайной наработки до отказа двухпараметрическое распределение Вейбулла . Согласно этому распределению плотность вероятности момента отказа

, (3.1)

где d - параметр формы (определяется подбором в результате обработки экспериментальных данных, d > 0); l - параметр масштаба, .

Интенсивность отказов определяется по выражению

(3.2)

Вероятность безотказной работы

, (3.3)

а средняя наработки до отказа

. (3.4)

Отметим, что при параметре d = 1 распределение Вейбулла переходит в экспоненциальное, а при d = 2 - в распределение Рэлея.

При d< 1 интенсивность отказов монотонно убывает (период приработки), а при монотонно возрастает (период износа), см. рис. 3.1. Следовательно, путем подбора параметра d можно получить, на каждом из трех участков, такую теоретическую кривую l (t), которая достаточно близко совпадает с экспериментальной кривой, и тогда расчет требуемых показателей надежности можно производить на основе известной закономерности.

Распределение Вейбулла достаточно близко подходит для ряда механических объектов (к примеру, шарикоподшипников), оно может быть использовано при ускоренных испытаниях объектов в форсированном режиме .

3.2. Экспоненциальное распределение

Как было отмечено в подразд. 3.1 экспоненциальное распределение вероятности безотказной работы является частным случаем распределения Вейбулла, когда параметр формы d = 1. Это распределение однопараметрическое, то есть для записи расчетного выражения достаточно одного параметра l = const . Для этого закона верно и обратное утверждение: если интенсивность отказов постоянна, то вероятность безотказной работы как функция времени подчиняется экспоненциальному закону:

. (3.5)

Среднее время безотказной работы при экспоненциальном законе распределения интервала безотказной работы выражается формулой:

. (3.6)

Заменив в выражении (3.5) величину l величиной 1 / Т 1 , получим . (3.7)

Таким образом, зная среднее время безотказной работы Т 1 (или постоянную интенсивность отказов l ), можно в случае экспоненциального распределения найти вероятность безотказной работы для интервала времени от момента включения объекта до любого заданного момента t.

Отметим, что вероятность безотказной работы на интервале, превышающем среднее время Т 1 , при экспоненциальном распределении будет менее 0,368:

Р(Т 1) == 0,368 (рис. 3.2).

Длительность периода нормальной эксплуатации до наступления старения может оказаться существенно меньше Т 1 , то есть интервал времени на котором допустимо пользование экспоненциальной моделью, часто бывает меньшим среднего времени безотказной работы, вычисленного для этой модели. Это легко обосновать, воспользовавшись дисперсией времени безотказной работы. Как известно , если для случайной величины t задана плотность вероятности f(t) и определено среднее значение (математическое ожидание) Т 1 , то дисперсия времени безотказной работы находится по выражению:

(3.8)

и для экспоненциального распределения соответственно равна:

. (3.9)

После некоторых преобразований получим:

. (3.10) Таким образом, наиболее вероятные значения наработки, группирующиеся в окрестности Т 1 , лежат в диапазоне, то есть в диапазоне от t = 0 до t = 2Т 1 . Как видим, объект может отработать и малый отрезок времени и время t = 2Т 1 , сохранив l = const. Но вероятность безотказной работы на интервале 2Т 1 крайне низка: .

Важно отметить, что если объект отработал предположим, время t без отказа, сохранив l = соnst, то дальнейшее распределение времени безотказной работы будет таким, как в момент первого включения l = соnst.

Таким образом, отключение работоспособного объекта в конце интервала и новое его включение на такой же интервал множество раз приведет к пилообразной кривой (см. рис. 3.3).

Другие распределения не имеют указанного свойства. Из рассмотренного следует на первый взгляд парадоксальный вывод: поскольку за все время t устройство не стареет (не меняет своих свойств), то нецелесообразно проводить профилактику или замену устройств для предупреждения внезапных отказов, подчиняющихся экспоненциальному закону. Конечно, никакой парадоксальности этот вывод не содержит, так как предположение об экспоненциальном распределении интервала безотказной работы означает, что устройство не стареет. С другой стороны, очевидно, что чем больше время, на которое включается устройство, тем больше всевозможных случайных причин, которые могут вызвать отказ устройства. Это весьма важно для эксплуатации устройств, когда приходится выбирать интервалы, через которые следует производить профилактические работы с тем, чтобы сохранить высокую надежность работы устройства. Этот вопрос подробно рассматривается в работе .

