Согласно статистическому определению вероятность есть. Классическое и статистическое определение вероятности

Главная / И. С. Тургенев

Классическое определение вероятности.

Пусть в результате испытания появляются элементарные исходы (события): ω 1 , ω 2 , ω 3 , …, ω m , ω m +1 , …, ω n , которые образуют полную группу попарно несовместных равновозможных событий.

Определение: Элементарные исходы, в которых интересующее нас событие наступает, назовём благоприятствующими этому событию.

Пусть интересующее нас событие A наблюдается, если наступает один из элементарных исходов: ω 1 , ω 2 , …, ω m .

Определение: Вероятностью события A называют отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу:

где m – число элементарных исходов, благоприятствующих событию A;

n – число всех возможных элементарных исходов испытания.

Пример: В урне имеется шесть одинаковых шаров: два из них – красные, три – синие и один – белый. Наудачу извлекаем шар.

Найти вероятность того, что он не белый.

Решение: Возможно шесть элементарных исходов:

ω 1 – появился белый шар,

ω 2 , ω 3 – появился красный шар,

ω 4 , ω 5 , ω 6 – появился синий шар.

Вычисляем вероятность извлечения не белого шара:

Т.к. m = 5, n = 6.

Из определения вероятности вытекают следующие её свойства:

Свойство 1: Вероятность достоверного события равна единице.

Доказательство: Событие достоверно, следовательно, каждый элементарный исход испытания благоприятствует событию:

Свойство 2: Вероятность невозможного события равна нулю.

Доказательство: Событие невозможно, следовательно, ни один элементарный исход не является благоприятствующим событию:

Свойство 3: Вероятность случайного события есть положительное число, заключённое между нулём и единицей.

Доказательство: Случайному событию благоприятствует лишь часть из общего числа элементарных исходов испытания. Следовательно, 0 < m < n , тогда:

Вывод: Вероятность любого события удовлетворяет неравенству:

Заметим, что классическое определение вероятности имеет свои недостатки. Например, оно предполагает, что число элементарных исходов конечно. На практике часто встречаются испытания, число возможных исходов которых бесконечно. Отсюда вытекает ограниченность классического определения. Другой недостаток классического определения вероятности: часто бывает невозможно представить результат испытания в виде совокупности элементарных событий. Ещё труднее указать основания, позволяющие считать элементарные события равновозможными. Требуется введение других определений вероятности.

Прежде чем дать определение статистической вероятности, дадим определение относительной частоты.



Определение: Относительной частотой события называется отношение числа испытаний m, в которых событие появилось, к общему числу фактически проведенных испытаний n:

Заметим, что вероятность вычисляют до опыта, а относительную частоту – после опыта.

Пример: ОТК (отдел технического контроля) обнаружил 3 нестандартных детали в партии из 80 случайно отобранных деталей.

В этом случае относительная частота появления нестандартных деталей равна:

Свойство устойчивости относительной частоты: В различных опытах относительная частота изменяется мало (тем меньше, чем больше произведено испытаний), колеблясь около некоторого постоянного числа.

Оказалось, что это постоянное число – вероятность появления события:

W(A) ≈ P(A).

Пример: По данным шведской статистики, относительная частота рождения девочек за 1935 год по месяцам (начиная с января) характеризуется следующими числами:

0,486; 0,489; 0,490; 0,471; 0,478; 0,482; 0,462; 0,484; 0,485; 0,491; 0,482; 0,473.

Тогда W(A) ≈ 0,481 ≈ P(A) – приближённое значение вероятности рождения девочки.

Определение: Вероятностью события A называется число, относительно которого стабилизируется (устанавливается) относительная частота W(A) при неограниченном увеличении числа опытов.

Очевидно, что все свойства вероятности, вытекающие из классического определения, сохраняются и при статистическом определении вероятности.

Классическое определение вероятности предполагает, что все эле­ментарные исходы равновозможны . О равновозможности исходов опы­та заключают в силу соображений симметрии (как в случае монеты или игрального кубика). Задачи, в которых можно исходить из соображений симметрии, на практике встречаются редко. Во многих случаях трудно указать основания, позволяющие считать, что все элементарные исходы равновозможны. В связи с этим появилась необходимость введения еще одного определения вероятности, называемого статистическим . Чтобы дать это определение, предварительно вводят понятие относительной частоты события.

