Светимость в астрономии. Основные характеристики звезд

Главная / Уильям Шекспир

В результате огромной работы, проделанной астрономами ряда стран в течение последних десятилетий, мы многое узнали о различных характеристиках звезд, природе их излучения и эволюции. Как это ни покажется парадоксальным, сейчас мы гораздо лучше представляем образование и эволюцию многих типов звезд, чем собственной планетной системы.
Как ни разнообразны звезды по своим физическим характеристикам, все же и для них есть границы возможного. Не всякая звезда, какую способна создать человеческая фантазия, могла бы реально существовать. Звездами могут быть космические тела, обладающие только такой массой, которая заключена в определенных пределах.
Если масса небесного тела не превышает 0,02 массы Солнца, оно не может стать самосветящимся. При большей массе тела давление и температура в недрах достигают такой величины, при которой ядерная энергия начинает выделяться из вещества почти с такой же легкостью, как пар из кипящей воды.
Отсюда можно сделать вывод, что звезд с массой, равной, например, массе Земли или даже массе Юпитера, существовать не может. Из таких рассуждений и устанавливается нижний предел для возможных масс звезд.
Выше были упомянуты «характеристики» звезд. Основные характеристики звезды - масса, радиус (не считая внешних прозрачных слоев), светимость (полное количество излучаемой энергии); эти величины часто выражаются в долях массы, радиуса и светимости Солнца. Кроме основных параметров, употребляются их производные: эффективная температура; спектральный класс, характеризующий степень ионизации и возбуждения атомов в атмосфере звезды; абсолютная звёздная величина (т. е. звёздная величина, которую имела бы звезда на стандартном расстоянии 10 парсек). Рассмотрим некоторые из них более подробно.

Масса звёзд

В сущности, астрономия не располагала и не располагает в настоящее время методом прямого и независимого определения массы изолированной, то есть не входящей в состав кратных систем, звезды. И это достаточно серьезный недостаток нашей науки о Вселенной. Если бы такой метод существовал, прогресс наших знаний был бы значительно более быстрым.
«Массы звезд изменяются в сравнительно узких пределах. Очень мало звезд, массы которых больше или меньше солнечной в 10 раз. В такой ситуации астрономы молчаливо принимают, что звезды с одинаковой светимостью и цветом имеют одинаковые массы. Они определяются только для двойных систем. Утверждение, что одиночная звезда с той же светимостью и цветом имеет такую же массу, как и ее "сестра", входящая в состав двойной системы, всегда следует принимать с некоторой осторожностью.
На основе закона Всемирного тяготения и законов Кеплера, обобщенных Ньютоном, была выведена формула

A3
М1 + М2 = ------
3P2

Где М1 и М2 - массы главной звезды и ее спутника, Р - период обращения спутника, а - большая полуось земной орбиты».
Самые «легкие» из звезд, по-видимому, можно встретить среди так называемых невидимых спутников звезд.
В настоящее время насчитывается несколько десятков звезд, полет которых в пространстве совершается по слегка извилистой, волнообразной кривой. Объяснить столь сложный характер движения можно только тем, что рядом со звездой движется невидимый спутник (или спутники), притяжение которого отклоняет звезду от прямолинейного пути. Точнее говоря, наблюдаемая нами волнообразная траектория полета звезды есть результат сложения двух движений, в которых она одновременно участвует, - движения вокруг центра Галактики и обращения вместе со своим невидимым спутником вокруг общего центра масс.
По характеру траектории звезды можно вычислить массу и орбиту ее невидимого спутника. Интересные результаты в этом отношении получены для звезды 61 Лебедя, той самой, до которой еще в 1838 г. Бессель определил расстояние, близкое к 11 световым годам.
Звезда 61 Лебедя - двойная. Иначе говоря, она представляет собой систему из двух солнц, оранжевого и красного цвета, из которых вторая, красная звезда по блеску вдвое уступает первой. Движение в пространстве обеих звезд явно указывает на существование в этой системе еще третьего компонента. Определением его массы и орбиты занимались несколько астрономов, в том числе пулковский астроном А.Н.Дейч. Оказалось, что невидимый спутник в системе 61 Лебедя обращается вокруг одной из звезд по весьма вытянутой эллиптической орбите с периодом около 5 лет на среднем расстоянии, в 3 раза превышающем расстояние от Земли до Солнца. Считать это невидимое небесное тело планетой нельзя. Его масса составляет 0,024 массы Солнца, т. е. она больше той минимальной массы, при которой тело неизбежно становится звездой. Поэтому можно быть уверенным в том, что система 61 Лебедя состоит из трех звезд, причем третий, невидимый ее компонент есть одна из наименее массивных звезд.
Природа ограничивает звезды и со стороны очень больших масс. Чтобы понять, чем вызвано это ограничение, попробуем представить себе обстановку в недрах какой-нибудь звезды.
Всякая обычная звезда - это чрезвычайно раскаленный газовый шар. В каждой точке звезды действуют три силы. Во-первых, сила тяжести, влекущая частицу звезды к ее центру. Во-вторых, давление газа, который, стремясь расшириться, выталкивает ту же частицу в обратном направлении, к поверхности звезды. И, наконец, в-третьих, давление света, пробивающееся из недр звезды наружу и потому присоединяющее свои усилия к давлению газа.
В каждой точке звезды борьба трех сил оканчивается, в сущности, ничем. Все они уравновешиваются, и поэтому звезда представляет собой устойчивое образование. Решительное преобладание какой-либо из трех сил над остальными оказалось бы для звезды катастрофическим. Если бы, например, давление света или газа внезапно резко возросло, распираемая изнутри звезда «развалилась бы» на части. Перестань звезда излучать свет или потеряй внезапно газ свою упругость, звезда сильно сжалась бы, перейдя в иное, «незвездное» состояние.
На самом деле в наблюдаемых нами звездах господствуют устойчивость и равновесие. Но так может быть не всегда. С возрастанием массы звезды увеличивается ее светимость, т.е. количество света, излучаемое недрами звезды. При очень большой массе, например в тысячи раз превышающей массу Солнца, равновесие трех сил непременно нарушится. Световое давление станет настолько мощным, что оно изнутри подорвет устойчивость звезды.
Среди известных звезд самой массивной считается звезда Пласкетта, она двойная, причем период обращения в этой системе близок к 14 суткам. Определить массу звезды можно, если известно отношение ускорения одного компонента системы по отношению к другому, который предполагается неподвижным. В системе звезды Пласкетта оба компонента примepно одинаково массивны, и в этом своем качестве они превосходят Солнце в 50 - 60 раз.
Вопрос о существовании «сверхзвезд», то есть звездообразных объектов, масса которых может превосходить солнечную в миллионы и даже миллиарды раз, пока остается открытым.

Плотность звёзд

Так как размеры звезд различаются значительно больше, чем их массы, то и средние плотности звезд сильно отличаются друг от друга. У гигантов и сверхгигантов плотность очень мала. Например, плотность Бетельгейзе около 10-3 кг/м3. Вместе с тем существуют чрезвычайно плотные звезды. К ним относятся небольшие по размерам белые карлики (их цвет обусловлен высокой температурой). Например, плотность белого карлика Сириус В более 4х107 кг/м3. В настоящее время известны значительно более плотные белые карлики (1010- 1011 кг/м3). Огромные плотности белых карликов объясняются особыми свойствами вещества этих звезд, которое представляет собой атомные ядра и оторванные от них электроны. Расстояния между атомными ядрами в веществе белых карликов должны быть в десятки и даже сотни раз меньше, чем в обычных твердых и жидких телах, с которыми мы встречаемся в земных условиях. Агрегатное состояние, в котором находится это вещество, нельзя назвать ни жидким, ни твердым, так как атомы белых карликов разрушены. Мало похоже это вещество на газ или плазму. И все-таки его принято считать «газом», учитывая, что расстояние между частицами даже в плотных белых карликах во много раз больше, чем сами ядра атомов или электроны.

Светимость звёзд

Одни звезды кажутся нам более яркими, другие более слабыми. Но это еще не говорит об истинной мощности излучения звезд, так как они находятся на разных расстояниях. Таким образом, видимая звездная величина сама по себе не может быть характеристикой звезды, поскольку зависит от расстояния. Истинной характеристикой служит светимость, то есть полная энергия, которую излучает звезда в единицу времени. Светимости звезд крайне разнообразны. У одной из звезд-гигантов - S Золотой Рыбы - светимость в 500000 раз больше солнечной, а светимость самых слабых звезд-карликов примерно во столько же раз меньше.
Светимость звезды, как уже говорилось, тесно связана с ее массой. Чем больше вещества заключено в звезде, тем более ярко она светит. Отсюда становится понятно, почему третий компонент системы 61 Лебедя остается пока невидимым. Эта звезда содержит так мало вещества, что ее весьма слабое излучение не может быть обнаружено с помощью современных телескопов.
«Характеристикой светимости является так называемая абсолютная величина звезды. Видимая звездная величина зависит, с одной стороны, от ее светимости и цвета, с другой - от расстояния до нее. Если отнести какую-либо звезду на условное стандартное расстояние 10пс, то ее величина будет называться «абсолютной». Поясним это примером. Если видимая (относительная) звездная величина Солнца (определяемая потоком излучения от него) равна -26.8, то на расстоянии 10пс (которое приблизительно в 2 млн. раз больше истинного расстояния от Земли до Солнца) его звездная величина будет около +5. На таком расстоянии наше дневное светило казалось бы звездочкой, едва видимой невооруженным глазом (напомним, что самые слабые звезды, видимые невооруженным глазом, имеют величину +6). Звезды высокой светимости имеют отрицательные абсолютные величины, например -7, -5. Звезды низкой светимости характеризуются большими положительными значениями абсолютных величин, например +10, +12 и т.д.
Если известна абсолютная звездная величина, то можно вычислить светимость любой звезды по формуле

Lg L = 0,4(M-Mс)

Где: L - светимость звезды, M - ее абсолютная звездная величина, а Mс- абсолютная звездная величина Солнца».



Важной «инструментальной» характеристикой коллайдера является его светимость ; чем она больше, тем чаще происходят столкновения частиц из встречных пучков. Светимость зависит от количества частиц в каждом пучке и от того, насколько плотно частицы собраны, то есть насколько хорошо пучок сфокусирован в точке столкновений.

Светимость L выражается в см –2 ·с –1 . Для того чтобы узнать, как часто будет происходить какой-то процесс на данном коллайдере, надо умножить сечение процесса на светимость коллайдера. Например, при проектной светимости LHC, равной 10 34 см –2 ·с –1 , процесс рождения хиггсовского бозона с массой 200 ГэВ, имеющий сечение 20 pb (= 2·10 –35 см 2), будет происходить со средней частотой один раз в пять секунд.

Часто используют также интегральную светимость (или интеграл светимости), то есть светимость, умноженную на время работы ускорителя. Ее обычно выражают в обратных пикобарнах (pb –1) или обратных фемтобарнах (fb –1 ; 1 fb –1 = 1000 pb –1) . Например, коллайдер со светимостью 10 34 см –2 ·с –1 , проработав в течение «стандартного ускорительного года» (10 миллионов секунд, что примерно равно четырем месяцам), наберет интегральную светимость 100 fb –1 . Это значит, что какой-нибудь редкий процесс с сечением 1 fb, произойдет за это время примерно 100 раз (однако из-за неидеальной эффективности детектора количество реально зарегистрированных событий будет, конечно, меньше).

Методы повышения светимости

Частицы в кольцевом ускорителе летают не сплошным потоком, а разбиты на отдельные компактные сгустки (на жаргоне - «банчи», от английского bunch - сгусток). Существует несколько возможностей для увеличения светимость ускорителей:

  • Увеличение частиц в каждом сгустке. Тут есть естественный предел: одноименно заряженные частицы расталкиваются, и потому слишком много частиц в одном сгустке просто не удержишь.
  • Увеличение количества сгустков. По этому пути пошли разработчики LHC - при проектной светимости в нём будут циркулировать по 2808 сгустков в каждом из двух встречных пучков. Время между столкновениями сгустков будет составлять всего 25 нс. Это накладывает очень жесткие требования на параметры детектора и электронику, считывающую данные, - ведь за эти 25 нс надо успеть не только зарегистрировать рожденные частицы, но и передать компьютерам всю собранную информацию, а также «очистить» детектор, подготовив его к приему новой порции частиц.
  • Сжатие сгустков. Из-за сильного электрического расталкивания сгустки летают по ускорительному кольцу в довольно разреженном состоянии, и только вблизи точек столкновения их сильно сжимают специальные фокусирующие магниты. Правда, минимально достижимый поперечный размер сгустка зависит не только от свойств этого магнита, но и от того, насколько сильно «бултыхаются» частицы внутри сгустка при его движении в ускорителе. Для подавления этого бултыхания пучки требуется охлаждать.

Следует отметить, что далеко не всегда нужно стремиться к максимально возможной светимости. Дело в том, что если в каждом сгустке будет очень много частиц, то при каждом столкновении двух встречных сгустков будет одновременно происходить несколько независимых протон-протонных столкновений. Детектор будет видеть наложенные друг на друга следы сразу всех этих столкновений, и разобраться в них будет еще тяжелее, чем в случае одного-единственного столкновения. Это нежелательное, но неизбежное при высокой светимости явление называется эффектом нагромождения (pile-up ).

Светимость звезд

Светимость звёзд (L) чаще выражается в единицах светимости Солнца (4x эрг/с). По светимости звёзды различаются в очень широких пределах. Большинство звёзд составляют "карлики", их светимость ничтожна иногда даже по сравнению с Солнцем. Характеристикой светимости является "абсолютная величина" звезды. Есть ещё понятие "видимая звёздная величина", которая зависит от светимости звезды, цвета и расстояния до неё. В большинстве случаев используют "абсолютную величину", чтобы реально оценить размеры звёзд, независимо как далеко они находятся. Чтобы узнать истинную величину, просто нужно звёзды отнести на какое- то условное расстояние (допустим на 10ПК). Звёзды высокой светимости имеют отрицательные значения. На пример видимая величина солнца -26,8. На расстоянии в 10ПК эта величина будет уже +5 (самые слабые звёзды видимые невооружённым глазом имеют величину +6).

Радиус звезд

Радиус звезд. Зная эффективную температуру Т ef и светимость L, можно вычислить радиус R звезды по формуле:

основанной на Стефана-Больцмана законе излучения (s - постоянная Стефана). Радиусы звезды с большими угловыми размерами могут быть измерены непосредственно с помощью звёздных интерферометров. У затменно-двойных звезд могут быть вычислены значения наибольших диаметров компонентов, выраженные в долях большой полуоси их относительной орбиты.

Температура поверхности

Температура поверхности. Распределение энергии в спектрах раскалённых тел неодинаково; в зависимости от температуры максимум излучения приходится на разные длины волн, меняется цвет суммарного излучения. Исследование этих эффектов у звезды, изучение распределения энергии в звёздных спектрах, измерения показателей цвета позволяют определять их температуры. Температуры звезд определяют также по относительным интенсивностям некоторых линий в их спектре, позволяющим установить спектральный класс звезд. Спектральные классы звезд зависят от температуры и с убыванием её обозначаются буквами: О, В, A, F, G, К, М. Кроме того, от класса G ответвляется побочный ряд углеродных звёзд С, а от класса К - побочная ветвь S. Из класса О выделяют более горячие звезды. Зная механизм образования линий в спектрах, температуру можно вычислить по спектральному классу, если известно ускорение силы тяжести на поверхности звезды, связанное со средней плотностью её фотосферы, а, следовательно, и размерами звезды (плотность может быть оценена по тонким особенностям спектров). Зависимость спектрального класса или показателя цвета от эффективной температуры звезды называется шкалой эффективных температур. Зная температуру, можно теоретически рассчитать, какая доля излучения звезды приходится на невидимые области спектра - ультрафиолетовую и инфракрасную. Абсолютная звёздная величина и поправка, учитывающая излучение в ультрафиолетовой и инфракрасной частях спектра, дают возможность найти полную светимость звезды.

  • 5.Суточное вращение небесной сферы на разных широтах исвязанные с ним явления. Суточное движение Солнца. Смена сезонов и тепловыепояса.
  • 6.Основные формулы сферической тригонометрии.Параллактический треугольник и преобразование координат.
  • 7.Звёздное, истинное и среднее солнечное время. Связьвремён. Уравнение времени.
  • 8.Системы счёта времени: местное, поясное, всемирное, декретное и эфемеридное время.
  • 9.Календарь. Типы календарей. История современного календаря. Юлианские дни.
  • 10.Рефракция.
  • 11.Суточная и годичная аберрация.
  • 12.Суточный,годичный и вековой параллакс светил.
  • 13.Определениерасстояний в астрономии, линейных размеров тел солнечной системы.
  • 14.Собственноедвижение звёзд.
  • 15.Лунно-солнечная и планетарная прецессия; нутация.
  • 16. Неравномерность вращения Земли; движение полюсов Земли. Служба широты.
  • 17.Измерение времени. Поправка часов и ход часов. Служба времени.
  • 18. Методы определения географической долготы местности.
  • 19. Методы определения географической широты местности.
  • 20.Методы определения координат и положений звёзд ( и ).
  • 21. Вычисление моментов времени и азимутов восхода и захода светил.
  • 24.ЗаконыКеплера. Третий (уточнённый) закон Кеплера.
  • 26.Задача трех и более тел. Частный случай зачачи трех тел(точки либрации Лагранжа)
  • 27.Понятиео возмущающей силе. Устойчивость Солнечной системы.
  • 1. Понятие о возмущающей силе.
  • 28.ОрбитаЛуны.
  • 29. Приливы и отливы
  • 30.Движение космических аппаратов. Три космические скорости.
  • 31.ФазыЛуны.
  • 32.Солнечныеи лунные затмения. Условия наступления затмения. Сарос.
  • 33.ЛибрацииЛуны.
  • 34.Спектрэлектромагнитного излучения, исследуемый в астрофизике. Прозрачность атмосферыЗемли.
  • 35.Механизмы излучения космических тел в разных диапазонах спектра. Виды спектра: линейчатыйспектр, непрерывный спектр, рекомбинационное излучение.
  • 36 Астрофотометрия. Звёздная величина (визуальная и фотографическая).
  • 37 Свойства излучения и основы спектрального анализа: законы Планка, Рэлея-Джинса, Стефана-Больцмана, Вина.
  • 38 Доплеровское смещение. Закон Доплера.
  • 39 Методы определения температуры. Виды понятий температуры.
  • 40.Методы и основные результаты изучения формы Земли. Геоид.
  • 41 Внутреннее строение Земли.
  • 42.Атмосфера Земли
  • 43.Магнитосфера Земли
  • 44.Общие сведения о Солнечной системе и её исследований
  • 45.Физический характер Луны
  • 46.Планеты земной группы
  • 47.Планеты гиганты –их спутники
  • 48.Малые планеты-астероиды
  • 50. Основные физические характеристики Солнца.
  • 51. Спектр и химический состав Солнца. Солнечная постоянная.
  • 52. Внутреннее строение Солнца
  • 53. Фотосфера. Хромосфера. Корона. Грануляция и конвективная зона Зодиакальный свет и противосияние.
  • 54 Активные образования в солнечной атмосфере. Центры солнечной активности.
  • 55. Эволюция Солнца
  • 57.Абсолютная звёздная величина и светимость звёзд.
  • 58.Диаграмма спектр-светимость Герцшпрунга-Рессела
  • 59. Зависимость радиус - светимость - масса
  • 60. Модели строения звёзд. Строение вырожден звёзд (бел карлики и нейтрон звёзды). Чёрн.Дыры.
  • 61. Основные этапы эволюции звезд. Планетарные туманности.
  • 62. Кратные и переменные звёзды (кратные, визуально-двойные, спектрально-двойные звёзды, невидимые спутники звёзд, затменно-двойные звёзды). Особенности строения тесных двойных систем.
  • 64. Методы определения расстояний до звёзд. Конецформыначалоформы
  • 65.Распределение звёзд в Галактике. Скопления. Общее строение Галактики.
  • 66. Пространственное перемещение звёзд. Вращение Галактики.
  • 68. Классификация галактик.
  • 69.Определение расстояний до галактик. Закон Хаббла. Красное смещение в спектрах галактик.
  • 57.Абсолютная звёздная величина и светимость звёзд.

    Абсолютная звёздная величина (M) определяется как видимая звёздная величина объекта, если бы он был расположен на расстоянии 10 парсек от наблюдателя. Абсолютная болометрическая звёздная величина Солнца +4,7.

    Если известна видимая звёздная величина и расстояние до объекта, можно вычислить абсолютную звёздную величину по формуле:

    где d0 = 10 пк ≈ 32,616 световых лет

    Соответственно, если известны видимая и абсолютная звёздные величины, можно вычислить расстояние по формуле

    Абсолютная звёздная величина связана со светимостью следующим соотношением:

    где и - светимость и абсолютная звёздная величина Солнца. Обычно = 1

    58.Диаграмма спектр-светимость Герцшпрунга-Рессела

    В самом начале XX в. датский астроном Герцшпрунг и несколько позже американский астрофизик Рессел установили существование зависимости между видом спектра и светимостью звезд. Эта зависимость иллюстрируется графиком, по одной оси которого откладывается спектральный класс, а по другой - абсолютная звездная величина. Такой график называется диаграммой спектр - светимость или диаграммой Герцшпрунга - Рессела.

    Положение каждой звезды в той или иной точке диаграммы определяется ее физической природой и стадией эволюции. Светимость позволяет выделить различные группы звезд, объединенные общими физическими свойствами, и установить зависимость между некоторыми их физическими характеристиками, а также помогает в решении ряда других проблем. Верхняя часть диаграммы соответствует звездам большой светимости. Нижнюю часть диаграммы занимают звезды малой светимости. В левой части диаграммы располагаются горячие звезды, а в правой - более холодные звезды.

    В верхней части диаграммы находятся звезды, обладающие наибольшей светимостью, отличающиеся высокой светимостью. Звезды в нижней половине диаграммы обладают низкой светимостью и называются карликами. Наиболее богатую звездами диагональ, идущую слева вниз направо, называют главной последовательностью. Вдоль нее расположены звезды, от самых горячих (в верхней части) до наиболее холодных (в нижней).

    Звезды распределяются на диаграмме Герцшпрунга - Рессела весьма неравномерно, что соответствует существованию определенной зависимости между светимостями и температурами звезд. Наиболее четко выражено для звезд главной последовательности. Однако, можно выделить на ней ряд других последовательностей обладающих значительно большей дисперсией, чем главная. Это говорят о наличии у некоторых определенных групп звезд индивидуальной зависимости.

    Рассмотренные последовательности называются классами светимости и обозначаются римскими цифрами от I до VII, проставленными после наименования спектрального класса. Полная классификация звезд оказывается зависящей от двух параметров: температуры и светимости. Солнце попадает в V класс светимости и обозначение его спектра G2V. Эта принятая в настоящее время классификация звезд называется МКК (Моргана, Кинана, Кельман).

    Класс светимости I - сверхгиганты; эти звезды занимают на диаграмме спектр - светимость верхнюю часть и разделяются на несколько последовательностей.

    Класс светимости II - яркие гиганты.

    Класс светимости III - гиганты.

    Класс светимости IV - субгиганты. Последние три класса расположены на диаграмме между областью сверхгигантов и главной последовательностью.

    Класс светимости V - звезды главной последовательности.

    Класс светимости VI - яркие субкарлики. Они образуют последовательность, проходящую ниже главной примерно на одну звездную величину, начиная от класса А0 вправо.

    Класс светимости VII. Белые карлики. Они обладают весьма малой светимостью и занимают нижнюю часть диаграммы.

    Принадлежность звезды к данному классу светимости устанавливается на основании специальных дополнительных признаков спектральной классификации

    Я долго стоял неподвижно,
    В далекие звезды вглядясь, -
    Меж теми звездами и мною
    Какая-то связь родилась.
    Я думал…не помню, что думал;
    Я слушал таинственный хор,
    И звезды тихонько дрожали,
    И звезды люблю я с тех пор.
    А. Фет

    Урок 9/26

    Тема: Двойные звезды

    Цель: Рассмотреть понятие и различные виды двойных звезд: визуальные, спектральные, затменные, астрометрические. Рассмотреть способы определения масс звезд в двойных системах

    Задачи :
    1. Обучающая : Ввести понятия: двойная звезда (визуально-двойная, спектрально-двойная), затменно-двойная звезда (ее кривая блеска, период, амплитуда), звезды-гиганты, сверхгиганты, карлики, белые карлики, компоненты двойной звезды. Объяснить, в чем заключается эффект Доплера. Изложить сущность определения масс звезд на основе обобщенного третьего закона Кеплера и показать, как это делается на конкретных примерах. Показать, как интерпретируется кривая блеска затменно-двойной звезды и как по этой кривой определяют период и изменение блеска затменно-двойной звезды.
    2. Воспитывающая : Акцентировать внимание учащихся на том, что размеры (и средние плотности звезд) меняются в широких, а массы - в ограниченных пределах. Указать, что Солнце по своим физическим характеристикам (размерам, массе, средней плотности, а также по температуре, цвету, спектру и химическому составу) ничем особенным не выделяется среди множества других звезд. Подчеркнуть, что выяснение природы звезд - один из примеров познаваемости мира. Отметить, что открытие двойных звезд астрономы успешно используют не только для определения их размеров и масс (причем масса - важнейшая физическая характеристика звезды, связанная с ее светимостью; от массы зависит также темп и характер эволюции звезды) но и для поиска таких экзотических объектов, как черные дыры. На примере физического состояния, в котором находится вещество белых карликов, отметить возможность использования Вселенной в качестве «физической лаборатории». Обосновать идею о всемирности закона тяготения Ньютона (и законов Кеплера).
    3. Развивающая : Важны следующие главные положения: во-первых, существование возможности определения радиусов и массы звезд с помощью соответствующих методов (причем масса звезды - ее важнейшая физическая характеристика), во-вторых, сумма знаний, полученных на предыдущем и данном уроках, позволяет заключить, что Солнце - рядовая звезда. Продолжить формирование умения работать с иллюстрациями. Использовать возможность создания эмоциональной ситуации, сообщая данные об экстремальных размерах и средних плотностях звезд. Учащимся, интересующимся астрономией, предложить подготовить реферат, составить презентацию.

    Знать:
    1-й уровень (стандарт) - понятие двойных звезд и иметь представление о различных типах двойных звезд. Способ определения масс двойных звезд.
    2-й уровень - понятие двойных звезд и иметь представление о различных типах двойных звезд. Способ определения масс двойных звезд.
    Уметь:
    1-й уровень (стандарт) - определять вид двойных звезд и рассчитывать их массу.
    2-й уровень - определять вид двойных звезд и рассчитывать их массу.

    Оборудование: Таблицы: звезды, двойные звезды, карта звездного неба, звездный атлас, диаграмма на каждом столе “спектр-светимость”. Д/ф “Звезды”, “Природа звезд”. К/ф “Двойные звезды”, Диапозитивы. CD- "Red Shift 5.1" или фотографии и иллюстрации астрономических объектов из мультимедийного диска «Мультимедиа библиотека по астрономии», коллекция ЦОР.

    Межпредметные связи: Закон Всемирного тяготения. Гравитационные силы. Движение под действием силы тяжести (физика, VIII кл). Математика (построение и анализ графиков вычисления, необходимых для решения задач), обществоведение (познаваемость мира и его закономерностей).

    Ход урока:

    1. Повторение материала
    Экспресс-опрос (перед собой иметь диаграмму“спектр-светимость”, используется для показа мультимедийный проектор). Оценивается каждый ученик по количеству правильных ответов (по ходу отмечается отдельным учеником в подготовленном списке-таблице). На каждый вопрос для ответа отводится не более 1 сек. Продолжительность экспресс-опроса 10 минут. Итак вопросы .

    II. Новый материал.

    1. Двойная звезда - две звезды, обращающиеся по эллиптическим орбитам вокруг общего центра масс под действием сил тяготения. Приблизительно половина всех ”звезд" на самом деле - двойные или кратные (несколько, не менее 3-х звезд) системы, хотя многие из них расположены так близко, что компоненты по отдельности наблюдать невозможно.
    Существуют Оптически двойные - рядом проецируются на воображаемую сферу, но физически не связаны. Так в древности у легионеров А.Македонского проверяли зрение по Дзета (ζ) Большой Медведицы (Мицар -конь, предпоследняя в ручке ковша, 78 св.г, 2,23 m) оптически двойной звезды в 12" от нее 80 UMa (Алькор - всадник, 81,2 св.г, 4,02 m). Может они физически и связаны, но если период обращения очень большой. Зато при наблюдении в телескоп Мицар сам по себе виден как двойная звезда, включающая Мицар A и Мицар B. Мицар B имеет звёздную величину 4.0 и спектральный класс A7, расстояние между Мицаром A и Мицаром B — 380 а.е., период обращения — несколько тысяч лет.
    Обнаружена первая двойная звезда , увиденная в телескоп, гамма Овна (γ Овен) - физически двойная звезда, оба компонента бело-голубые звезды с Т≈11000К, находящиеся на угловом расстоянии 8" и имеющие видимую звездную величину 4,7 m и 4,8 m . На всякий случай даже для Солнца придуман (но не обнаружен) гипотетический спутник-звезда Немезида. По методу обнаружения, двойные звезды подразделяются на несколько типов.
    Изучение двойных звезд началось в середине 17в, когда Г. Галилей (1564-1642, Италия) открыл несколько звезд и предложил метод определения относительного параллакса яркой главной звезды по отношению к более слабой и поэтому, вероятно, более далёкой. К середине 18в было обнаружено всего около 20 двойных звезд; тогда же начались и первые измерения позиционного угла и расстояния между компонентами. К 1803 году У. Гершель (1738-1822, Англия) опубликовал списки нескольких сотен двойных звезд и отметил среди них 50, у которых обнаружилось смещение компонентов. В дальнейшем наблюдения двойных звезд продолжил сын Вильяма - Джон Гершель (1792-1871, Англия), перенесший свой телескоп в Южную Африку. В Европе планомерные наблюдения двойных звезд организовал русский астроном В. Я. Струве (1793-1864, Россия) на обсерватории в Тарту. В 1824 году Струве применил для своих наблюдений телескоп-рефрактор с объективом Фраунгофера диаметром D=24 см и фокусным расстоянием F=410 см (D/F=24/410) на экваториальной установке с часовым механизмом, который можно считать прототипом современных телескопов-рефракторов. С новым инструментом Струве открыл 3134 звездные пары. Результаты его наблюдений опубликованы в трех каталогах, из которых наибольшей известностью пользуется каталог "Двойные и кратные звезды, измеренные микрометрически", опубликованный в 1837 году на 2714 двойных звезд для которых измерил положение спутников.
    В конце XIX века инициативу в исследованиях двойных звезд перехватили американские астрономы, использовавшие в своих наблюдениях новейшие рефракторы высшего класса с объективами Кларка: рефрактор обсерватории Дирборн с диаметром объектива D=47 см, рефрактор Вашингтонской морской обсерватории (D=65 см) и рефрактор Ликской обсерватории (D=91 см). Заслугой американских астрономов было то, что они не только наблюдали двойные звезды, но собрали и систематизировали громадный наблюдательный материал по этим звездам. Эта работа воплощена в "Общем каталоге 13665 звезд" Ш.У. Бернхема (1906 год), охватывающем все известные к тому времени наблюдения двойных звезд в зоне склонений от -30° до Северного полюса. В новое время эта традиция продолжена американским астрономом Р.Дж. Айткеном , создавшим "Новый общий каталог 17180 двойных звезд" (1934 год) и астрономами Ликской обсерватории Г.М. Джефферсом и В.Х. ван ден Босом , составившими "Индекс каталог 64247 двойных звезд" (1961 год). В новое время наблюдения визуально-двойных звезд продолжались во многих странах мира как прежними, визуальными, так и новыми, фотографическими и фотоэлектрическими методами.
    На сегодняшний день одним из самых полных сборников является Вашингтонский каталог визуально-двойных звезд (обозначаются порядковым номером с приставкой WDS - Washington Double Star). Впервые появившись в 1984 году, каталог насчитывал 73610 двойных звезд всего неба, для которых имелось хотя бы одно точное измерение, опубликованное до 1983 года. В 1996 году появилась обновленная версия WDS, в которой уже можно найти данные о 78100 двойных, наблюденных до 1995 года. В окрестностях Солнца (d<20 пк) находится более 3000 звезд, среди них около половины - двойные звезды всех типов, включая тесные спектральные и широкие визуальные.
    Самая быстрая двойная система - двойная система J0806+1527 (звезды 21-й величины в созвездии Рака) - орбитальный период 321.5 секунды (5.4 минуты). Система состоит из двух белых карликов на расстоянии 80 тыс км друг от друга (почти в 5 раз ближе, чем Луна от Земли). Скорость вращения компонентов по орбите - около 1500 км в секунду (5 млн км в час).

    2. Типы двойных (физически двойных) звезд: кратная звезда
    1. Визуально-двойные звезды, двойственность которых может быть видна в телескоп. На сегодняшний день в каталогах WDS и CCDM свыше 78 000 и 110 000 объектов соответственно, то только у нескольких сотен можно вычислить орбиту, и у менее чем сотни объектов орбита известна с достаточной точностью, для того чтобы получить массу компонентов.
    Чем дальше звезды друг от друга, тем медленнее движутся. Пары, в которых угловое расстояние достаточно велико для того, чтобы звезды можно было разрешить при наблюдении в телескоп, часто имеют период обращения 50 -100 лет. Например:
    СИРИУС (α Большого Пса) - самая яркая звезда видимая у нас на небе. Это тройная звезда в 8,56св. годах от нас. Системы из более чем двух звезд называют кратными.
    Сириус А -главная звезда в расцвете сил, М А =2,14М ¤ , R А =1,7R ¤ , Т=10400К, L=23,55L ¤ , ρ А =0,36г/см 3 .
    Сириус В (Щенок) -белый карлик, открыт в 1862г А.Кларк (США) М В =М ¤ , R В =0,02R ¤ , L=0,002L ¤ ,ρ В =180г/см 3 . Период обращения 49,9 лет с удалением от Сириуса А от 8а.е до 32а.е. На фото справа маленькая светлая точка.
    Было в 1995г сообщение об открытии Сириуса С??? -красно-коричневый карлик, М С =0,05М ¤ , Т=2000К, период обращения 6,3 года с максимальным удалением от Сириуса А до 8а.е., но пока не подтвердилоcь.

    2. Спектрально-двойные звёзды - выявляемые по периодическим колебаниям или раздвоению спектральных линий. Поскольку члены двойной системы движутся по орбитам, их скорость по отношению к Земле регулярно изменяется. Вариация скорости приводит к изменению длин волн в объединенном спектре системы (так называемый доплеровский эффект). Изучение таких спектров позволяет выяснить детали строения звезд и их орбит. Эти двойные звезды распознаются только спектроскопическими методами. Их периоды обычно составляют от нескольких дней до нескольких недель. Иногда компоненты двойных систем расположены так близко, что гравитация искажает сферическую форму звезд. Они могут обмениваться веществом и могут быть окружены общей газовой оболочкой. Когда потоки вещества устремляются к компактной вращающейся звезде двойной системы, может образоваться аккреционный диск. Освободившаяся энергия излучается в рентгеновском диапазоне.
    Первую Мицар (ζ Б.Медведицы), находящуюся в 78,2 св.г от нас, открыл Э.Пикеринг (1889г, США) - Мицар А и Мицар В, а в 1964г выяснилось, что каждая звезда спектрально-двойная (кстати и Алькор также является спектрально-двойной). К 1980г уже было открыто более 2500 звезд, а сейчас в нашей Галактике обнаружено свыше 4000 звёзд этого класса. Определённые периоды спектрально-двойных звёзд заключены в пределах от 0.1084 сут. (гамма Малой Медведицы) до 59.8 лет (визуально двойная кси Большой Медведицы). Подавляющее большинство спектрально-двойных звёзд имеет периоды порядка нескольких суток. Самый известный и самый обширный каталог «SB9» (от англ Spectral Binaries). На данный момент в нем 2839 объектов. На рисунке условный пример раздвоения и смещения линий в спектрах спектрально-двойных звёзд.

    3. Затменные двойные звёзды - изменяющие свой блеск вследствие затмения одного компонента двойной звезды. Это происходит, если орбиты двойной системы сориентированы в пространстве так, что при наблюдении с Земли одна звезда проходит перед другой. Такая система имеет переменную яркость, так как одна звезда периодически заслоняет свет другой. Сейчас известно более 5000 таких звезд. Самая известная и первая открытая в 1669г итальянцем Г. Монтанари (1632-1687) Алголь (β Персея, арабское "эль гуль" - дьявол). Алголь А - бело-голубая, М А =5М ¤ , R А =3R ¤ . Алголь В - тускло-желтая, М В =М ¤ , R В =3,2R ¤ . Видимая яркость системы меняется от 2,1 m до 3,4 m c периодом 12,914 дня=12дн20час48мин53с. Период установил в 1782г Дж. Гудрайк , который в 1783г верно объяснил причину изменения блеска. В 1784 году Гудрайк открывает вторую затменную звезду - β Лиры. Ее период 12 суток 21 час и 56 минут, и, в отличие от Алголя, блеск изменяется плавно. В 1911 русский астроном С. Н. Блажко (1870-1956) разработал первый общий метод вычисления орбит затменно-двойных звёзд. В 1970 году известный советский астроном П. Н. Холопов впервые обнаружил пульсирующую переменную звезду типа RR Лиры в затменно-двойной системе. Эта двойная система с периодом чуть более двух суток принадлежит карликовой сферической галактике в созвездии Малой Медведицы.
    Рекорцменом среди затменно-двойных звезд является ε Возничего в 2700R ¤ - 5,7 млрд. км. При периоде обращения спутника вокруг главной звезды за 27 лет, его затмение длится два года, что говорит об огромном размере главной звезды. А по прохождении света спутника через атмосферу главной звезды можно исследовать строение атмосферы главной звезды.
    А самое глубокое затмение наблюдается у катаклизмической переменной (затменного поляра) J0155+0028 в созвездии Кита, который каждые 87 минут гаснет на 5 звездных величин (с 15.0m до 20.0m), то есть в 100 раз! Затмения открыты в августе 2002 года аспиранткой Санкт-Петербургского Университета Дарьей Дубковой с коллегами Надеждой Кудрявцевой и Анти Хирв.
    Из анализа кривых блеска затменно-переменных звезд можно:

    • определить период обращения T;
    • определить параметры орбит компонентов (эксцентриситет орбиты e, долготу периастра ω и другие параметры);
    • оценить массы компонентов;
    • оценить радиус звезд R 1 и R 2

    4. Астрометрически двойные - выявляются по отклонению в движении (колебаниям) главной звезды, вызванное орбитальным движением более слабого спутника. Если одна звезда намного слабее другой (невидимый спутник), ее присутствие можно обнаружить только по видимому движению более яркого компаньона. Этот способ, как и исследование спектральных смещений, позволяет определить наличие планетных систем у звезд (открыты у более 180 звезд).
    Некоторые звёздные системы:

    3. Определение масс звезд в двойных системах

    Хотя двойных звезд много, но надежно определены их орбиты примерно только для сотни. Используя третий (уточненный) закон Кеплера получим Двойные звёзды (физические двойные). П.Г Куликовский
    Из рисунка А=а"r=a"/π" и учитывая, что Т ¤ =1 и а=1, а массой Земли можно пренебречь, получим в солнечных массах М 1 +М 2 =А 3 :Т 2 . Или, учитывая соотношение из рисунка, получим М 1 +М 2 =a 3 /π 3 Т 2 .Чтобы определить массу каждой звезды, надо определить расстояние до каждой звезды от центра масс (А=А 1 +А 2 ) и тогда получим второе уравнение М 1 :М 2 =А 2 :А 1 . Решая систему двух уравнений, можно определить массу каждой звезды.

    Исследование масс двойных звезд показало, что они заключены в пределах от 0,3 до 60 масс Солнца. При этом большинство звезд имеют массы от 0,3 до 3 масс Солнца.

    III Закрепление материала
    1. По рис. 85 - максимум блеска, минимум блеска
    - период колебаний блеска
    - какова амплитуда изменение блеска?
    - за какое время блеск изменится от минимума к максимуму?
    2. Пример №12 . Просмотреть, записать решение и найти массу каждой звезды, если их отношение 2:1.
    3. Задача: (самостоятельно) Период обращения двойной звезды 100 лет. Большая полуось видимой орбиты 2", параллакс звезды 0,05". Звезды отстоят от центра масс на расстоянии, относящихся как 1:4. Определит сумму масс и массу каждой звезды. (из формулы М 1 +М 2 =a 3 /π 3 Т 2 М 1 +М 2 = 2 3 /0,05 3 100 2 =6,4М ¤ , в частях 1+4=5, отсюда на одну часть приходится 6,4М ¤ :5=1,28М ¤ тогда компоненты имеют массы 1,28М ¤ и 4 . 1,28М ¤ =5,12М ¤ ).

    Итог урока
    1. Какие звезды называют двойными?
    2. Назовите виды двойных звезд.
    3. Как можно определить массу звезд в двойных системах?

    4. Оценки.

    Дома: §26, вопросы стр. 145- 146, стр.153 (п.2-7), реферат (презентация) для интересующихся астрономией.

    140,6 кб
    Аккреция в тесных двойных системах 129,7 кб
    Мир планет в тесных двойных звездных системах 132,8 кб
    «Планетарий» 410,05 мб Ресурс позволяет установить на компьютер учителя или учащегося полную версию инновационного учебно-методического комплекса "Планетарий". "Планетарий" - подборка тематических статей - предназначены для использования учителями и учащимися на уроках физики, астрономии или естествознания в 10-11 классах. При установке комплекса рекомендуется использовать только английские буквы в именах папок.
    Демонстрационные материалы 13,08 мб Ресурс представляет собой демонстрационные материалы инновационного учебно-методического комплекса "Планетарий".


    © 2024 gimn70.ru -- Учимся легко - Портал полезных знаний