Модель экспоненциального распределения часто используется для априорного анализа, так как позволяет не очень сложными расчетами получить простые соотношения для различных вариантов создаваемой системы. На стадии апостериорного анализа (опытных данных) должна проводиться проверка соответствия экспоненциальной модели результатам испытаний. В частности, если при обработке результатов испытаний окажется, что , то это является доказательством экспоненциальности анализируемой зависимости.

На практике часто бывает, что l№ const,однако, и в этом случае его можно применять для ограниченных отрезков времени. Это допущение оправдывается тем, что при ограниченном периоде времени переменную интенсивность отказов без большой ошибки можно заменить средним значением:

l (t) " l cр(t) = const.

3.3. Распределение Рэлея

Плотность вероятности в законе Рэлея (см. рис. 3.4) имеет следующий вид

¦ , (3.11)

где d* - параметр распределения Рэлея (равен моде этого распределения ). Его не нужно смешивать со среднеквадратическим отклонением: .

Интенсивность отказов равна:

Характерным признаком распределения Рэлея является прямая линия графика l (t), начинающаяся с начала координат.

Вероятность безотказной работы объекта в этом случае определится по выражению

. (3.12)

Средняя наработка до отказа

. (3.13)

3.4. Нормальное распределение (распределение Гаусса)

Нормальный закон распределения характеризуется плотностью вероятности вида

, (3.14)

где m x , s x - соответственно математическое ожидание и среднеквадратическое отклонение случайной величины х.

При анализе надежности электроустановок в виде случайной величины, кроме времени, часто выступают значения тока, электрического напряжения и других аргументов. Нормальный закон - это двухпараметрический закон, для записи которого нужно знать m x и s x .

Вероятность безотказной работы определяется по формуле

, (3.15)

а интенсивность отказов - по формуле

На рис. 3.5 изображены кривые l (t), Р(t) и ¦ (t) для случая s t << m t , характерного для элементов, используемых в системах автоматического управления .

В данном пособии показаны только наиболее распространенные законы распределения случайной величины. Известен целый ряд законов, так же используемых в расчетах надежности : гамма-распределение, -распределение, распределение Максвелла, Эрланга и др.

Следует отметить, что если неравенство s t << m t не соблюдается, то следует использовать усеченное нормальное распределение .

Для обоснованного выбора типа практического распределения наработки до отказа необходимо большое количество отказов с объяснением физических процессов, происходящих в объектах перед отказом.

В высоконадежных элементах электроустановок, во время эксплуатации или испытаний на надежность, отказывает лишь незначительная часть первоначально имеющихся объектов. Поэтому значение числовых характеристик, найденное в результате обработки опытных данных, сильно зависит от типа предполагаемого распределения наработки до отказа. Как показано в , при различных законах наработки до отказа, значения средней наработки до отказа, вычисленные по одним и тем же исходным данным, могут отличаться в сотни раз. Поэтому вопросу выбора теоретической модели распределения наработки до отказа необходимо уделять особое внимание с соответствующим доказательством приближения теоретического и экспериментального распределений (см. разд. 8).

3.5. Примеры использования законов распределения в расчетах надежности

Определим показатели надежности для наиболее часто используемых законов распределения времени возникновения отказов.

3.5.1. Определение показателей надежности при экспоненциальном законе распределения

Пример . Пусть объект имеет экспоненциальное распределение времени возникновения отказов с интенсивностью отказов l = 2,5 Ч 10 -5 1/ч.

Требуется вычислить основные показатели надежности невосстанавливаемого объекта за t = 2000 ч.

Решение.

q (2000) = 1 - Р (2000) = 1 - 0,9512 = 0,0488.
  1. Используя выражение (2.5), вероятность безотказной работы в интервале времени от 500 ч до 2500 ч при условии, что объект проработал безотказно 500 ч равна
.
  1. Средняя наработка до отказа
ч.

3.5.2. Определение показателей надежности при распределении Рэлея

Пример. Параметр распределения d* = 100 ч.

Требуется определить для t = 50 ч величины P(t), Q(t), l (t),Т 1 .