Относительной частотой события , или частотой , называется от­ношение числа опытов, в которых появилось это событие, к числу всех произведенных опытов. Обозначим частоту события через , тогда по определению

(1.4.1)
где - число опытов, в которых появилось событие и - число всех произведенных опытов.

Частота события обладает следующими свойствами.

Наблюдения позволили установить, что относительная частота об­ладает свойствами статистической устойчивости: в различных сериях многочленных испытаний (в каждом из которых может появиться или не появиться это событие) она принимает значения, достаточно близкие к некоторой постоянной. Эту постоянную, являющуюся объективной числовой характеристикой явления, считают вероятностью данного со­бытия.

Вероятностью события называется число, около которого группи­руются значения,частоты данного события в различных сериях большо­го числа испытаний.

Это определение вероятности называется статистическим .

В случае статистического определения вероятность обладает сле­дующими свойствами:
1) вероятность достоверного события равна еди­нице;
2) вероятность невозможного события равна нулю;
3) вероятность случайного события заключена между нулем и единицей;
4) вероятность суммы двух несовместных событий равна сумме вероятностей этих со­бытий.

Пример 1. Из 500 взятых наудачу деталей оказалось 8 бракован­ных. Найти частоту бракованных деталей.

Решение. Так как в данном случае = 8, = 500, то в соответствии с формулой (1.4.1) находим

Пример 2 . Игральный кубик подброшен 60 раз, при этом шестерка появилась 10 раз. Какова частота появления шестерки ?

Решение. Из условия задачи следует, что = 60, = 10, поэтому

Пример 3. Среди 1000 новорожденных оказалось 515 мальчиков.Чему равна частота рождения мальчиков?
Решение. Поскольку в данном случае , , то .

Пример 4. В результате 20 выстрелов по мишени получено 15 попаданий. Какова частота попаданий?

Решение. Так как = 20, = 15, то

Пример 5. При стрельбе по мишени частота попаданий = 0,75. Найти число попаданий при 40 выстрелах.

Решение. Из формулы (1.4.1) следует, что . Так как = 0,75, = 40, то . Таким образом, было получено 30 попаданий.

Пример 6. www.. Из высе­янных семян взошло 970. Сколько семян было высеяно?

Решение. Из формулы (1.4.1) следует, что . Поскольку , , то . Итак, было высеяно 1000 семян.

Пример 7. На отрезке натурального ряда от 1 до 20 найти частоту простых чисел.

Решение. На указанном отрезке натурального ряда чисел находятся следующие простые числа: 2, 3, 5, 7, 11, 13, 17, 19; всего их 8. Так как = 20, = 8, то искомая частота

.

Пример 8. Проведены три серии многократных подбрасываний симметричной монеты, подсчитаны числа появлений герба: 1) = 4040, =2048, 2) = 12000, = 6019; 3) = 24000, = 12012. Найти частоту появления герба в каждой серии испытаний.

Решение . В соответствии с формулой (1.4.1) находим:

Замечание. Эти примеры свидетельствуют о том, что при многократ­ных испытаниях частота события незначительно отличается от его вероятности. Вероятность появления герба при подбрасывании монеты р = 1/2 = 0,5 , так как в этом случае n = 2, m = 1.

Пример 9. Среди 300 деталей, изготовленных на автоматическом станке, оказалось 15, не отвечающих стандарту. Найти частоту появле­ния нестандартных деталей.

Решение. В данном случае n = 300, m = 15, поэтому

Пример 10. Контролер, проверяя качество 400 изделий установил, что 20 из них относятся ко второму сорту, а остальные - к первому. Най­ти частоту изделий первого сорта, частоту изделий второго сорта.