Решение.

Воспользовавшись формулами (3.11), (3.12), (3.13), получим

3.5.3. Определение показателей схемы при распределении Гаусса

Пример. Электрическая схема собрана из трех последовательно включенных типовых резисторов: ;

(в % задано значение отклонения сопротивлений от номинального).

Требуется определить суммарное сопротивление схемы с учетом отклонений параметров резисторов.

Решение.

Известно, что при массовом производстве однотипных элементов плотность распределения их параметров подчиняется нормальному закону . Используя правило 3 s (трех сигм), определим по исходным данным диапазоны, в которых лежат значения сопротивлений резисторов: ;

Следовательно,

Когда значения параметров элементов имеют нормальное распределение, и элементы при создании схемы выбираются случайным образом, результирующее значение R е является функциональной переменной, распределенной так же по нормальному закону , причем дисперсия результирующего значения, в нашем случае , определяется по выражению

Поскольку результирующее значение R е распределено по нормальному закону, то, воспользовавшись правилом 3 s , запишем

где - номинальные паспортные параметры резисторов.

Таким образом

Или

Данный пример показывает, что при увеличении количества последовательно соединенных элементов результирующая погрешность уменьшается. В частности, если суммарная погрешность всех отдельных элементов равна ± 600 Ом, то суммарная результирующая погрешность равна ± 374 Ом. В более сложных схемах, например в колебательных контурах, состоящих из индуктивностей и емкостей, отклонение индуктивности или емкости от заданных параметров сопряжено с изменением резонансной частоты, и возможный диапазон ее изменения можно предусмотреть методом, аналогичным с расчетом резисторов .

3.5.4. Пример определения показателей надежности неремонтируемого объекта по опытным данным

Пример. На испытании находилось N о = 1000 образцов однотипной невосстанавливаемой аппаратуры, отказы фиксировались через каждые 100 часов.

Требуется определить в интервале времени от 0 до 1500 часов. Число отказов на соответствующем интервале представлено в табл. 3.1. Таблица 3.1
Исходные данные и результаты расчетов

Номер i-го интервала шт. ,1/ч
1 0 -100 50 0,950
2 100 -200 40 0,910 0,430
3 200 -300 32 0,878 0,358
4 300 - 400 25 0,853 0,284
5 400 - 500 20 0,833 0,238
6 500 - 600 17 0,816 0,206
7 600 -700 16 0,800 0,198
8 700 - 800 16 0,784 0,202
9 800 - 900 15 0,769 0,193
10 900 -1000 14 0,755 0,184
11 1000 -1100 15 0,740 0,200
12 1100 -1200 14 0,726 0,191
13 1200 -1300 14 0,712 0,195
14 1300 -1400 13 0,699 0,184
15 1400 -1500 14 0,685 0,202 Ч

Решение. .

Средняя наработка до отказа, при условии отказов всех N o объектов, определяется по выражению

, где tj - время отказа j-го объекта (j принимает значения от 0 до N о). В данном эксперименте из N о = 1000 объектам отказало всего объектов. Поэтому по полученным опытным данным можно найти только приближенное значение средней наработки до отказа. В соответствии с поставленной задачей воспользуемся формулой из : при r Ј N о, (3.16)

где tj - наработка до отказа j-го объекта (j принимает значения
от 1 до r); r - количество зафиксированных отказов (в нашем случае r = 315); tr - наработка до r-го (последнего) отказа. Из графика видно, что после периода приработки t і 600 ч интенсивность отказов приобретает постоянную величину. Если предположить, что и в дальнейшем l будет постоянной, то период нормальной эксплуатации связан с экспоненциальной моделью наработки до отказа испытанного типа объектов. Тогда средняя наработка до отказа

ч.

Таким образом, из двух оценок средней наработки до отказа
= 3831 ч и T 1 = 5208 ч надо выбрать ту, которая более соответствует фактическому распределению отказов. В данном случае можно предполагать, что если бы провести испытания до отказа всех объектов, то есть r = N о, достроить график рис. 3.6 и выявить время, когда l начнет увеличиваться, то для интервала нормальной эксплуатации ( l = const) следует брать среднюю наработку до отказа T 1 = 5208 ч.

В заключение по данному примеру отметим, что определение средней наработки до отказа по формуле (2.7), когда r << N о, дает грубую ошибку. В нашем примере

ч.

Если вместо N о поставим количество отказавших объектов
r = 315, то получим

ч.

В последнем случае не отказавшие за время испытания объекты в количестве N о - r = 1000-315 = 685 шт. вообще в оценку не попали, то есть была определена средняя наработка до отказа только 315 объектов. Эти ошибки достаточно распространены в практических расчетах.

В теории надежности наибольшее распространение получили следующие законы распределения случайных величин f (t ):

Для дискретных случайных величин - биноминальный закон; закон Пуассона;

Для непрерывных случайных величин - экспоненциальный закон; нормальный закон; гамма-распределение; закон Вейбулла; х 2 - распределение; логарифмически-нормальное распределение.

Биноминальный закон распределения числа n появления события A в m независимых опытах (испытаниях). Если вероятность появления события A в одном испытании равна p , вероятность непоявления события A равна q = 1– p ; число независимых испытаний равно m, то вероятность появления n событий в испытаниях будет:

где: - число сочетаний из m по n .

1) число событий n - целое положительное число;

2) математическое ожидание числа событий равно mp ;

3) среднеквадратическое отклонение числа событий:

При увеличении числа испытаний биноминальное распределение приближается

к нормальному со средним значением n/m и дисперсией p (1– p ) / m .

Закон Пуассона - распределение чисел случайного события n i за время τ . Вероятность возникновения случайного события n раз за время τ :

где: λ- интенсивность случайного события.

Свойства распределения следующие:

1) математическое ожидание числа событий за время τ равно λτ;

2) среднеквадратическое отклонение числа событий:

Характерный признак распределения Пуассона - равенство математического ожидания и дисперсии. Это свойство используется для проверки степени соответствия исследуемого (опытного) распределения с распределением Пуассона.

Распределение Пуассона получается из биноминального распределения, если число испытаний m неограниченно возрастает, а математическое ожидание числа событий a = λτ остается постоянным.

Тогда вероятность биноминального распределения при каждом n , равном 0, 1, 2, ..., стремится к пределу:

Закон Пуассона используется тогда, когда необходимо определить вероятность того, что в изделии за заданное время произойдет один, два, три и т. д. отказов.

Экспоненциальный (показательный) закон распределения случайной величины X (рис. 4.3.3, а) записывается в общем случае так:

P (x ) = exp(–λx ),

где: P (x ) - вероятность того, что случайная величина X имеет значение больше x ; значения е–х даются в приложении 1.

В частном случае, когда за случайную величину принимается время работы объекта t , вероятность того, что изделие на протяжении времени t будет находиться в работоспособном состоянии, равна еxp(–λt ):

P (t ) = exp(–λt ), (4.3.4)

где: λ- интенсивность отказов объекта для экспоненциального распределения

(она постоянна), т. е. λ= const.

Выражение (4.3.4) можно получить непосредственно из (4.3.3), если число отказов n принять равным 0.

Вероятность отказа за время t из (4.3.4):

Q (t ) = 1– P (t ) = 1– exp(–λt ). (4.3.5)

Среднее время работы до возникновения отказа:

Дисперсия времени работы до возникновения отказа:

Среднеквадратическое время работы:

σ(t ) =T 1 . (4.3.9)

Равенство среднеквадратического отклонения среднему времени работы - характерный признак экспоненциального распределения.

Статистические материалы об отказах элементов свидетельствуют о том, что в основном время их работы подчиняется экспоненциальному закону распределения. Условием возникновения экспоненциального закона распределения времени до отказа служит постоянство интенсивности отказов, что характерно для внезапных отказов на интервале времени, когда период приработки объекта закончился, а период износа и старения еще не начался, т. е. для нормальных условий эксплуатации. Постоянной становится интенсивность отказов сложных объектов, если вызываются они отказами большого числа комплектующих элементов.

Время возникновения первичных отказов может быть расположено на оси времени так, что суммарный поток отказов сложного изделия становится близким к простейшему, т. е. с постоянной интенсивностью отказов.

Этими обстоятельствами, а также тем, что предположение об экспоненциальном распределении существенно упрощает расчеты надежности, объясняется широкое применение экспоненциального закона в инженерной практике.