Решение. Прежде всего, найдем число изделий первого сорта: 400 - 20 = 380. Поскольку n = 400, = 380, то частота изделий перво­го сорта

Аналогично находим частоту изделий второго сорта:

Задачи

  1. Отдел технического контроля обнаружил 10 нестандартных изде­лий в партии из 1000 изделий. Найдите частоту изготовления бракован­ных изделий.
  2. Для выяснения качества семян было отобрано и высеяно в лабо­раторных условиях 100 штук. 95 семян дали нормальный всход. Какова частота нормального всхода семян?
  3. Найдите частоту появления простых чисел в следующих отрезках натурального ряда: а) от 21 до 40; б) от 41 до 50; в) от 51 до 70.
  4. Найдите частоту появления цифры при 100 подбрасываниях сим­метричной монеты. (Опыт проводите самостоятельно).
  5. Найдите частоту появления шестерки при 90 подбрасываниях иг­рального кубика.
  6. Путем опроса всех студентов Вашего курса определите частоту дней рождения, попадающих на каждый месяц года.
  7. Найдите частоту пятибуквенных слов в любом газетном тексте.

Ответы

  1. 0,01. 2. 0,95; 0,05. 3. а) 0,2; б) 0,3; в) 0,2.

Вопросы

  1. Что такое частота события?
  2. Чему равна частота достоверного события?
  3. Чему равна частота невозможного события?
  4. В каких пределах заключена частота случайного события?
  5. Чему равна частота суммы двух несовместных событий?
  6. Какое определение вероятности называют статистическим?
  7. Какими свойствами обладает статистическая вероятность?

Классическое определœение вероятности.

Различные определœения вероятности.

Алгебра событий.

Чтобы количественно сравнивать между собой события по степени их возможности, очевидно, нужно с каждым событием связать определённое число, ĸᴏᴛᴏᴩᴏᴇ тем больше, чем более возможно событие. Такое число мы назовём вероятностью события. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, вероятность события есть численная мера степени объективной возможности этого события.

Первым по времени определœением вероятности следует считать классическое, ĸᴏᴛᴏᴩᴏᴇ возникло из анализа азартных игр и применялось вначале интуитивно.

Классический способ определœения вероятности основан на понятии равновозможных и несовместных событий, которые являются исходами данного опыта и образуют полную группу несовместных событий.

Наиболее простым примером равновозможных и несовместных событий, образующих полную группу, является появление того или иного шара из урны, содержащей несколько одинаковых по размеру, весу и другим осязаемым признакам шаров, отличающихся лишь цветом, тщательно перемешанных перед выниманием.

По этой причине об испытании, исходы которого образуют полную группу несовместных и равновозможных событий, говорят, что оно сводится к схеме урн, или схеме случаев , или укладывается в классическую схему.

Равновозможные и несовместные события, составляющие полную группу, будем называть просто случаями или шансами. При этом в каждом опыте наряду со случаями могут происходить и более сложные события.

Пример : При подбрасывании игральной кости наряду со случаями А i - выпадение i- очков на верхней грани можно рассматривать такие события, как В - выпадение чётного числа очков, С - выпадение числа очков, кратных трём …

По отношению к каждому событию, ĸᴏᴛᴏᴩᴏᴇ может произойти при осуществлении эксперимента͵ случаи делятся на благоприятствующие , при которых это событие происходит, и неблагоприятствующие, при которых событие не происходит. В предыдущем примере, событию В благоприятствуют случаи А 2 , А 4 , А 6 ; событию С – случаи А 3 , А 6 .

Классической вероятностью появления некоторого события принято называть отношение числа случаев, благоприятствующих появлению этого события, к общему числу случаев равновозможных, несовместных, составляющих полную группу в данном опыте:

где Р(А) – вероятность появления события А; m - число случаев, благоприятствующих событию А; n - общее число случаев.

Примеры:

1) (смотри пример выше) Р(В) =, Р(С)= .

2) В урне находятся 9 красных и 6 синих шаров. Найти вероятность того, что вынутые наугад один, два шара окажутся красными.