Гамма-распределение случайной величины (рис. 4.3.3, б). Если отказ устройства возникает тогда, когда произойдет не менее k отказов его элементов, а отказы элементов подчинены экспоненциальному закону с параметрами λ 0 , плотность вероятности отказа устройства:

где: λ 0 - исходная интенсивность отказов элементов устройства, отказ которого вызывается отказом k элементов.

Этому распределению подчиняется время работы резервированных устройств. Равенство (4.3.9) получается из (4.3.3).

Вероятность k и более отказов, т. е. вероятность отказа данного устройства:

Плотность вероятности отказа устройства за время t :

Среднее время работы устройства до отказа:

Интенсивность отказов устройства:

Вероятность безотказного состояния устройства:

При k = 1 γ-распределение совпадает с экспоненциальным распределением. При увеличении k γ-распределение будет приближаться к симметричному распределению, а интенсивность отказов будет иметь все более выраженный характер возрастающей функции времени.

Распределение Вейбулла . Для случая, когда поток отказов не стационарный, т. е. плотность потока изменяется с течением времени, функция распределения времени до отказа приобретает вид, показанный на рис. 4.3.3, в.

Плотность вероятности отказов этого распределения:

t :

Интенсивность отказов:

В (4.3.15)-(4.3.17) α и λ 0 - параметры закона распределения. Параметр λ 0 определяет масштаб, при его изменении кривая распределения сжимается или растягивается. При α = 1 функция распределения Вейбулла совпадает с экспоненциальным распределением; при α < 1 интенсивность отказов будет монотонно убывающей функцией; при α > 1- монотонно возрастающей. Это обстоятельство дает возможность подбирать для опытных данных наиболее подходящие параметры α и λ 0 , с тем чтобы уравнение функции распределения наилучшим образом совпадало с опытными данными. Распределение Вейбулла имеет место для отказов, возникающих по причине усталости тела детали или поверхностных слоев (подшипники, зубчатые передачи). Этот случай связан с развитием усталостной трещины в зоне местной концентрации напряжений, технологического дефекта или начального повреждения. Период времени до зарождения микротрещины характеризуется признаками внезапного отказа, а процесс разрушения - признаками износового отказа.

Этот закон применим для отказов устройства, состоящего из последовательно соединенных дублированных элементов и других подобных случаев.

Это распределение иногда используется для описания надежности подшипников качения (α =1,4-1,7).

Средняя наработка до первого отказа определится из следующего выражения:

Значения Γ (гамма-функции) табулированы (приложении 2).

Нормальное распределение (рис. 4.3.3, г) случайной величины X возникает всякий раз, когда X зависит от большого числа однородных по своему влиянию случайных факторов, причем влияние каждого из этих факторов по сравнению с совокупностью всех остальных незначительно. Это условие характерно для времени возникновения отказа, вызванного старением, т. е. этот закон используется для оценки надежности изделий при наличии постепенных (износовых) отказов.

Плотность вероятности отказов:

где: T - средняя наработка до отказа;

σ - среднее квадратическое (стандартное) отклонение времени безотказной работы.

Вероятность отказа время t :

Значение функции распределения определяется формулой:

F (t ) = 0,5 + Φ(u ) =Q (t ); u = (t T ) / σ. (4.3.21)

Вероятность отсутствия отказа за время t :

P (t ) = 1 −Q (t ) = 1 − = 0,5 −Ф (u ). (4.3.22)

Значения F (t ) табулированы (приложение 3).

График λ(t ) показан на рис. 4.3.3, г. Интенсивность отказов монотонно возрастает и после T начинает приближаться к асимптоте:

y = (t T ) / σ. (4.3.23)

Монотонное возрастание интенсивности отказов с течением времени - характерный признак нормального распределения. Нормальное распределение существенно отличается от экспоненциального. Началом отсчета времени t в (4.3.20) служит начало эксплуатации объекта, т. е. момент, когда начинается процесс износа и старения, а началом отсчета в (4.3.4) - момент времени, когда установлено, что изделие исправно (этот момент может быть расположен в любой точке на оси времени).