А - вынутый наугад шар красный:

m =9, n =9+6=15, P(A) =

B - вынутые наугад два шара красные:

Из классического определœения вероятности вытекают следующие свойства (показать самостоятельно):

1) Вероятность невозможного события равна 0;

2) Вероятность достоверного события равна 1;

3) Вероятность любого события заключена между 0 и 1;

4) Вероятность события, противоположного событию А,

Классическое определœение вероятности предполагает, что число исходов испытания конечно. На практике же весьма часто встречаются испытания, число возможных случаев которых бесконечно. Вместе с тем, слабая сторона классического определœения состоит в том, что очень часто невозможно представить результат испытания в виде совокупности элементарных событий. Ещё труднее указать основания, позволяющие считать элементарные исходы испытания равновозможными. Обычно о равновозможности элементарных исходов испытания заключают из соображений симметрии. При этом такие задачи на практике встречаются весьма редко. По этим причинам наряду с классическим определœением вероятности пользуются и другими определœениями вероятности.

Статистической вероятностью события А принято называть относительная частота появления этого события в произведённых испытаниях:

где – вероятность появления события А;

– относительная частота появления события А;

Число испытаний, в которых появилось событие А;

Общее число испытаний.

В отличие от классической вероятности статистическая вероятность является характеристикой опытной, экспериментальной.

Пример: Для контроля качества изделий из партии наугад выбрано 100 изделий, среди которых 3 изделия оказались бракованными. Определить вероятность брака.

Статистический способ определœения вероятности применим лишь к тем событиям, которые обладают следующими свойствами:

· Рассматриваемые события должны быть исходами только тех испытаний, которые бывают воспроизведены неограниченное число раз при одном и том же комплексе условий.

· События должны обладать статистической устойчивостью (или устойчи- востью относительных частот). Это означает, что в различных сериях испытаний относительная частота события изменяется незначительно.

· Число испытаний, в результате которых появляется событие А, должно быть достаточно велико.

Легко проверить, что свойства вероятности, вытекающие из классического определœения, сохраняются и при статистическом определœении вероятности.

Понятие и виды. Классификация и особенности категории "Статистическое определение вероятности." 2017, 2018.

  • - Статистическое определение вероятности.

    Пусть произведено N испытаний, при этом событие A наступило ровно M раз. Отношение называется относительной частотой события A и обозначается. За вероятность события A принимается число, около которого группируются наблюдаемые значения относительной частоты: . ... .


  • - Статистическое определение вероятности.

    Относительная частота. Пусть A есть случайное событие, которое может наступить в данном опыте. Напомним, что мы рассматриваем опыты, удовлетворяющие условиям а),б) пункта 2. Предположим, что после повторения опыта N раз, событие A произошло M раз. Определение... .




  • - Статистическое определение вероятности

    Существует большой класс событий, вероятности которых не могут быть вычислены с помощью классического определения. В первую очередь это события с неравновозможными исходами (например, игральная кость «нечестная», монета сплющена и т.д.). В таких случаях может помочь... [читать подробнее] .


  • - Относительная частота. Статистическое определение вероятности.

    Классическое определение вероятности. Предмет теории вероятностей. Случайные события. Алгебра событий. Относитель-ная частота и вероятность случайного события. Полная группа событий. Классичес-кое определение вероятности. Основные свойства вероятности.... .


  • В экономике, так же как и в других областях человеческой деятельности или в природе, постоянно приходится иметь дело с событиями, которые невозможно точно предсказать. Так, объем продаж товара зависит от спроса, который может существенно изменяться, и от ряда других факторов, которые учесть практически нереально. Поэтому при организации производства и осуществлении продаж приходится прогнозировать исход такой деятельности на основе либо собственного предыдущего опыта, либо аналогичного опыта других людей, либо интуиции, которая в значительной степени тоже опирается на опытные данные.

    Чтобы каким-то образом оценить рассматриваемое событие, необходимо учитывать или специально организовывать условия, в которых фиксируется это событие.

    Осуществление определенных условий или действий для выявления рассматриваемого события носит название опыта или эксперимента .

    Событие называется случайным , если в результате опыта оно может произойти или не произойти.

    Событие называется достоверным , если оно обязательно появляется в результате данного опыта, и невозможным , если оно не может появиться в этом опыте.

    Например, выпадение снега в Москве 30 ноября является случайным событием. Ежедневный восход Солнца можно считать достоверным событием. Выпадение снега на экваторе можно рассматривать как невозможное событие.

    Одной из главных задач в теории вероятностей является задача определения количественной меры возможности появления события.

    Алгебра событий

    События называются несовместными, если они вместе не могут наблюдаться в одном и том же опыте. Так, наличие двух и трех автомашин в одном магазине для продажи в одно и то же время — это два несовместных события.

    Суммой событий называется событие, состоящее в появлении хотя бы одного из этих событий

    В качестве примера суммы событий можно назвать наличие в магазине хотя бы одного из двух товаров.

    Произведением событий называется событие, состоящее в одновременном появлении всех этих событий

    Событие, состоящее в появлении одновременно в магазине двух товаров является произведением событий: -появление одного товара, — появление другого товара.

    События образуют полную группу событий, если хотя бы одно из них обязательно произойдет в опыте.

    Пример. В порту имеется два причала для приема судов. Можно рассмотреть три события: — отсутствие судов у причалов, — присутствие одного судна у одного из причалов, — присутствие двух судов у двух причалов. Эти три события образуют полную группу событий.

    Противоположными называются два единственно возможных события, образующих полную группу.

    Если одно из событий, являющихся противоположными, обозначить через , то противоположное событие обычно обозначают через .

    Классическое и статистическое определения вероятности события

    Каждый из равновозможных результатов испытаний (опытов) называется элементарным исходом. Их обычно обозначают буквами . Например, бросается игральная кость. Элементарных исходов всего может быть шесть по числу очков на гранях.

    Из элементарных исходов можно составить более сложное событие. Так, событие выпадения четного числа очков определяется тремя исходами: 2, 4, 6.

    Количественной мерой возможности появления рассматриваемого события является вероятность.

    Наиболее широкое распространение получили два определения вероятности события: классическое и статистическое .

    Классическое определение вероятности связано с понятием благоприятствующего исхода.

    Исход называется благоприятствующим данному событию, если его появление влечет за собой наступление этого события.

    В приведенном примере рассматриваемое событие — четное число очков на выпавшей грани, имеет три благоприятствующих исхода. В данном случае известно и общее
    количество возможных исходов. Значит, здесь можно использовать классическое определение вероятности события.

    Классическое определение равняется отношению числа благоприятствующих исходов к общему числу возможных исходов

    где — вероятность события , — число благоприятствующих событию исходов, — общее число возможных исходов.

    В рассмотренном примере

    Статистическое определение вероятности связано с понятием относительной частоты появления события в опытах.

    Относительная частота появления события вычисляется по формуле

    где - число появления события в серии из опытов (испытаний).

    Статистическое определение . Вероятностью события называется число, относительно которого стабилизируется (устанавливается) относительная частота при неограниченном увеличении числа опытов.

    В практических задачах за вероятность события принимается относительная частота при достаточно большом числе испытаний.

    Из данных определений вероятности события видно, что всегда выполняется неравенство

    Для определения вероятности события на основе формулы (1.1) часто используются формулы комбинаторики, по которым находится число благоприятствующих исходов и общее число возможных исходов.

    Для практической деятельности необходимо уметь сравнивать события по степени возможности их наступления. Рассмотрим классический случай. В урне находится 10 шаров, 8 из них белого цвета, 2 черного. Очевидно, что событие «из урны будет извлечен шар белого цвета» и событие «из урны будет извлечен шар черного цвета» обладают разной степенью возможности их наступления. Поэтому для сравнения событий нужна определенная количественная мера.

    Количественной мерой возможности наступления события является вероятность . Наиболее широкое распространение получили два определения вероятности события: классическое и статистическое.

    Классическое определение вероятности связано с понятием благоприятствующего исхода. Остановимся на этом подробнее.

    Пусть исходы некоторого испытания образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Такие исходы называют элементарными исходами , или случаями . При этом говорят, что испытание сводится к схеме случаев или «схеме урн », т.к. любую вероятностную задачу для подобного испытания можно заменить эквивалентной задачей с урнами и шарами разных цветов.

    Исход называется благоприятствующим событию А , если появление этого случая влечет за собой появление события А .

    Согласно классическому определению вероятность события А равна отношению числа исходов, благоприятствующих этому событию, к общему числу исходов , т.е.

    , (1.1)

    где Р(А) – вероятность события А ; m – число случаев благоприятствующих событию А ; n – общее число случаев.

    Пример 1.1. При бросании игральной кости возможны шесть исходов – выпадение 1, 2, 3, 4, 5, 6 очков. Какова вероятность появления четного числа очков?

    Решение. Все n = 6 исходов образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Событию А – «появление четного числа очков» – благоприятствуют 3 исхода (случая) – выпадение 2, 4 или 6 очков. По классической формуле вероятности события получаем

    Р(А) = = .

    Исходя из классического определения вероятности события, отметим ее свойства:

    1. Вероятность любого события заключена между нулем и единицей, т.е.

    0 ≤ Р (А ) ≤ 1.

    2. Вероятность достоверного события равна единице.

    3. Вероятность невозможного события равна нулю.

    Как было сказано ранее, классическое определение вероятности применимо только для тех событий, которые могут появиться в результате испытаний, обладающих симметрией возможных исходов, т.е. сводящихся к схеме случаев. Однако существует большой класс событий, вероятности которых не могут быть вычислены с помощью классического определения.

    Например, если допустить, что монета сплющена, то очевидно, что события «появление герба» и «появление решки» нельзя считать равновозможными. Поэтому формула для определения вероятности по классической схеме в данном случае неприменима.

    Однако существует другой подход при оценке вероятности событий, основанный на том, насколько часто будет появляться данное событие в произведенных испытаниях. В этом случае используется статистическое определениевероятности.

    Статистической вероятностью события А называется относительная частота (частость) появления этого события в n произведенных испытаниях, т.е.

    , (1.2)

    где Р * (А) – статистическая вероятность события А ; w(A) – относительная частота события А ; m – число испытаний, в которых появилось событие А ; n – общее число испытаний.

    В отличие от математической вероятности Р(А) , рассматриваемой в классическом определении, статистическая вероятность Р * (А) является характеристикой опытной , экспериментальной . Иначе говоря, статистической вероятностью события А называется число, относительно которого стабилизируется (устанавливается) относительная частота w(А) при неограниченном увеличении числа испытаний, проводимых при одном и том же комплексе условий.

    Например, когда про стрелка говорят, что он попадает в цель с вероятностью 0,95, то это означает, что из сотни выстрелов, произведенных им при определенных условиях (одна и та же цель на том же расстоянии, та же винтовка и т.д.), в среднем бывает примерно 95 удачных. Естественно, не в каждой сотне будет 95 удачных выстрелов, иногда их будет меньше, иногда больше, но в среднем при многократном повторении стрельбы в тех же условиях этот процент попаданий будет оставаться неизменным. Цифра 0,95, служащая показателем мастерства стрелка, обычно очень устойчива , т.е. процент попаданий в большинстве стрельб будет для данного стрелка почти один и тот же, лишь в редких случаях отклоняясь сколько-нибудь значительно от своего среднего значения.

    Еще одним недостатком классического определения вероятности (1.1 ), ограничивающим его применение, является то, что оно предполагает конечное число возможных исходов испытания. В некоторых случаях этот недостаток можно преодолеть, используя геометрическое определение вероятности, т.е. находя вероятность попадания точки в некоторую область (отрезок, часть плоскости и т.п.).

    Пусть плоская фигура g составляет часть плоской фигуры G (рис. 1.1). На фигуру G наудачу бросается точка. Это означает, что все точки области G «равноправны» в отношении попадания на нее брошенной случайной точки. Полагая, что вероятность события А – попадания брошенной точки на фигуру g – пропорциональна площади этой фигуры и не зависит ни от ее расположения относительно G , ни от формы g , найдем



    © 2024 gimn70.ru -- Учимся легко - Портал полезных знаний