Усеченное нормальное распределение (рис. 4.3.3, д). Так как при нормальном распределении случайная величина может принимать любые значения от −∞ до +∞, а время безотказной работы может быть только положительным, следует рассматривать усеченное нормальное распределение с плотностью вероятности отказов:

Нормирующий множитель c определяется из выражения:

c = 1 / F (T 1 / σ) = 1 / , (4.3.26)

табулированная (приложение 4) интегральная функция нормального распределения;

нормированная функция Лапласа.

Тогда (4.3.24) запишется следующим образом:

Средняя наработка до отказа в усеченном распределении и параметр T 1 неусеченного нормального распределения связаны зависимостью:

При T / σ ≥ 2, что имеет место в абсолютном большинстве случаев при оценке надежности устройств с нормально распределенными отказами, коэффициент c мало отличается от единицы и усеченное нормальное распределение достаточно точно аппроксимируется обычным нормальным законом.

Вероятность безотказной работы определяется из выражения:

Распределение Рэлея (рис. 4.3.3, е) - непрерывное распределение вероятностей с плотностью:

зависящей от масштабного параметраσ > 0. Распределение имеет положительную асимметрию, его единственная мода находится в точке x = σ. Все моменты распределения Рэлея конечны.

Также как и распределение Вейбулла или γ-распределение, распределение Рэлея пригодно для описания поведения изнашивающихся или стареющих изделий.

Частота отказов (функция плотности распределения вероятности отказов) определяется:

Вероятность безотказной работы вычисляется из выражения:

Интенсивность отказов находится из:

λ(t ) = t / σ 2 . (4.3.35)

Средняя наработка до первого отказа составит:

3.4. О выборе закона распределения отказов при расчете надежности Определение закона распределения отказов имеет большое значение при исследованиях и оценках надежности. Определение P (t ) по одной и той же исходной информации о T , но при различных предположениях о законе распределения может привести к существенно отличающимся результатам.

Закон распределения отказов можно определить по экспериментальным данным, но для этого необходимо проведение большого числа опытов в идентичных условиях. Практически эти условия, как правило, трудно обеспечить. Кроме того, такое решение содержит черты пассивной регистрации событий.

Вместе с тем во многих случаях за время эксплуатации успевает отказать лишь незначительная доля первоначально имевшихся объектов. Полученным статистическим данным соответствует начальная (левая) часть экспериментального распределения.

Более рационально - изучение условий, физических процессов при которых возникает то или другое распределение. При этом составляются модели возникновения отказов и соответствующие им законы распределения времени до появления отказа, что позволяет делать обоснованные предположения о законе распределения.

Опытные данные должны служить средством проверки обоснованности прогноза, а не единственным источником данных о законе распределения. Такой подход необходим для оценки надежности новых изделий, для которых статистический материал весьма ограничен.

Распределение Вейбулла

Двухпараметрическое распределение Вейбулла является более гибким, чем экспоненциальное, которое может рассматриваться как частный случай первого. Плотность распределения Вейбулла

При 1/t0 = и m = 1 уравнение (8) превращается в плотность экспоненциального распределения. Величина 1/t0 определяет масштаб, а m - асимметрию (форму) распределения.

После интегрирования (8) от 0 до t получаем функцию распределения F(t), равную Q(t) :

Следовательно,

Отношение плотности (8) и вероятности (10) даёт интенсивность отказов

Основные графики распределения Вейбулла показаны на рис.4.

Двухпараметрическое распределение Вейбулла обладает исключительной гибкостью при аппроксимации эмпирических распределений и поэтому широко применяется в практических приложениях теории надёжности. Оно используется при описании законов надежности, как на участке приработки, так и при анализе процессов старения и износа.

Средняя наработка на отказ при распределении Вейбулла определяется из условия и равна


Рис.3.4. Графики распределения Вейбулла

где - гамма - функция;

Нормальное распределение

Двухпараметрическое нормальное (гауссово) распределение исключительно широко применяется в практических задачах теории надёжности. Параметрами этого распределения является - математическое ожидание случайной величины и - среднеквадратическое отклонение. Плотность нормального распределения определяется зависимостью

Функция распределения F(x) (рис.3.5) при нормальном законе определяется интегралом от плотности f(x) с пределами интегрирования от - до + .

Случайная величина t как и во всех задачах надёжности имеет смысл наработки объекта и поэтому определена на положительной полуоси чисел, а нормальный закон, как уже отмечалось, определён на всей числовой оси от - до + . В связи с этим в теории надёжности рассматривают усечённый нормальный закон, плотность которого определяется путём умножения (3.13) на постоянный множитель

где, a, b - левая и правая границы усечённого распределения.

F(a),F(b) - значения функций распределения нормального закона на левой и правой границах усечения.

Смысл постоянного множителя с становится ясным при рассмотрении графика плотности нормального распределения, представленного на рис.6.


Рис.5.

Известно, что площадь под кривой плотности распределения всегда должна быть равна единице, то есть в данном случае. Как показано на рис.6 для обеспечения этого условия кривую плотности усечённого нормального закона приходится сдвигать вверх и вправо путём умножения исходной плотности нормального закона на постоянный множитель. Соответственно будут меняться основные параметры: математическое ожидание и среднеквадратическое отклонение. Расчёты показывают, что при отношении / < 0.5 (коэффициент вариации) постоянный множитель c для усечённо- нормального закона близок к единице. Поэтому во многих практических задачах теории надёжности пользуются параметрами нормального закона распределения случайной наработки объекта до отказа. При этом математическое ожидание отождествляют со средней наработкой до отказа Т0.

Рис.6.

Вероятность безотказной работы при нормальном распределении равна

Вероятность отказа рассчитывается по формуле (при с 1)

Интенсивность отказов определяется отношением плотности к вероятности безотказной работы

Интегралы в выражениях (14)…(16) не выражаются через элементарные функции. Обычно они представляются через интеграл вероятности от параметра

для которого составлены таблицы.

С учётом (17) вероятность безотказной работы при нормальном законе определяется по формуле

Распределение Вейбулла (модель слабого звена)

Практическая необходимость учета непостоянства интенсивности отказов позволяет сделать вывод, что условия, приводящие к основным распределениям теории надежности (экспоненциальному, нормальному, логарифмически-нормальному и т.п.), указывают на необоснованность их использования для анализа надежности мощных генераторных ламп, клистронов, магнетронов, ламп бегущей волны и других элементов систем управления, которые в общем случае характеризуются старением с непостоянной скоростью износа, неоднородны по начальному качеству.

В 1939 г. шведский математик и инженер В. Вейбулл (1887-1979), анализируя отказы, обусловленные износом шарикоподшипников, предложил функцию распределения, удобную для описания долговечности материалов, отметив: «Представляется, что единственным практическим путем достижения успеха является выбор простой функции, эмпирическая ее проверка и затем ее окончательный выбор, если нет ничего лучшего».

Не останавливаясь на оценке справедливости этих слов в настоящее время, заметим, что в качестве простой функции Вейбулл выбрал двухпараметрическую функцию распределения вероятностей:

где Т, s - соответственно параметры масштаба и формы.

С середины 1950-х гг. интерес к распределению Вейбулла возрастает, поскольку оно оказывается хорошей моделью для описания надежности сложных устройств. Этот закон оказывается наиболее пригодным для анализа продолжительности безотказной работы мощных электровакуумных приборов СВЧ.

Б.В. Гнеденко установил, что распределение Вейбулла является асимптотическим распределением третьего типа для минимальных значений последовательности независимых величин. Доказано характеристическое свойство вейбулловского закона: если т| = min (X v Х 2 ,Х п) подчиняется вейбулловскому распределению, а случайные величины Х { , Х 2 , ..., Хп независимы и одинаково распределены, то они также подчиняются этому закону. Многие устройства содержат значительное число однородных элементов, находящихся в одинаковых условиях эксплуатации. Если повторяющиеся элементы являются определяющими по отношению ко времени безотказной работы прибора, то образуется схема, приводящая к распределению Вейбулла. Отказ прибора рассматривается как выход какого-либо одного из параметров за пределы установленного допуска. Можно полагать, что изменения этих параметров есть слабо связанные случайные процессы. Тогда, если т. - долговечность по /-му параметру, то ресурс в целом определяется как т = min (т р т 2 , ..., т л).

Функция надежности при распределении Вейбулла в общем случае определяется тремя параметрами и имеет вид:

где - , / 0 - параметры масштаба, формы, сдвига (параметр сдвига

называется еще «порогом чувствительности») }

© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний