Высокоэффективная жидкостная хроматография. Высокоэффективная жидкостная хроматография (вэжх) Высокоскоростной жидкостный хроматограф в фармакологии

Главная / Ф. М. Достоевский

В высокоэффективной жидкостной хроматографии (ВЭЖХ) характер происходящих процессов в хроматографической колонке, в общем идентичен с процессами в газовой хроматографии. Отличие состоит лишь в применении в качестве неподвижной фазы жидкости. В связи с высокой плотностью жидких подвижных фаз и большим сопротивлением колонок газовая и жидкостная хроматография сильно различаются по аппаратурному оформлению.

В ВЭЖХ в качестве подвижных фаз обычно используют чистые растворители или их смеси.

Для создания потока чистого растворителя (или смесей растворителей), называемого в жидкостной хроматографии элюентом, используются насосы, входящие в гидравлическую систему хроматографа.

Адсорбционная хроматография осуществляется в результате взаимодействия вещества с адсорбентами, такими как силикагель или оксид алюминия, имеющими на поверхности активные центры. Различие в способности к взаимодействию с адсорбционными центрами разных молекул пробы приводит к их разделению на зоны в процессе движения с подвижной фазой по колонке. Достигаемое при этом разделение зон компонентов зависит от взаимодействия, как с растворителем, так и с адсорбентом.

Наибольшее применение в ВЭЖХ находят адсорбенты из силикагеля с разным объемом, поверхностью и диаметром пор. Значительно реже используют оксид алюминия и другие адсорбенты. Основная причина этого:

недостаточная механическая прочность, не позволяющая упаковывать и использовать при повышенных давлениях, характерных для ВЭЖХ;

силикагель по сравнению с оксидом алюминия обладает более широким диапазоном пористости, поверхности и диаметра пор; значительно большая каталитическая активность оксида алюминия приводит к искажению результатов анализа вследствие разложения компонентов пробы либо их необратимой хемосорбции.

Детекторы для ВЭЖХ

Высокоэффективная жидкостная хроматография (ВЭЖХ) используется для детектирования полярных нелетучих веществ, которые по каким-либо причинам не могут быть переведены в форму удобную для газовой хроматографии, даже в виде производных. К таким веществам, в частности, относят сульфоновые кислоты, водорастворимые красители и некоторые пестициды, например производные фенил - мочевины.

Детекторы:

УФ - детектор на диодной матрице. «Матрица» фотодиодов (их более двухсот) постоянно регистрирует сигналы в УФ- и видимой области спектра, обеспечивая таким образом запись УФ-В-спектров в режиме сканирования. Это позволяет непрерывно снимать при высокой чувствительности неискаженные спектры быстро проходящих через специальную ячейку компонентов.

По сравнению с детектированием на одной длине волны, которое не дает информации о «чистоте» пика, возможности сравнения полных спектров диодной матрицы обеспечивают получение результата идентификации с гораздо большей степенью достоверности.

Флуоресцентный детектор. Большая популярность флуоресцентных детекторов объясняется очень высокой селективностью и чувствительностью, и тем фактором, что многие загрязнители окружающей среды флуоресцируют (например, полиароматические углеводороды).

Электрохимический детектор используются для детектирования веществ, которые легко окисляются или восстанавливаются: фенолы, меркаптаны, амины, ароматические нитро- и галогенпроизводные, альдегиды кетоны, бензидины.

Хроматографическое разделение смеси на колонке вследствие медлен-ного продвижения ПФ занимает много времени. Для ускорения процесса хроматографирование проводят под давлением. Этот метод называют вы-сокоэффективной жидкостной хроматографией (ВЖХ)

Модернизация аппаратуры, применяемой в классической жидкостной колоночной хроматографии, сделала ее одним из перспективных и совре-менных методов анализа. Высокоэффективная жидкостная хроматография является удобным способом разделения, препаративного выделения и про-ведения качественного и количественного анализа нелетучих термола-бильных соединений как с малой, так с большой молекулярной массой.

В зависимости от типа применяемого сорбента в данном методе используют 2 варианта хроматографирования: на полярном сорбенте с использованием неполярного элюента (вариант прямой фазы) и на неполярном сорбенте с использованием полярного элюента - так называемая обращенно-фазовая высокоэффективная жидкостная хроматография (ОфВЖХ).

При переходе элюента к элюенту равновесие в условиях ОфВЖХ устанавливается во много раз быстрее, чем в условиях полярных сорбентов и неводных ПФ. Вследствие этого, а также удобства работы с водными и водно-спиртовыми элюентами, ОфВЖХ получила в настоящее время большую популярность. Большинство анализов при помощи ВЖХ проводят именно этим методом.

Детекторы. Регистрация выхода из колонки отдельного компонента производится с помощью детектора. Для регистрации можно использовать изменение любого аналитического сигнала, идущего от подвижной фазы и связанного с природой и количеством компонента смеси. В жидкостной хроматографии используют такие аналитические сигналы, как светопоглощение или светоиспускание выходящего раствора (фотометрические и флуориметрические детекторы), показатель преломления (рефрактометрические детекторы), потенциал и электрическая проводимость (электрохимические детекторы) и др.

Непрерывно детектируемый сигнал регистрируется самописцем. Хроматограмма представляет собой зафиксированную на ленте самописца по-следовательность сигналов детектора, вырабатываемых при выходе из ко-лонки отдельных компонентов смеси. В случае разделения смеси на внеш-ней хроматограмме видны отдельные пики. Положение пика на хроматограмме используют для целей идентификации вещества, высоту или площадь пика - для целей количественного определения.

Жидкостная хроматография

Жидкостная хроматография - это вид хроматографии, в котором подвижной фазой , называемой элюентом, является жидкость . Неподвижной фазой может быть твердый сорбент , твердый носитель с нанесенной на его поверхность жидкостью или гель .

Различают колоночную и тонкослойную жидкостную хроматографию. В колоночном варианте через колонку, заполненную неподвижной фазой, пропускают порцию разделяемой смеси веществ в потоке элюента, который движется под давлением или под действием силы тяжести. В тонкослойной хроматографии элюент перемещается под действием капиллярных сил по плоскому слою сорбента, нанесенного на стеклянную пластинку или металлическую фольгу, вдоль пористой полимерной пленки или по полоске специальной хроматографической бумаги. Разработан также метод тонкослойной жидкостной хроматографии под давлением, когда элюент прокачивают через слой сорбента, зажатого между пластинами.

Существуют такие виды жидкостной хроматографии, как аналитическая (для анализа смесей веществ) и препаративная (для выделения чистых компонентов).

Различают жидкостную хроматографию (ЖХ) в ее классическом варианте, проводимую при атмосферном давлении , и высокоскоростную ), осуществляемую при повышенном давлении . В высокоэффективной жидкостной хроматографии (ВЭЖХ) используют колонки диаметром до 5 мм, плотно упакованные сорбентом с частицами малого размера (3-10 мкм). Для прокачивания элюента через колонку применяют давление до 3.107 Па. Такой вид хроматографии называют хроматографией высокого давления . Пропускание элюента через колонку под высоким давлением позволяет резко увеличить скорость анализа и существенно повысить эффективность разделения за счет использования мелкодисперсного сорбента.


Вариантами ВЭЖХ являются микроколоночная хроматография на наполненных сорбентом колонках малого диаметра и капиллярная хроматография на полых и наполненных сорбентом капиллярных колонках. Метод ВЭЖХ в настоящее время позволяет выделять, количественно и качественно анализировать сложные смеси органических соединений.

Жидкостная хроматография - это важнейший физико-химический метод исследования в химии, биологии, биохимии , медицине, биотехнологии. Ее используют для:

· изучения процессов метаболизма в живых организмах лекарственных препаратов;

· диагностики в медицине;

· анализа продуктов химического и нефтехимического синтеза, полупродуктов, красителей, топлив, смазок, нефти, сточных вод;

· изучения изотерм сорбции из раствора, кинетики и селективности химических процессов;

· выделения

· анализа и разделения смесей, их очистки и выделения из них многих биологических веществ, таких как аминокислоты, белки, ферменты, вирусы , нуклеиновые кислоты, углеводы, липиды, гормоны.

В химии высокомолекулярных соединений и в производстве полимеров с помощью жидкостной хроматографии анализируют качество мономеров, изучают молекулярно-массовое распределение и распределение по типам функциональности олигомеров и полимеров, что необходимо для контроля продукции.

Жидкостную хроматографию используют также в парфюмерии, пищевой промышленности , для анализа загрязнений окружающей среды , в криминалистике.

Метод высокоэффективной жидкостной хроматографии (ВЭЖХ) был разработан и внедрен в середине 70-х годов XX века. Тогда появились первые жидкостные хроматографы.

Жидкостная хроматография является оптимальным методом анализа химически и термически нестойких молекул, высокомолекулярных веществ с пониженной летучестью. Это можно объяснить особой ролью подвижной фазы в ЖХ в отличие от газовой хроматографии: элюент выполняет не только транспортную функцию.

2. Основные понятия и классификация методов жидкостной хроматографии.

По механизму удерживания разделяемых веществ неподвижной фазой ЖХ различают:

    осадочную хроматографию , основанную на различной растворимости осадков, которые образуются при взаимодействии компонентов анализируемой смеси с осадителем. Преимуществом метода является то, что получающиеся вдоль сорбента зоны имеют резкие границы, содержат осадки только одного вещества и часто разделены зонами чистого сорбента. Однако этот метод пока не нашел широкого распространения.

· адсорбционную хроматографию, в которой разделение осуществляется в результате взаимодействия разделяемого вещества с адсорбентом , таким как, оксид алюминия или силикагель, имеющим на поверхности активные полярные центры . Растворитель (элюент) - неполярная жидкость .

Рис. Схема разделения смеси веществ методом адсорбционной хроматографии

http://www. xumuk. ru/biologhim/bio/img014.jpg

Механизм сорбции состоит в специфическом взаимодействии между полярной поверхностью сорбента и полярными (либо способными поляризоваться) участками молекул анализируемого компонента (рис.). Взаимодействие происходит за счет донорно-акцепторного взаимодействия или образования водородных связей.


Рис. Схема адсорбционной жидкостной хроматографии

https://pandia.ru/text/80/271/images/image006_11.jpg" width="219" height="200">

Рис. . Распределительная хроматография с привитой фазой (нормально-фазный вариант).

http://www. chemnet. ru/rus/teaching/oil/spezprakt-chr. html

При нормально-фазном варианте распределительной жидкостной хроматографии в качестве модификаторов поверхности силикагеля (привитых фаз) используют замещенные алкилхлорсиланы, содержащие полярные группы, такие как нитрильная, аминогруппа и т. д. (рис.). Применение привитых фаз позволяет тонко управлять сорбционными свойствами поверхности неподвижной фазы и добиваться высокой эффективности разделения.

Обращённо-фазовая жидкостная хроматография основана на распределении компонентов смеси между полярным элюентом и неполярными группами (длинными алкильными цепочками), привитыми к поверхности сорбента (рис.). Реже используют вариант жидкостной хроматографии с нанесенными фазами, когда жидкая неподвижная фаза наносится на неподвижный носитель.

Рис. . Распределительная хроматография с привитой фазой (обращенно-фазный вариант). http://www. chemnet. ru/rus/teaching/oil/spezprakt-chr. html

К распределительной жидкостной хроматографии относится и экстракционная жидкостная хроматография , в которой неподвижной фазой служит органический экстрагент, нанесенный на твердый носитель, а подвижной - водный раствор разделяемых соединений. В качестве экстрагентов используют, например, фенолы, триалкилфосфаты, амины, четвертичные аммониевые основания, а также серосодержащие фосфорорганические соединения. Экстракционная жидкостная хроматография применяется для разделения и концентрирования неорганических соединений, например, ионов щелочных металлов, актиноидов и др. близких по свойствам элементов, в процессах переработки отработанного ядерного горючего.

    ионообменную хроматографию, которая основана на обратимом стехиометрическом обмене ионов, содержащихся в анализируемом растворе, на подвижные ионы, входящие в состав ионитов. В зависимости от знака заряда ионизирующих групп иониты подразделяют на катиониты и аниониты. Существуют также амфотерные иониты амфолиты , которые могут одновременно обменивать как катионы, так и анионы. Ионообменная хроматография применяется только для разделения заряженных частиц. В основе разделения лежит способность ионообменной смолы удерживать разные ионы с разной силой. Ионит состоит из полимерной матрицы и связанных с ней активных групп, которые способны к обмену ионов. Катионит обладает кислыми или слабокислыми свойствами, так как в его состав входят группы: - SO3H, –CH2SO3H, - COOH, - PO3H2 и другие, в которых подвижными являются ионы водорода. Аниониты обладают основными или слабоосновными свойствами и содержат группы: = NH2, - NH2, –NR3+,-OH и другие. Разделение ионов регулируют подбором оптимальных значений рН элюента и его ионной силы. Схематично ионный обмен можно представить реакциями:

R-H + Na+ + Cl - → R-Na + H+ + Cl - (катионный обмен)

R-OH + Na+ + Сl - → R-Сl + Na+ + OH - (анионный обмен)

Иониты должны удовлетворять следующим требованиям: быть химически устойчивыми в различных средах, механически прочными в сухом и особенно в набухшем состоянии, обладать большой поглотительной способностью и способностью хорошо регенерироваться.

В ионообменной (ионной) хроматографии, разделенные анионы (катионы) детектируют в виде кислот (соответствующих оснований) высокочувствительным кондуктометрическим детектором, где высокоэффективные колонки наполнены поверхностно-активным ионитом с небольшой емкостью.

    ион-парную хроматографию , которую можно рассматривать как комбинацию адсорбционной и ионообменной хроматографии. В основу метода положена экстракция ионных веществ – перенос их из водной фазы в органическую фазу в виде ионных пар. Для этого в подвижную фазу добавляют противоион, который способен избирательно реагировать с анализируемыми компонентами, превращая их в комплексные соединения с образованием ионной пары. Основные преимущества такого варианта заключаются в том, что одновременно могут быть проанализированы вещества кислотного, основного и нейтрального характера.
    лигандообменную хроматографию , основанную на различной способности разделяемых соединений образовывать комплексы с катионами переходных металлов – Cu+2, Ni+2, Zn+2, Cd+2, Co+2 и др. - и фиксирующими группами (лигандами) неподвижной фазы. Часть координационной сферы ионов металла занята молекулами воды или другими слабыми лигандами, которые могут вытесняться молекулами разделяемых соединений. Такой вид хроматографии используют для разделения оптических изомеров.
    эксклюзионную хроматографию (ситовую, гель-проникающую, гель-фильтрационную), в которой разделение основано на различиях в размерах молекул .

https://pandia.ru/text/80/271/images/image009_7.jpg" align="right" width="429" height="319">

Рис. Схема проведения гель-проникающей хроматографии

    аффинную хроматографию (биоспецифическую), основанную на том, что многие биологически активные макромолекулы, например, ферменты могут специфически связываться с определённым реагентом. Реагент закрепляется на носителе (часто агарозе), затем промывается анализируемой смесью. На полимере задерживается только нужная макромолекула (рис.).

Рис. Схема аффинной хроматографии

http://www. chemnet. ru/rus/teaching/oil/spezprakt-chr. html

Затем её удаляют с полимера, пропусканием раствора соединения, обладающего ещё большим сродством к макромолекуле. Особенно эффективна такая хроматография в биотехнологии и биомедицине для выделения ферментов, белков, гормонов.

В зависимости от способа перемещения вещества различают следующие варианты жидкостной хроматографии: проявительный, фронтальный и вытеснительный.
Чаще всего используют проявительный вариант, при котором в колонку в потоке элюента вводят порцию разделяемой смеси. Выход компонентов смеси из колонки регистрируется на хроматограмме в виде пиков. (рис.)

https://pandia.ru/text/80/271/images/image012_4.jpg" width="291" height="165">

Рис. Схема проявительного варианта хроматографии

Высота или площадь пиков характеризует концентрацию компонентов , а удерживаемые объемы качественный состав смеси . Идентификацию компонентов обычно проводят по совпадению времен удерживания со стандартными веществами, также используют химические или физико-химические методы.

При фронтальном варианте (рис.) через колонку непрерывно пропускают смесь разделяемых веществ, которая играет роль подвижной фазы. В итоге можно получить в чистом виде только вещество, которое менее всего сорбируется в колонке.

https://pandia.ru/text/80/271/images/image014_2.jpg" width="279" height="145">

Рис. Схема фронтального варианта хроматографии

Хроматограмма в этом случае представляет собой ступени, высоты которых пропорциональны концентрациям компонентов; удерживаемые объемы определяют по времени удерживания компонентов. При дифференцировании такой хроматограммы получают картину, аналогичную той, которую получают в проявительном варианте.

В вытеснительном варианте компоненты смеси, введенной в колонку, вытесняются элюентом, который адсорбируется сильнее любого компонента. В итоге получают примыкающие друг к другу фракции разделяемых веществ Порядок выхода компонентов определяется силой взаимодействия их с поверхностью сорбента (рис.).

https://pandia.ru/text/80/271/images/image016_3.jpg" width="320" height="175">

Рис. Схема вытеснительного варианта хроматографии

3. Основные хроматографические величины и их определение.

При разделении веществ с помощью жидкостной хроматографии могут быть использованы, как указано выше, проявительный, фронтальный и вытеснительный варианты. Чаще всего используют проявительный вариант, при котором в колонку в потоке элюента вводят порцию разделяемой смеси. Выход компонентов смеси из колонки регистрируется на хроматограмме в виде пиков. Из хроматограммы (рис.) определяют:

    времена удерживания несорбирующегося (t0), разделенных компонентов (tR1 , tR2, tR3 и т. д.) ; ширину оснований пиков (tw1, tw2 и т. д.).

https://pandia.ru/text/80/271/images/image018_12.gif" width="61" height="24 src=">;

b) исправленный удерживаемый объем компонента ,

где t"R - исправленное время удерживания компонента;

c) коэффициент емкости колонки по отношению к данному компоненту ;

d) эффективность колонки характеризуется числом эквивалентных теоретических тарелок

https://pandia.ru/text/80/271/images/image022_8.gif" width="129" height="51 src=">;

f) разрешение https://pandia.ru/text/80/271/images/image024_9.gif" width="203 height=51" height="51">

Коэффициент емкости k" оказывает существенное влияние на величину R S: при изменении k " от 0 до 10 (оптимальные пределы) R S сильно возрастает. Значение k" определяется удвоенной поверхностью сорбента и его количеством в колонке, а также константой адсорбционного равновесия (константой Генри).

Коэффициент селективности α определяется различием констант адсорбционного равновесия двух разделяемых компонентов. При увеличении α (от 1 до ~ 5) R S резко возрастает, при дальнейшем увеличении α - меняется мало. Селективность колонки зависит от таких факторов, как химическая структура поверхности сорбента, состав элюента, температура колонки и строение разделяемых соединений. Так как сорбция хроматографируемых веществ в жидкостной хроматографии определяется попарным взаимодействием трех основных компонентов системы - сорбента, разделяемых веществ и элюента, то изменение состава элюента – это удобный способ оптимизации процесса разделения.

Эффективность колонки зависит от размера частиц и структуры пор адсорбента, от равномерности набивки колонки, вязкости элюента и скорости массообмена. Удлинение колонки не всегда приводит к улучшению разделения, так как возрастает сопротивление колонки, увеличивается давление элюента на входе и время проведения опыта, снижается чувствительность и точность анализа из-за уширения пика анализируемого компонента. Если , то пики двух веществ на хроматограмме разделяются практически полностью. С ростом R S увеличивается время разделения. При R S < 1 - разделение неудовлетворительное. В препаративной хроматографии в связи с введением сравнительно больших количеств разделяемых веществ колонка работает с перегрузкой. При этом снижается коэффициент емкости, возрастает высота, эквивалентная теоретической тарелке, что приводит к уменьшению разрешения.

4. Адсорбенты

Хроматографическое разделение смеси будет эффективным, если правильно подобраны адсорбент и растворитель (элюент).

Адсорбент не должен химически взаимодействовать с разделяемыми компонентами, проявлять каталитическое воздействие на растворитель. Также необходимо, чтобы адсорбент обладал избирательностью по отношению к компонентам смеси. Правильно подобранный адсорбент должен иметь максимальную поглотительную способность.

Различают полярные (гидрофильные) и неполярные (гидрофобные) адсорбенты . Следует помнить о том, что адсорбционное сродство полярных веществ к полярным сорбентам значительно выше, чем неполярных.

В качестве адсорбентов применяют оксид алюминия, активированные угли, силикагель, цеолиты, целлюлозу и некоторые минералы.

Оксид алюминия Al2 O3 амфотерный адсорбент .(рис.) На нем можно разделять смеси веществ в полярных , так и в неполярных растворителях . Нейтральный оксид алюминия используют обычно для хроматографирования из неводных растворов предельных углеводородов, альдегидов, спиртов, фенолов, кетонов и эфиров.

Рис. Оксид алюминия для хроматографии

http://images. /542857_w200_h200_product5.jpg

Активность Al2O3 зависит от содержания в нем влаги. Самую высокую активность имеет безводный оксид алюминия. Её условно принимают за единицу. При необходимости можно приготовить оксид алюминия с различным содержанием влаги путем смешения свежеприготовленного оксида алюминия с водой (шкала Брокмана).

Зависимость активности оксида алюминия от содержания влаги

Например, для разделения углеводородов применяют Al2O3 с активностью 1,5-2; для разделения спиртов и кетонов – 2-3,5.

Удельная поверхность оксида алюминия 230-380 м2/г.

Силикагель (гидроксилированный или химически модифицированный) – это высушенный желатинообразный диоксид кремния, который получают из пересыщенных растворов кремниевых кислот (n SiO2·m H2O) при pH > 5-6. (рис.) Твёрдый гидрофильный сорбент.

Рис. Силикагель

http://www. silicagel. /

http://silikagel. ru/images/askg. gif

Размер частиц силикагеля в аналитических колонках 3-10 мкм, в препаративных - 20-70 мкм. Малый размер частиц увеличивает скорость массообмена и повышает эффективность колонки. Современные аналитические колонки имеют длину 10-25см. Они заполнены силикагелем с размером частиц 5 мкм и позволяют разделить сложные смеси из 20-30 компонентов. При уменьшении размера частиц до 3-5 мкм возрастает эффективность колонки, но и растет ее сопротивление. Так для достижения скорости потока элюента 0,5-2,0 мл/мин требуется давление (1-3)·107Па. Силикагель выдерживает такой перепад давления, гранулы же полимерных сорбентов более эластичны и деформируются. В последнее время разработаны механически прочные полимерные сорбенты макропористой структуры с густой сеткой, которые по своей эффективности приближаются к силикагелям. Форма частиц сорбента размером 10 мкм и выше не оказывает большого влияния на эффективность колонки, однако предпочитают сорбенты сферической формы, которые дают более проницаемую упаковку.(рис.)

Рис. Силикагель сферической формы

http://images. /6450630_w200_h200_silicagelksmg. gif

http:///N6_2011/U7/silikagel-2.jpeg

Внутренняя структура частицы силикагеля представляет собой систему сообщающихся каналов. Для жидкостной хроматографии используют сорбенты с диаметром пор 6-25 нм. Разделение жидкостной хроматографии в проводят, в основном, на силикагелях, модифицированных реакцией алкил - и арилхлорсиланов или алкилэтоксисиланов с силанольными группами поверхности. С помощью таких реакций прививают группы С8Н17-, С18Н37- или С6Н5- (для получения сорбентов с гидрофобизированной поверхностью), нитрильные, гидроксильные группы и др. (рис.)

https://pandia.ru/text/80/271/images/image033_0.jpg" width="166" height="116 src=">

Рис. Структура модифицированного силикагеля

Силикагели используют в хроматографии для разделения смесей нефтепродуктов, высших жирных кислот, их сложных эфиров, ароматических аминов, нитропроизводных органических соединений . Силикагель гидрофильный сорбент , легко смачивается водой. Поэтому его нельзя использовать для сорбции из водных растворов. Активность силикагеля зависит от содержания в нем воды: чем меньше в нем воды, тем больше активность (шкала Брокмана).

Зависимость активности силикагеля от содержания влаги

Удельная поверхность силикагелей равна 500-600 м2/г.

Активированные угли являются формой углерода, который в процессе обработки становится чрезвычайно пористым и приобретает очень большую площадь поверхности, предназначенную для адсорбции или химических реакций.(рис.) Они имеют удельную поверхность 1300-1700 м2/г.

Рис. Активированный уголь

http://e-catalog. rusbiz. ru/user_images/ru/prod_picture/58035161249b9016f64372.jpg

Основное влияние на структуру пор активированных углей оказывают исходные материалы для их получения. Активированные угли на основе скорлупы кокосов характеризуются большей долей микропор (до 2 нм), на основе каменного угля - большей долей мезопор (2-50 нм). Большая доля макропор характерна для активированных углей на основе древесины (более 50 нм). Микропоры особенно хорошо подходят для адсорбции молекул небольшого размера, а мезопоры - для адсорбции более крупных органических молекул.

Цеолиты (молекулярные сита) – пористые кристаллические алюмосиликаты щелочных и щелочноземельных металлов природного и синтетического происхождения. (рис.)

https://pandia.ru/text/80/271/images/image036_2.jpg" width="211 height=211" height="211">

Рис. Цеолиты

http://www. zeolite. spb. ru/_img/_36mm. jpg

http://kntgroup. ru/thumb. php? file=/uploads/produkts/6.jpg&x_width=250

Известны четыре типа цеолитов (A, X, Y, M), имеющие различную кристаллическую структуру. В зависимости от катиона цеолиты обозначают следующим образом: KA, NaA, CaM, NaX, KY, CaY. Особенностью цеолитов является то, что поры кристаллов имеют размеры порядка 0,4-1 нм, соизмеримые с размерами молекул многих жидких или газообразных веществ. Если молекулы вещества способны проникать в эти поры, то происходит адсорбция в порах кристаллов цеолитов. Более крупные молекулы вещества не адсорбируются. Подбирая цеолиты с разными размерами пор, можно четко разделить смеси различных веществ.

Удельная поверхность цеолитов 750-800 м2/г.

При выборе адсорбента необходимо учитывать строение веществ и их растворимость. Например, предельные углеводороды адсорбируются плохо, а непредельные (имеют двойные связи) – лучше. Функциональные группы усиливают способность вещества к адсорбции.

5. Элюенты

При выборе растворителя (элюента) нужно учитывать природу адсорбента и свойства веществ в разделяемой смеси. Элюенты должны хорошо растворять все компоненты хроматографируемой смеси, обладать низкой вязкостью, обеспечивать необходимый уровень селективности, быть дешевыми, нетоксичными, инертными, совместимыми с методами детектирования (например, с УФ детектором нельзя использовать в качестве элюента бензол).

В нормально-фазной хроматографии обычно используют углеводороды (гексан, гептан, изооктан, циклогексан) с добавлением небольших количеств хлороформа СНСl3, изо-пропанола изо-С3Н7ОН, диизопропилового эфира; в обращенно-фазной хроматографии - смесь воды с ацетонитрилом CH3CN, метанолом СН3ОН, этанолом С2Н5ОН, диоксаном, тетрагидрофуран, диметилформамид. Для выделения отдельных компонентов смеси, разделившихся при хроматографировании, часто проводят их последовательное вымывание (элюирование). С этой целью применяют растворители с различной десорбционной способностью. Растворители располагают в порядке убывания десорбирующей способности в полярных адсорбентах – элюотропный ряд Траппе . Если компоненты разделяемой смеси имеют близкие значения k" (коэффициент емкости колонки по отношению к данному компоненту), то хроматографируют одним элюентом. Если отдельные компоненты смеси сильно удерживаются сорбентом, используют серию элюентов возрастающей силы.

Элюотропный ряд растворителей

6. Аппаратура для жидкостной хроматографии

В современной жидкостной хроматографии используют приборы различной степени сложности - от наиболее простых систем до хроматографов высокого класса.
Современный жидкостной хроматограф включает: емкости для элюентов, насосы высокого давления, дозатор, хроматографическую колонку, детектор, регистрирующий прибор, систему управления и математические обработки результатов.

На рис. представлена блок-схема жидкостного хроматографа, содержащая минимально необходимый набор составных частей, в том или ином виде, присутствующих в любой хроматографической системе.

https://pandia.ru/text/80/271/images/image038_2.jpg" width="361" height="254 src=">

Рис. Схема жидкостного хроматографа: 1- резервуар для подвижной фазы, 2- насос, 3- инжектор, 4- колонка, 5- термостат, 6- детекторы, 7- регистрирующая система,8- компьютер.

Резервуар для подвижной фазы, должен иметь достаточную для проведения анализа вместимость и устройство для дегазации растворителя , чтобы исключить образование в колонке и детекторе пузырьков растворенных в элюенте газов.

Насос предназначен для создания постоянного потока растворителя . Его конструкция определяется, прежде всего, рабочим давлением в системе. Для работы в диапазоне 10-500 МПа используют насосы плунжерного (шприцевого) типа. Недостатком их является необходимость периодических остановок для заполнения элюентом. Для простых систем с невысокими рабочими давлениями 1-5 МПа применяют недорогие перистальтические насосы. Элюенты поступают в насос через фильтр, задерживающий пылевые частицы (больше 0,2 мкм). Иногда через элюенты пропускают небольшой ток гелия для удаления растворенного воздуха и предотвращения образования пузырьков в детекторе (особенно в случае водных и полярных элюентов). В аналитических хроматографах для подачи элюента в колонку используют поршневые насосы с системой обратной связи, позволяющие сглаживать пульсацию потока в пределах 1-2% и обеспечивать объемные скорости от 0,1 до 25 мл/мин при давлении до ~ 3.107 Па. В микроколоночной хроматографии объемные скорости потока элюента значительно ниже - 10-1000 мкл/мин. В случае градиентного элюирования используют несколько насосов, которые управляются программатором и подают в камеру смешения 2-3 компонента элюента, оставляя постоянной общую скорость потока. Для введения пробы в колонку, находящуюся под большим давлением, без остановки потока используют специальные микродозирующие краны, связанные с петлей известного объема для исследуемой пробы раствора. Разработаны дозировочные системы с автоматическим отбором и вводом пробы с помощью микродозирующих кранов или шприцов.

Инжектор обеспечивает ввод пробы смеси разделяемых компонентов в колонку с достаточно высокой воспроизводимостью. Простые системы ввода пробы - "stop-flow" требуют остановки насоса и, поэтому, менее удобны, чем петлевые дозаторы, разработанные фирмой Reodyne.

Колонки для ВЭЖХ изготовляют чаще всего из нержавеющей стальной полированной трубки длиной 10-25см и внутренним диаметром 3-5мм.

Рис. Хроматографические колонки для жидкостной хроматографии

Используют также стеклянные колонки , помещенные в металлический кожух; в микроколоночной хроматографии - набивные металлические колонки с внутренним диаметром 1,0-1,5мм, набивные стеклянные микроколонки диаметром 70-150 мкм и полые капиллярные колонки диаметром 10-100 мкм; в препаративной хроматографии - колонки диаметром от 2 до 10см и более. Для равномерного и плотного заполнения колонок сорбентом используют суспензионный метод набивки. Суспензию готовят из сорбента и подходящей органической жидкости, которая подается под давлением до 5·107 Па в колонку. Для определения выходящих из колонки разделенных компонентов используют детекторы . Постоянство температуры обеспечивается термостатом .

Детекторы для жидкостной хроматографии имеют проточную кювету, в которой происходит непрерывное измерение какого-либо свойства протекающего элюента. Они должны быть очень чувствительными. Для увеличения чувствительности детектора иногда применяют дериватизацию компонентов смеси после колонки. Для этого с потоком элюента вводят такие реагенты, которые, взаимодействуя с разделенными веществами, образуют производные с более выраженными свойствами, например, сильнее поглощают в УФ или видимой области спектра или обладают большей флуоресцирующей способностью. Иногда дериватизацию проводят до хроматографического анализа и разделяют производные, а не исходные вещества. Наиболее популярными типами детекторов общего назначения являются рефрактометры , измеряющие показатель преломления , и спектрофотометрические детекторы , определяющие оптическую плотность растворителя на фиксированной длине волны (как правило, в ультрафиолетовой области). К достоинствам рефрактометров недостаткам спектрофотометров ) следует отнести низкую чувствительность к типу определяемого соединения , которое может и не содержать хромофорных групп. С другой стороны, применение рефрактометров ограничено изократическими системами (с постоянным составом элюента), так что использование градиента растворителей в этом случае невозможно.

Дифференциал" href="/text/category/differentcial/" rel="bookmark">дифференциального усилителя и самописца. Желательно также наличие интегратора , позволяющего рассчитывать относительные площади получаемых пиков. В сложных хроматографических системах используется блок интерфейса , соединяющий хроматограф с персональным компьютером , который осуществляет не только сбор и обработку информации , но и управляет прибором, рассчитывает количественные характеристики и, в некоторых случаях, качественный состав смесей. Микропроцессор обеспечивает автоматический ввод пробы , изменение по заданной программе состава элюента при градиентном элюировании, поддержание температуры колонки .

Bruker". Рис. Жидкостный хроматограф Jasco

Вопросы для самопроверки

Что такое жидкостная хроматография? Назовите её виды, области применения. Перечислите о сновные хроматографические величины и их определение Какие виды жидкостной хроматографии существуют в зависимости от механизма удерживания разделяемых веществ неподвижной фазой ЖХ? Какие виды хроматографии существуют в зависимости от способа перемещения вещества? Какие вещества используют в качестве адсорбентов? Чем они отличаются? Что служит жидкой подвижной фазой - элюентом? Требования к растворителям. В чем отличие распределительной хроматографии от адсорбционной хроматографии? Перечислите основные части схемы жидкостного хроматографа, их назначение.

Список использованной литературы

1 « Жидкостная хроматография в медицине »

Http://journal. issep. rssi. ru/articles/pdf/0011_035.pdf

2 « Ознакомление с методами высокоэффективной жидкостной хроматографии »

Http://www. chemnet. ru/rus/teaching/oil/spezprakt-chr. html

3 « Жидкостная хроматография »

Http://e-science. ru/index/?id=1540

4 « Хроматография »

Http://belchem. narod. ru/chromatography1.html

Введение.

Бурное развитие жидкостной хроматографии в последние 10 лет обусловлено, главным образом, интенсивной разработкой теоретических основ и практическим использованием ее высокоэффективного варианта, а также созданием и промышленным выпуском необходимых сорбентов и аппаратуры.

Отличительной особенностью высокоэффективной жидкостной хроматографии (ВЭЖХ) является использование сорбентов с размером зерен 3-10 мкм, что обеспечивает быстрый массоперенос при очень высокой эффективности разделения.

В настоящее время ВЭЖХ по темпам развития вышла на первое место среди инструментальных методов, обогнав даже газовую хроматографию. Важнейшее преимущество ВЭЖХ по сравнению с газовой хроматографией - возможность исследования практически любых объектов без каких-либо ограничений по их физико-химическим свойствам, например, по температурам кипения или молекулярной массе.

Сегодня ВЭЖХ представляет собой хорошо оформленный инструментальный метод, который широко применяют в самых различных областях науки и техники. Особенно велико его значение в таких важнейших областях, как биохимия, молекулярная биология, контроль загрязнений окружающей среды,а также в химической, нефтехимической, пищевой и фармацевтической промышленности.

поскольку необходимо учитывать целый ряд весьма специфических тре­бований, обусловленных следующими особенностями мето­дики.

а. Колонки для ВЭЖХ наполняют носителем с очень ма­лым диаметром частиц. В результате при таких объемных ско­ростях растворителя, которые необходимы для быстрого разде­ления пробы, на колонке создается высокое давление.

б. Детекторы, применяемые в ВЭЖХ, чувствительны к флуктуации потока и давления элюента (шумы). Более того, при применении концентрационных детекторов необходима еще более высокая стабильность объемной скорости элюента.

в. Процесс хроматографического разделения сопровождает­ся рядом антагонистических эффектов, так, например, диспер­гирование образца в подвижной фазе ведет к смешению раз­деляемых компонентов и снижает максимальную концентрацию вещества в элюируемом пике (в детекторе). Диспергирование наблюдается на всех участках системы от точки ввода пробы до детектора.

г. Растворители, выполняющие роль подвижной фазы, ча­сто способны вызывать коррозию аппаратуры. Это в первую очередь относится к растворителям, используемым в обращен-но-фазовой хроматографии, которая предпочтительна в биохи­мических приложениях ВЭЖХ.

Специфику ВЭЖХ как инструментальной методики необхо­димо учитывать в процессе разработки, создания и эксплуата­ции этих систем. Для создания коммерческих образцов хрома-тографических систем и их компонентов, достаточно надеж­ных, простых и безопасных в работе с приемлемым соотноше­нием между ценой и техническими характеристиками, потре­бовалось более десяти лет поисков и исследований. Наметив­шиеся в последнее время тенденции к уменьшению колонок (как длины, так и диаметра) заставляют предъявлять новые требования к инструментам.

1.1. ЭФФЕКТИВНОСТЬ И СЕЛЕКТИВНОСТЬ

Хроматография - это метод разделения компонентов смеси, основанный на различии в равновесном распределении их меж­ду двумя" несмешивающимися фазами, одна из которых непо­движна, а другая подвижна. Компоненты образца движутся по колонке, когда они находятся в подвижной фазе, и остаются на месте, когда находятся в неподвижной фазе. Чем больше срод­ство компонента к неподвижной фазе и чем меньше - к подвиж­ной, тем медленнее он движется по колонке и тем дольше в ней удерживается. За счет различия в сродстве компонентов смеси к неподвижной и подвижной фазам достигается основная цель хроматографии - разделение за приемлемый промежуток вре­мени смеси на отдельные полосы (пики) компонентов по мере их продвижения по колонке с подвижной фазой.

Из этих общих представлений ясно, что хроматографическое разделение возможно, только в том случае, если компоненты образца, попадая в колонку при вводе пробы, во-первых, будут растворены в подвижной фазе и, во-вторых, будут взаимодейст­вовать (удерживаться) с неподвижной фазой. Если при вводе пробы какие-то компоненты находятся не в виде раствора, они будут отфильтрованы и не будут участвовать в хроматографи-ческом процессе. Точно так же компоненты, не взаимодействую­щие с неподвижной фазой, пройдут через колонку с подвижной фазой, не разделяясь на компоненты.

Примем условие, что какие-то два компонента растворимы в подвижной фазе и взаимодействуют с неподвижной фазой, т. е. хроиатографический процесс может протекать без наруше­ний. В этом случае после прохождения смеси через колонку можно получить хроматограммы вида а, б или в (рис. 1.1). Эти хроматограммы иллюстрируют хроматографические разделения, отличающиеся эффективностью и б) при равной селективно­сти и селективностью и в) при равной эффективности.

Эффективность колонки тем выше, чем уже пик получается при том же времени удерживания. Эффективность колонки изме­ряется числом теоретических тарелок (ЧТТ) N : чем выше эф-

Рис. 1.2. Параметры хрома-тографического пика и рас­чет числа теоретических та­релок:

t R - время удерживания пика; h - высота пика; Wj/j - шири­на пика на половине его высоты

Рис. 1.1. Вид хроматограммы в зависимости от эффективности и селектив­ности колонки:

а - обычная селективность, пониженная эффективность (меньше теоретических тарелок); б - обычные селективность и эффективность; в - обычная эффективность, повышенная селективность (больше отношение времен удерживания компонентов)

фективность, тем больше ЧТТ, тем меньше расширение пика первоначально узкой полосы по мере прохождения ее через ко­лонку, тем уже пик на выходе из колонки. ЧТТ характеризует число ступеней установления равновесия между подвижной и не­подвижной фазами.

Зная число теоретических тарелок, приходящееся на колонку, и длину колонки L (мкм), а также средний диаметр зерна сор­бента d c (мкм), легко получить значения высоты, эквивалент­ной теоретической тарелке (ВЭТТ), а также приведенной вы­соты, эквивалентной теоретической тарелке (ПВЭТТ):

ВЭТТ = L / N

ПВЭТТ =B3TT/d c .

Имея значения ЧТТ, ВЭТТ и ПВЭТТ, можно легко сравни­вать эффективность колонок разных типов, разной длины, за­полненных разными по природе и зернению сорбентами. Срав­нивая ЧТТ двух колонок одной длины, сравнивают их эффек­тивность. При сравнении ВЭТТ сравнивают колонки с сорбен­тами одинакового зернения, имеющими разную длину. Нако­нец, величина ПВЭТТ позволяет для двух любых колонок оце­нить качество сорбента, во-первых, и качество заполнения коло­нок, во-вторых, независимо от длины колонок, зернения сорбен­тами его природы.

Селективность колонки играет большую роль в достижении хроматографического разделения.

Селективность колонки зависит от очень многих факторов, и искусство экспериментатора в большой мере определяется умением воздействовать на селективность разделения. Для это­го в руках хроматографиста находятся три очень важных фак­тора: выбор химической природы сорбента, выбор состава рас­творителя и его модификаторов и учет химической структуры и свойств разделяемых компонентов. Иногда заметное влияние на селективность оказывает изменение температуры колонки, меняющее коэффициенты распределения веществ между по­движной и неподвижной фазами.

При рассмотрении разделения двух компонентов на хрома­тограмме и его оценке важным параметром является разреше­ние R s , которое связывает времена выхода и ширину пиков обо­их разделяемых компонентов

Разрешение как параметр, характеризующий разделение пи­ков, увеличивается по мере возрастания селективности, отра­жаемой ростом числителя, и роста эффективности, отражаемой снижением значения знаменателя из-за уменьшения ширины пи­ков. Поэтому быстрый прогресс жидкостной хроматографии привел к изменению понятия «жидкостная хроматография вы­сокого давления» - оно было заменено на «жидкостную хрома­тографию высокого разрешения» (при этом сокращенная запись термина на английском языке сохранилась HPLC как наибо­лее правильно характеризующее направление развития совре­менной жидкостной хроматографии).

Таким образом, размывание в колонке уменьшается и эф­фективность повышается, когда используют более мелкий сор­бент, более равномерный по составу (узкая фракция), более плотно и равномерно упакованный в колонке, при использова­нии более тонких слоев привитой фазы, менее вязких раствори­телей и оптимальных скоростей потока.

Однако наряду с размыванием полосы хроматографической зоны в процессе разделения в колонке может происходить так­же и размывание ее в устройстве для ввода пробы, в соедини­тельных капиллярах инжектор - колонка и колонка - детек­тор, в ячейке детектора и в некоторых вспомогательных устрой­ствах (микрофильтры для улавливания механических частиц из пробы, устанавливаемые после инжектора, предколонки, ре­акторы-змеевики и др.)- Размывание при этом тем больше, чем больше внеколоночный объем по сравнению с удерживаемым объемом пика. Имеет также значение и то, в каком месте на­ходится мертвый объем: чем уже хроматографическая зова, тем большее размывание даст мертвый объем. Поэтому особое вни­мание следует уделять конструированию той части хроматогра­фа, где хроматографическая зона наиболее узкая (инжектор и устройства от инжектора до колонки) - здесь внеколоночное размывание наиболее опасно и сказывается наиболее сильно. Хотя считается, что в хорошо сконструированных хроматогра­фах источники дополнительного внеколоночного размывания должны быть сведены до минимума, тем не менее каждый новый прибор, каждая переделка хроматографа должны обяза­тельно заканчиваться тестированием на колонке и сравнением полученной хроматограммы с паспортной. Если наблюдается ис­кажение пика, резкое снижение эффективности, следует тща­тельно проинспектировать вновь введенные в систему капилля­ры и другие устройства.

Размывание вне колонки и его неправильная оценка могут привести к значительной (более 50%) потере эффективности, особенно в тех случаях, когда относительно давно сконструиро­ванные хроматографы пытаются использовать для высокоско­ростной ВЭЖХ, микроколоночной ВЭЖХ и других вариантов современной ВЭЖХ, требующих микроинжекторов, соединитель­ных капилляров с внутренним диаметром 0,05-0,15 мм мини­мальной длины, колонок вместимостью 10-1000 мкл, детекто­ров с микрокюветами емкостью 0,03-1 мкл и с высоким быстро­действием, высокоскоростных самописцев и интеграторов.

1.2. УДЕРЖИВАНИЕ И СИЛА РАСТВОРИТЕЛЯ

Для того чтобы анализируемые вещества разделялись на ко­лонке, как уже упоминалось выше, коэффициент емкости k " должен быть больше 0, т. е. вещества должны удерживаться неподвижной фазой, сорбентом. Однако коэффициент емкости не должен быть и слишком большим, чтобы получить приемле­мое время элюирования. Если для данной смеси веществ выбра­на неподвижная фаза, которая их удерживает, то дальнейшая работа по разработке методики анализа заключается в выборе такого растворителя, который обеспечил бы в идеальном случае различные для всех компонентов, но приемлемо не очень боль­шие k ". Этого добиваются, меняя элюирующую силу раствори­теля.

В случае адсорбционной хроматографии на силикагеле или оксиде алюминия, как правило, силу двухкомпонентного рас­творителя (например, гексана с добавкой изопропанола) увели­чивают, увеличивая в нем содержание полярного компонента (изопропанола), или же уменьшают, уменьшая содержание изо­пропанола. Если содержащие полярного компонента становится слишком малым (менее 0,1%), следует заменить его более сла­бым по элюирующей силе. Так же поступают, заменяя на дру­гие либо полярную, либо неполярную составляющую и в том^ случае, если данная система не обеспечивает желаемой селек­тивности по отношению к интересующим компонентам смеси. При подборе систем растворителей принимают во внимание как растворимости компонентов смеси, так и элюотропнЬе ряды растворителей, составленные разными авторами.

Примерно так же подбирают силу растворителя в случае ис­пользования привитых полярных фаз (нитрил, амино, диол, нитро и др.), учитывая возможные химические реакции и ис­ключая опасные для фазы растворители (например и кетоны для аминофазы).

В случае обращенно-фазной хроматографии силу раствори­теля увеличивают, повышая содержание в элюенте органичес­кой составляющей (метанола, ацетонитрила или ТГФ) и умень­шают, добавляя больше воды. Если не удается добиться же­лаемой селективности, используют другую органическую состав­ляющую либо пытаются изменить ее с помощью разных доба­вок (кислот, ион-парных реагентов и др.).

При разделениях методом ионообменной хроматографии си­лу растворителя меняют, увеличивая или уменьшая концентра­цию буферного раствора или меняя рН, в некоторых случаях используют модификацию органическими веществами.

Однако, особенно в случае сложных природных и биологи­ческих смесей, зачастую не удается подобрать силу раствори­теля таким образом, чтобы все компоненты пробы элюирова-лись за приемлемый срок. Тогда приходится прибегать к гра­диентному элюированию, т. е. использовать растворитель, элюи-рующая сила которого в процессе анализа изменяется так, что она постоянно увеличивается по заранее заданной программе. Таким приемом удается добиться элюирования всех компонен­тов сложных смесей за относительно короткий промежуток вре­мени и их разделения на компоненты в виде узких пиков.

1.3. РАЗМЕР ЧАСТИЦ СОРБЕНТА, ПРОНИЦАЕМОСТЬ И ЭФФЕКТИВНОСТЬ

Рассматривая размывание в колонке, мы указывали, что эффективность колонки (ВЭТТ) зависит от размера частиц сорбента. В большой степени бурное развитие ВЭЖХ за послед­ние 10-12 лет было обусловлено, во-первых, разработкой спо­собов получения сорбентов с размером частиц от 3 до 10 мкм и с узким фракционным составом, обеспечивающих высокую эффективность при хорошей проницаемости, во-вторых, ^разра­боткой способов заполнения этими сорбентами колонок и, в-третьих, разработкой и серийным выпуском жидкостных хро­матографов, имеющих рассчитанные на высокие давления насо­сы, инжекторы и детекторы с кюветами малого объема, способ­ные регистрировать пики малого объема.

Для хорошо упакованных суспензионным способом колонок приведенная высота, эквивалентная теоретической тарелке (ПВЭТТ), может составлять 2 независимо от того, использо­вали ли для упаковки частицы с размером 3, 5, 10 или 20 мкм. В этом случае мы получим соответственно колонки (при стан­дартной длине их 250 мм) эффективностью 41670, 25000, 12500 и 6250 т.т. Кажется естественным выбрать наиболее эффектив­ную колонку, заполненную частицами размером 3 мкм. Однако за эту эффективность придется заплатить использованием при работе очень высокого давления и относительно невысокой скоростью разделения, так как имеющийся насос, скорее всего, будет и^пособен* прокачивать через такую колонку растворитель с высокой объемной скоростью. Здесь мы как раз и сталкива­емся с вопросом о связи размера частиц сорбента, эффективно­сти и проницаемости колонок.

Если выразить отсюда фактор сопротивления колонки--безраз­мерную величину, получим следующее уравнение:

Фактор сопротивления для колонок, упакованных микрочасти­цами одного вида по одному и тому же способу, меняется не­значительно и составляет следующие значения:

Вид частиц ».... Неправильная Сферическая

форма форма

Сухая упаковка. . . . . 1000-2000 800-1200

Суспензионная упаковка. . . 700-1500 500-700

Давление на входе в колонку пропорционально линейной скорости потока, фактору сопротивления колонки, вязкости рас­творителя и длине колонки и обратно пропорционально квадра­ту диаметра частиц.

Применив эту зависимость для вышеописанных колонок с частицами диаметром 3, 5, 10 и 20 мкм и предположив посто­янными линейную скорость потока, фактор сопротивления ко­лонки и вязкость растворителя, получим для колонок равной длины соотношение давлений на входе 44:16:4:1. Таким об­разом, если для обращенно-фазного сорбента с размером час­тиц 10 мкм при использовании систем растворителей метанол - . вода (70:30) обычно на стандартной колонке при расходе рас­творителя 1 мл/мин давление на входе в колонку составляет 5 МПа, то для частиц 5 мкм - 20 МПа и для 3 мкм - 55 МПа. При использовании силикагеля и менее вязкой системы рас­творителей гексан - изопропанол (100:2) значения будут су­щественно ниже: соответственно 1, 4 и 11 МПа. Если в случае обращенно-фазного сорбента применение частиц размером Змкм очень проблематично, а 5 мкм возможно, но не на всех при­борах, то для нормально-фазного проблем с давлением не воз­никает. Следует отметить, что для современной скоростной ВЭЖХ характерно использование более высокого расхода рас­творителей, чем в вышерассмотренном примере, поэтому тре­бования к давлению возрастают еще больше.

Однако в тех случаях, когда для разделения требуется оп­ределенное число теоретических тарелок и желательно осуще­ствить скоростной анализ, картина несколько меняется. Так как длины колонок с сорбентами зернением 3, 5, 10 мкм при равной эффективности будут соответственно 7,5; 12,5 и 25 см, то и соотношение давлений на входе в колонки изменится доЗ,3:2:1. Соответственно продолжительность анализа на таких колонках равной эффективности будет соотноситься как 0,3:0,5:1, т. е. при переходе от 10 к 5 и 3 мкм продолжительность анализа со­кратится в 2 и 3,3 раза. За это ускорение анализа приходится расплачиваться пропорционально более высоким давлением на входе в колонку.

Приведенные данные справедливы для тех случаев, когда сорбенты разного зернения имеют одинаковые кривые распреде­ления частиц по размеру, колонки набиты одинаковым спосо­бом и имеют одинаковый фактор сопротивления колонки. Сле­дует иметь в виду, что трудность получения узких фракций сор­бента возрастает по мере уменьшения размера частиц и что. фракции от разных производителей имеют разный фракционный состав. Поэтому фактор сопротивления колонок будет меняться в зависимости от зернения, типа сорбента, способа упаковки колонок и др.

КЛАССИФИКАЦИЯ МЕТОДОВ ВЭЖХ ПО МЕХАНИЗМУ РАЗДЕЛЕНИЯ

Большинство проводимых методом ВЭЖХ разделений основа­но на смешанном механизме взаимодействия веществ с сорбен­том, обеспечивающим большее или меньшее удерживание ком­понентов в колонке. Механизмы разделения в более или менее чистом виде на практике встречаются достаточно редко, напри­мер, адсорбционный при использовании абсолютно безводного силикагеля и безводного гексана для разделения ароматических углеводородов.

При смешанном механизме удерживания для веществ раз­ного строения и молекулярной массы можно оценить вклад в удерживание адсорбционного, распределительного, эксклюзион-ного и других механизмов. Однако для лучшего понимания и представления о механизмах разделения в ВЭЖХ целесообраз­но рассматривать разделения с преобладанием того или иного механизма как относящиеся к определенному виду хроматогра­фии, например, к ионообменной хроматографии.

2.1.1 АДСОРБЦИОННАЯ ХРОМАТОГРАФИЯ

Разделение методом адсорбционной хроматографии осущест­вляется в результате взаимодействия вещества с адсорбентами, такими, как силикагель или оксид алюминия, имеющими на по­верхности активные центры. Различие в способности к взаимо­действию с адсорбционными центрами разных молекул пробы приводит к их разделению на зоны в процессе движения с подвижной фазой по колонке. Достигаемое при этом разделение зон компонентов зависит от взаимодействия как с растворите­лем, так и с адсорбентом.

В основе сорбции на поверхности адсорбента, имеющего гид-роксильные группы, лежит специфическое взаимодействие меж­ду полярной поверхностью адсорбента и полярными (или спо­собным поляризоваться) группами или участками молекул. К таким взаимодействиям относят диполь-дипольное взаимодей­ствие между постоянными или индуцированными диполями, об­разование водородной связи вплоть до образования я-комплек-сов или комплексов с переносом заряда. Возможным и доста­точно частым в практической работе является проявление хемо-сорбции, которая может привести к значительному повышению времени удерживания, резкому снижению эффективности, появ­лению продуктов разложения или необратимой сорбции веще­ства.

Изотермы адсорбции веществ имеют линейную, выпуклую или вогнутую форму. При линейной изотерме адсорбции пик ве­щества симметричен и время удерживания не зависит от разме­ра пробы. Чаще всего изотермы адсорбции веществ нелинейны и имеют выпуклую"форму, что приводит к некоторой асиммет­рии пика с образованием хвоста.

Наибольшее применение в ВЭЖХ находят адсорбенты из силикагеля с разным объемом пор, поверхностью, диаметром пор. Значительно реже используют оксид алюминия и крайне редко--другие адсорбенты, широко применяющиеся в класси­ческой колоночной и тонкослойной хроматографии. Основная причина этого - недостаточная механическая прочность боль­шинства прочих адсорбентов, не позволяющая упаковывать их я использовать при повышенных давлениях, характерных для вэжх.

Полярные группы, обусловливающие адсорбцию и находя­щиеся на поверхности силикагеля и оксида алюминия, по свой­ствам близки. Поэтому обычно порядок элюирования смесей ве­ществ и элюотропный ряд растворителей для них одинаковы. Однако различие химического строения силикагеля и оксида алюминия иногда приводит к появлению различий в селектив­ности-- тогда предпочтение отдают тому или другому адсор­бенту, более подходящему для данной конкретной задачи. На­пример, оксид алюминия обеспечивает большую избиратель­ность при разделении некоторых многоядерных ароматических углеводородов.

Предпочтение, отдаваемое обычно силикагелю по сравнению с оксидом алюминия, объясняется более широким выбором си-ликагелей по пористости, поверхности и диаметру пор, а также значительно более высокой каталитической активностью оксида алюминия, нередко приводящей к искажению результатов ана­лиза вследствие разложения компонентов пробы либо их необ­ратимой хемосорбции.

2.1.2 Недостатки адсорбционной хроматографии, ограничивающие ее использование

Популярность адсорбционной хроматографии по мере разви­тия метода ВЭЖХ постепенно падала, она все больше заменя­лась и продолжает заменяться на другие варианты, такие, как обращенно-фазная и нормально-фазная ВЭЖХ на сорбентах с-привитой фазой. Какие же недостатки адсорбционной хромато­графии привели к этому?

Прежде всего, это большая длительность процессов уравно­вешивания адсорбентов с растворителями, содержащими воду в микроколичествах, трудность приготовления таких раствори­телей с определенной и воспроизводимой влажностью. Из это­го следуют плохая воспроизводимость параметров удерживания, разрешения, селективности. По этой же причине невозможно использовать градиентное элюирование - возврат к исходному состоянию настолько длителен, что значительно превосходит выигрыш времени за счет использования градиента.

Существенные недостатки адсорбентов, особенно оксида алюминия, связанные с частыми случаями перегруппировок чувствительных к катализу соединений, их разложения, необра­тимой сорбции, также общеизвестны и неоднократно отмеча-лить в литературе. Необратимо сорбирующиеся вещества, на­капливаясь на начальном участке колонки, меняют природу сорбента, могут привести к повышению сопротивления колонки или даже к полной ее забивке. Последний недостаток может быть устранен путем использования предколонки, которая по- мере повышения сопротивления и забивки заменяется на новую* или перезаполняется новым сорбентом. Однако необратимая сорбция, имеющая место и в этом случае, приводит к получе­нию хроматограммы, на которой полностью или частично от­сутствуют чувствительные к сорбции или каталитическому раз­ложению компоненты пробы.

2.2. РАСПРЕДЕЛИТЕЛЬНАЯ ХРОМАТОГРАФИЯ

Распределительная хроматография - это вариант ВЭЖХ, в котором разделение смеси на компоненты осуществляется за счет различия их коэффициентов распределения между двумя несмешивающимися фазами: растворителем (подвижная фа­за) и фазой на сорбенте (неподвижная фаза). Исторически пер­выми были сорбенты такого типа, которые получали нанесением жидких фаз (оксидипропионитрила, парафинового масла и др.) на пористые носители, аналогично тому, как готовили и готовят сорбенты для газожидкостной хроматографии (ГЖХ). Однако сразу же обнаружились и недостатки таких сорбентов, основ­ным из которых было относительно быстрое смывание фазы с носителя. За счет этого количество фазы в колонке постепенно уменьшалось, времена удерживания также уменьшались, на на­чальном участке колонки появлялись не покрытые фазой центры адсорбции, вызывавшие образование хвостов пиков. С этим недостатком боролись, насыщая растворитель нанесен­ной фазой еще до его попадания в колонку. Унос также умень­шался, когда использовали более вязкие и менее растворимые полимерные фазы, однако в этом случае из-за затруднения диффузии из толстых полимерных пленок эффективность колонок заметно снижалась.

Логическим оказалось привить химическими связями жид­кую фазу к носителю таким образом, чтобы унос ее стал физи­чески невозможен, т. е. превратить носитель и фазу в одно це­лое- в так называемый привито-фазный сорбент.

В дальнейшем усилия исследователей были направлены на поиск реагентов, прививка которых протекала бы достаточно быстро и полно, а образовавшиеся связи были максимально устойчивыми. Такими реагентами стали алкилхлорсиланы и их производные, позволившие по сходной технологии получать привито-фазные сорбенты разного типа и с разными как по­лярными, так и неполярными группами на поверхности.

Успешное применение сорбентов последнего типа для ВЭЖХ способствовало росту их производства самыми разными произ­водителями. Каждая фирма производила такие сорбенты, как правило, на основе своего вида силикагеля и по своей техноло­гии, которая обычно составляет «ноу-хау» производства. В ре­зультате большое количество сорбентов, называющихся хими­чески совершенно одинаково (например, силикагель с привитым октадецилсиланом), имеют очень сильно различающиеся хро-матографические характеристики. Это связано с тем, что сили­кагель может иметь поры шире или уже, разную поверхность, пористость, его поверхность до прививки может гидроксилиро-ваться или нет, прививаться могут моно-, ди- или трихлорсила-ны, условия прививки могут давать мономерный, полимерный или смешанный слой фазы, используются разные методы удале­ния остатков реагентов, может использоваться или не исполь­зоваться дополнительная дезактивация силанольных и других активных групп.

Сложность технологии прививки реагентов и подготовки сырья и материалов, ее многостадийность приводят к тому, что даже полученные по одной технологии ка одной фирме-произво­дителе партии сорбентов могут иметь несколько разные хрома-тографические характеристики. Особенно это касается тех слу­чаев, когда такие сорбенты используют для анализа многоком­понентных смесей, содержащих вещества, заметно различаю щиеся по количеству и положению функциональных групп, по* роду функциональности .

Учитывая вышеуказанное, всегда следует стремиться к то­му* чтобы при использовании описанной в литературе методи­ки анализа применять именно тот самый сорбент и те же усло­вия работы. В этом случае вероятность того, что работу не удастся воспроизвести, является минимальной. Если же такой возможности нет, а берется сорбент другой фирмы с аналогич­ной привитой фазой, нужно быть готовым к тому, что потребу­ется длительная работа по переделке методики. При этом су­ществует вероятность (и ее следует учитывать), что на этом сорбенте даже и после длительной разработки можно не до­биться требуемого разделения. Наличие в литературе многих описанных методик разделения на давно производимых старых сорбентах стимулирует их дальнейшее производство и примене­ние по этой причине. Однако в тех случаях, когда приходится переходить к разработке оригинальных методик, особенно при­менительно к веществам, склонным к разложению, хемосорб-ции, перегруппировкам, целесообразно начинать работу на сор­бентах, разработанных в последнее время и выпускаемых по> новым, улучшенным вариантам технологии. Новые сорбенты имеют более однородный фракционный состав, более однород­ное и полное покрытие поверхности привитой фазой, более со­вершенные окончательные стадии обработки сорбентов.

2.3. ИОНООБМЕННАЯ ХРОМАТОГРАФИЯ

В ионообменной хроматографии разделение компонентов смеси достигается за счет обратимого взаимодействия ионизи­рующихся веществ с ионными группами сорбента. Сохранение электронейтральности сорбента обеспечивается наличием спо­собных к ионному обмену противоионов, расположенных в не­посредственной близости к поверхности. Ион введенного образ­ца, взаимодействуя с фиксированным зарядом сорбента, обме­нивается с противоионом. Вещества, имеющие разное сродство " к фиксированным зарядам, разделяются на анионитах или на катеонитах. Аниониты имеют на поверхности положительно за­ряженные группы и сорбируют из подвижной фазы анионы. Ка-тиониты соответственно содержат группы с -отрицательным за­рядом, взаимодействующие с катионами.

В качестве подвижной фазы используют водные растворы " солей кислот, оснований и растворители типа жидкого аммиа­ка, т. е. системы растворителей, имеющих высокое значение ди­электрической проницаемости е и большую тенденцию ионизи­ровать соединения. Обычно работают с буферными растворами, позволяющими регулировать значение рН.

При хроматографичеоком разделении ионы анализируемого вещества конкурируют с ионами, содержащимися в элюенте, стремясь вступить во взаимодействие с противоположно заря­женными группами сорбента. Отсюда следует, что ионообмен­ную хроматографию можно применять для разделения любых соединений, которые могут быть каким-либо образом ионизированы. Можно провести анализ даже нейтральных молекул Сахаров в виде их комплексов с борат-ионом:

Сахар + ВО 3 2 - = Сахар -ВО 3 2 -.

Ионообменная хроматография незаменима при разделении вы­сокополярных веществ, которые без перевода в производные не могут быть проанализированы методом ГЖХ. К таким со­единениям относятся аминокислоты, пептиды, сахара.

Ионообменную хроматографию широко применяют в медици­не, биологии, биохимии , для контроля окружающей среды, при анализе содержания лекарств и их метаболитов в крови и моче, ядохимикатов в пищевом сырье, а также для раз­деления неорганических соединений, в том числе радиоизотопов, лантаноидов, актиноидов и др. Анализ биополимеров (белков, нуклеиновых кислот и др.), на который обычно затрачивали часы или дни, с помощью ионообменной хроматографии прово­дят за 20-40 мин с лучшим разделением. Применение ионооб­менной хроматографии в биологии позволило наблюдать за об­разцами непосредственно в биосредах, уменьшая возможность перегруппировки или изомеризации, что может привести к не­правильной интерпретации конечного результата. Интересно ис­пользование данного метода для контроля изменений, происхо­дящих с биологическими жидкостями . Применение пори­стых слабых анионообменников на силикагелевой основе позво­лило разделить пептиды . V

Механизм ионного обмена можно представить в виде сле­дующих уравнений:

для анионного обмена

X- + R+Y- ч ->■ Y-+R+X-.

для катионного обмена |

X+ + R-Y+ ч=* Y++R-X+.

В первом случае ион образца Х~ конкурирует с ионом по­движной фазы Y~ за ионные центры R+ ионообменника, а во втором в конкуренцию с ионами подвижной фазы Y+ за ион­ные центры R~ вступают катионы образца Х+.

Естественно, что ионы образца, слабо взаимодействующие с ионообменником, при этой конкуренции будут слабо удержи­ваться на колонке и первыми вымываются с нее и, наоборот, более сильно удерживаемые ионы будут элюировать из колонки последними. Обычно возникают BTqpH4Hbie взаимодействия не­ионной природы за счет адсорбции или водородных связей об­разца с неионной частью матрицы или за счет ограниченной растворимости образца в подвижной фазе. Трудно выделить «классическую» ионообменную хроматографию в «чистом» ви­де, и поэтому некоторые хроматографисты исходят из эмпири­ческих, а не теоретических закономерностей при ионообменной хроматографии.

Разделение конкретных веществ зависит в первую очередь от выбора наиболее подходящего сорбента и подвижной фазы. В качестве неподвижных фаз в ионообменной хроматографии применяют ионообменные смолы и силикагели с привитыми ионогенными группами.

2.4. ЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ

Зксклюзионная хроматография представляет собой вариант! жидкостной хроматографии, в котором разделение происходит за счет распределения молекул между растворителем, находя­щимся внутри пор сорбента, и растворителем, протекающим " между его частицами.

В отличие от остальных вариантов ВЭЖХ, где разделение идет за счет различного взаимодействия компонентов с поверхностью сорбента, роль твердого наполнителя в эксклюзионной хроматографии заключается только в формировании пор определенного размера, а неподвижной фазой является растворитель, заполняющий эти поры. Поэтому применение термина «сорбент» к данным наполнителям в определенной степени ус­ловно.

Принципиальной особенностью метода является возможность разделения молекул по их размеру в растворе в диапазоне прак­тически любых молекулярных масс - от 10 2 до 10 8 , что дела­ет ч его незаменимым для исследования синтетических и биопо­лимеров.

По традиции процесс, проводимый в органических раствори­телях, все еще часто называют гель-проникающей, а в водных системах - гель-фильтрационной хроматографией. В данной книге для обоих вариантов принят единый термин, который происходит от английского «Size Exclusion» - исключение по размеру - и в наиболее полной степени отражает механизм процесса.

Детальный разбор существующих представлений о весьма сложной теории процесса эксклюзионной хроматографии прове­ден в монографиях.

Полный объем растворителя в колонке Vt (его часто назы­вают полным объемом колонки, так как Vd не принимает учас­тия в хроматографическом процессе) представляет собой сум­му объемов подвижной и неподвижной фаз.

Удерживание молекул в зксклюзионной колонке определяет­ся вероятностью их диффузии в поры и зависит от соотношения размеров молекул и пор, что схематически показано на рис. 2.15. Коэффициент распределения Ка, как и в других вариантах хро­матографии, представляет собой отношение концентраций ве­щества в неподвижной и подвижной фазах.

Так как подвижная и неподвижная фазы имеют одинаковый состав, то Kd вещества, для которого обе фазы одинаково до­ступны, равен единице. Эта ситуация реализуется для молекул С самыми малыми размерами (в том числе и молекул раствори­теля), которые проникают во все поры (см. рис. 2.15) и поэто­му движутся через колонку наиболее медленно. Их удерживае­мый объем равен полному объему растворителя Vt-

Рис. 2.15. Модель разделения молекул по меру в эксклюзионной хроматографии

Все молекулы, размер которых больше размера пор сорбен­та, не могут попасть в них (полная эксклюзия) и проходят по-каналам между частицами. Они элюируются из колонки с од­ним и тем же удерживаемым объемом, равным объему подвиж­ной фазы V 0 - Коэффициент распределения для этих молекул ра­вен нулю.

Молекулы промежуточного размера, способные проникать только в какую-то часть пор, удерживаются в колонке в соот­ветствии с их размером. Коэффициент распределения этих мо­лекул изменяется в "пределах от нуля до единицы и характери­зует долю объема пор, доступных для молекул данного размера. Их удерживаемый объем определяется суммой У о и доступной части объема пор.

КАЧЕСТВЕННЫЙ АНАЛИЗ

Хроматографист, начинающий работать в области высоко­эффективной жидкостной хроматографии, должен ознакомиться с основами качественного анализа. Качественный анализ при­меняют для идентификации известного продукта, полученного новым путем или находящегося в смеси с другими продукта­ми." Он необходим при выделении из сложных биологических, химических смесей различных компонентов, что особенно важ­но в медицине, криминалистике, экологии, для контроля за на-| хождением некоторых лекарствен химических продуктов и их метаболитов в биомл.тер.иалах..„. "Знакомство с основами каче­ственного" анализа поможет избежать типичных ошибок, на­пример/отличить примеси в образце от примесей в раствори-теле или проверять чистоту вещества не на одной длине волны спектрофотометра, а на разных и т. д.

Прежде чем приступить к анализу, необходимо установить, весь ли образец элюируется из колонки данной системой ра­створителей или нет. Чтобы быть уверенным в полном элюи-ровании, необходимо собрать всю вытекающую из колонки жидкость, упарить растворитель, взвесить остаток и найти степень извлечения образца.

Идентификацию компонентов в ВЭЖХ можно проводить тремя способами: 1) использовать информацию об удержива­нии; 2) исследовать зоны, полученные при разделении в колон­ке жидкостного хроматографа, методами спектрального или химического анализа; 3) непосредственно подключить спект-ральный анализатор к колонке.

Для регистрации пиков в хроматографии используют удер­живаемый объем V R или время удерживания t R . Обе величины являются характеристикой вещества в данной хроматографиче­ской системе. Так как время удерживания разделяемого веще­ства состоит из времени взаимодействия в колонке и времени прохождения пустых участков трубки, оно меняется от прибора к прибору. Удобно иметь вещество, не удерживаемое данной колонкой, приняв его за стандарт, время и объем удер­живания которого t 0 , V o . Хроматографирование вещества и стандарта необходимо проводить при одних и тех же условиях (давлении и скорости потока). При идентификации по данным об удерживании, известные индивидуальные вещества, которые могут присутствовать в об­разцах, разделяют в той же самой хроматографической систе­ме, и для них получают значения t R . Сравнивая эти значения t R с временем удерживания неизвестного пика, можно обнару­жить, что они либо совпадают, и тогда вероятно, что пики со­ответствуют одному и тому же веществу, либо t R известного вещества не соответствует t R неизвестной зоны. Тогда все же возможна ориентировочная оценка значений t R веществ, не до­ступных для непосредственного измерения степени их удержи­вания. Рассмотрим оба варианта.

В первом случае, очевидно, необходимо предварительное изучение образца для постулирования присутствия в нем кон­кретных веществ. При работе с простыми смесями нетрудно определить, совпадает ли степень удерживания зон образца и известных веществ, или нет, т. е. значения t B одинаковы или различаются. В случае сложных смесей сразу несколько ве­ществ могут элюироваться со схожими значениями t R , и реально получаемые при хроматографическом разделении зоны пере­крываются. В результате получение точных значений t R для различных зон становится невозможным. Надежность иденти­фикации возрастает при повышении разрешающей способности, более тщательном контроле условий разделения, многократном измерении значений t R и усреднении найденных величин. При этом хроматографическое разделение известного и неизве­стного веществ должно чередоваться. При разделении сложных смесей значение t R вещества может изменяться под влиянием матрицы самого образца. Такое воздействие возможно в нача­ле хроматограммы и при перекрывании пиков; возможно также затягивание зон, о чем уже упоминалось.

В подобных случаях следует добавить стандарт к образцу в соотношении 1: 1. Если вещества идентичны, значение t R исходного вещества не изменится, и на хроматограмме полу­чают только один пик. Если имеется прибор с циклической системой хроматографирования, то для надежности идентифи­кации желательно смесь пропускать через колонку несколько раз.

Сведения о степени удерживания можно найти и в литера­туре, однако ценность этой информации ограничена. Так как колонки даже одной партии дают плохую воспроизводимость, литературные значения не всегда соответствуют истинному значению t R на данной колонке. Для адсорбционной хромато­графии возможно, однако, предсказание t R на основании лите­ратурных данных. Другая трудность, связанная с использова­нием литературных значений t R , - сложность их поиска в специальной литературе, хотя библиографические обзоры, пуб­ликуемые в Jornal of chromatography, имеют обновляемый указатель по типам веществ.

Во втором случае, когда времена удерживания известных соединений и зон образца не совпадают, имеется возможность предсказать время удерживания неизвестного компонента. Вполне надежны предсказания относительного удерживания на основании данных о структуре в пространственно-эксклюзионной хроматографии. Менее точны они в адсорбционной, распределительной хроматографии и особенно при работе на химически привязанной фазе. Для ионной и ион-парной хрома­тографии веществ с известной р Ка возможны лишь приблизи­тельные определения значений tR . Всегда легче предсказать от­носительное удерживание или значение *х, чем абсолютные зна­чения k ". Относительные значения t R легче оценить для родствен­ных соединений или производных, например замещенных алкилкарбоновых кислот или производных бензола.

При изократическом разделении гомологов или олигомеров иногда наблюдается следующая закономерность:

\ gk " = A + Bn ,

где А и В - константы для ряда выбранных образцов и для данной хрома-тографической системы (на одной и той же колонке, с такой же подвижной и неподвижной фазами); п - число одинаковых структурных единиц в мо­лекуле образца.

Введение в молекулу образца функциональной группы / бу­дет приводить к изменению k " в первом уравнении на некото­рый постоянный коэффициент а/ в данной хроматографической системе. Можно получить групповые константы а/ для различ­ных замещающих групп /, значения которых будут возрастать при увеличении полярности функциональных групп во всех видах хроматографии, кроме обращенно-фазной, где значения констант будут уменьшаться с увеличением полярности.

Некоторые групповые константы а/ для различных заме­щающих групп / приведены в табл. 9.1.

В адсорбционной хроматографии первое уравнение не всег­да применимо, так как оно справедливо при условии, что все изомеры имеют одно и то же значение k ", что не всегда соблю­дается. Можно, однако, построить график зависимости lgfe" одних и тех же соединений на одной колонке относительно lgfe" тех же соединений, но на другой колонке или относитель­но соответствующих характеристик в тонкослойной хромато­графии, например, lg[(l-Rf ) IRf ].

При сопоставлении данных об удерживании веществ можно использовать значения коэффициента емкости k ", так как на него в отличие от t R не влияют скорость подвижной фазы и геометрические особенности колонки.

Разделение на химически привязанной фазе аналогично разделению по методу распределительной хроматографии с аналогичными фазами, и поэтому данные по экстракции при равновесном состоянии могут быть использованы для пред­сказания времени удерживания.

В ионообменной хроматографии на степень удерживания влияют три фактора: степень ионизации кислот и оснований, заряд ионизированной молекулы и способность вещества из водной подвижной фазы, используемой в ионообменной хрома­тографии, мигрировать в органическую фазу. Последнее зави­сит от молекулярной массы соединения и его гидрофобности. Следовательно, более сильные кислоты или основания сильнее удерживаются при анионообменном или катионообменном раз­делении. При снижении рК а отдельной кислоты, входящей в образец, удерживание возрастает при разделении ряда кислот за счет анионного обмена, а при увеличении р/С о увеличивает­ся удерживание оснований при их разделении за счет катион-ного обмена.

Таким образом, совпадение значений времени удерживания известного вещества с наблюдаемым дает возможность пред­положить их идентичность. Достоверность идентификации воз­растает, если проводить сравнение хроматограмм известного вещества и неизвестного компонента в различных условиях. Если вещества в адсорбционной и обращенно-фазной или ион-нообменной и эксклюзионной хроматографии ведут себя одина­ково, надежность идентификации возрастает. Если достовер­ность идентификации при равенстве относительного удерживания составляет 90%, то при изучении поведения этих же веществ в условиях существенно отличающихся достоверность иденти­фикации составляет уже 99%.

Ценной характеристикой вещества, применяемой при иден­тификации, является отношение сигналов, полученных для данного вещества на двух разных детекторах. Анализируемое вещество после выхода из колонки проходит сначала через первый детектор, затем через второй, а сигналы, поступающие с детекторов, регистрируются одновременно при помощи мно­гоперьевого самописца или на двух самописцах. Обычно при­меняют последовательное соединение ультрафиолетового детек­тора (более чувствительного, но селективного) с рефрактомет­ром, или ультрафиолетового с детектором по флуоресценции, или двух ультрафиолетовых детекторов, работающих на раз­ных длинах волн. Относительный отклик, т. е. отношение сиг­нала рефрактометра к сигналу фотометра, является характе­ристикой вещества при условии, что оба детектора работают в своем линейном диапазоне; это проверяется введением раз­личных количеств одного и того же вещества. Качественную информацию можно получить, работая на фотометрических детекторах, снабженных устройством для остановки потока (Stop flow) и позволяющих регистрировать спектр выходящего" из колонки пика, пока он находится в проточной кювете, сравнивая его со спектром известного соединения.

Значительный интерес при идентификации представляют со­временные, пока еще дорогие, спектрофотометры с диодной решеткой.

Совершенно неизвестное вещество невозможно идентифици­ровать только с помощью высокоэффективной жидкостной хро­матографии, необходимы и другие методы.

КОЛИЧЕСТВЕННЫЙ АНАЛИЗ

Количественная жидкостная хроматография является хоро-(шо разработанным аналитическим методом, не уступающим по точности количественной газовой хроматографии и значительно превышающим точность ТСХ или электрофореза. К со­жалению, в ВЭЖХ не существует детектора, который имел бы близкую чувствительность для соединений различного химиче­ского строения (как катарометр в ГЖХ). Поэтому для полу­чения количественных результатов калибровка прибора обяза­тельна.

Количественный анализ состоит из следующих стадий: 1) хроматографическое разделение; 2) измерение площадей или высот пика; 3) расчет количественного состава смеси на основании хроматографических данных; 4) интерпретация по­лученных результатов, т. е. статистическая обработка. Рас­смотрим все эти стадии.

4.1. ХРМАТОГРАФИЧЕСКОЕ РАЗДЕЛЕНИЕ

При отборе пробы могут быть допущены ошибки. Особенно важно избежать ошибки и отобрать адекватную представи­тельную пробу неоднородных твердых образцов, легколетучих или неустойчивых веществ, а также сельскохозяйственных про­дуктов и биоматериалов. Неоднородные образцы, например, пищевых продуктов, тщательно перемешивают и квартуют. Проводя эту операцию многократно, добиваются однородности пробы.

Погрешности и потери веществ могут быть допущены на стадии экстракции, выделения, очистки и т. д.

Образцы должны быть полностью растворены, а их раст­воры приготовлены с точностью ±0,1%. Растворять образец желательно в подвижной фазе, что исключит возможность осаждения его после введения в хроматограф. Если растворе­ние в подвижной фазе невозможно, то следует применять ра­створитель, смешивающийся с ней, и вводить в хроматограф объемы образца (менее 25 мкл).

Значительные погрешности могут быть при вводе пробы за счет ее фракционирования, утечек и размывания пиков. Размывание пиков вызывает образование хвостов, приводящих к частичному перекрыванию пиков, и как следствие этого к погрешностям при детектировании. Для ввода пробы при ко­личественном анализе предпочтительнее использовать петле­вые клапанные устройства, а не шприцы из-за более высокой точности.и меньшей зависимости от индивидуальных особен­ностей операторов.

При хроматографическом разделении веществ также могут возникнуть осложнения, приводящие к искажению данных: количественного анализа. Возможно разложение или превра­щение пробы во время хроматографического процесса или не­обратимая адсорбция вещества на данной колонке. Важно убедиться в отсутствии этих нежелательных явлений и при не­обходимости провести регенерацию колонки или заменить ее. Перекрывание пиков и образование хвостов также можно уменьшить, изменяя условия хроматографирования.

Нельзя использовать в количественном анализе пики лож­ные или нечеткой формы, а также пики, время выхода которых близко к to , поскольку возможно недостаточное их разделение. Обычно используют пики со значением й"^0,5. Наивысшая эффективность колонки достигается при введении 10~ 5 -10~ 6 г растворенного вещества на 1 г сорбента. При введении боль­ших количеств образца зависимость высоты пика от нагрузки может оказаться нелинейной и потребоваться количественная оценка по площадям пиков.

К существенному искажению результатов хроматографиче­ского разделения приводят погрешности, связанные с детекти­рованием, или усилением. Каждый детектор характеризуется специфичностью, линейностью и чувствительностью. Особенно важна проверка на селективность при анализе микропримесей. Отклик УФ-детекторов может изменяться на вещества со схожими функциональными группами в 10 4 раз. Необходимо от­клик детектора прокалибровать для каждого определяемого вещества. Естественно, что вещества, не поглощающие в УФ-области, не дадут сигнала на самописец при использовании в качестве детектора фотометра. При использовании рефракто­метра возможно появление отрицательных пиков. Кроме того, этот детектор необходимо термостатировать, чего не требуется для УФ-детектора.

Линейностью детектора определяется размер вводимой пробы. Необходимо помнить, что скорость потока через колон­ку, температура колонки и детектора, а также его конструкция влияют на точность количественного анализа. Погрешности при передаче электрического сигнала на выходное устройство (са­мописец), интегратор или на ЭВМ могут возникать за счет наводки шумов, отсутствия заземления, колебания напряжения в сети и т. д.

4.2. ИЗМЕРЕНИЕ ПЛОЩАДЕЙ ИЛИ ВЫСОТ ПИКОВ

Высотой пик h (рис. 10.1) называют расстояние от верши­ны пика до базовой линии, его измеряют линейной либо под­считывают число делений на самописце. Некоторые электрон­ные интеграторы и вычислительные машины дают информацию о высоте пиков. Положение базовой линии смещенных пиков находят путем интерполирования значений ординат, соответ­ствующих началу и концу пика (пик 1 и 3 см. рис. 10.1). Для повышения точности необходимо иметь пологую стабиль­ную базовую линию. В случае неразделенных пиков базовую линию строят между началом и концом пика, а не заменяют нулевой линией. Так как высота пиков менее зависит от влия­ния соседних перекрывающихся пиков, оценка по высоте пика точнее, и ее почти всегда используют при анализе микропри­месей.

Площадь пика можно определять различными способами. Рассмотрим некоторые из них.

1. Планиметрический метод заключается в том, что пик обводят ручным планиметром, представляющим собой прибор механически определяющий площадь пика. Метод точен, но трудоемок и плохо воспроизводим. Применение этого метода нежелательно.

2. Метод бумажных силуэтов - пик вырезают и взвешивают. Метод хорошо воспроизводим, но трудоемок, при этом уничто­жается хроматограмма. Применимость его зависит от одно­родности диаграммной ленты. Метод также не может быть широко рекомендован.

4. Метод триангуляции состоит в построении треугольника путем проведения касательных к сторонам пика. Вершина тре­угольника находится выше, чем вершина пика. Увеличение площади, образованной этой продленной вершиной, будет по­следовательным для всей хроматограммы и не слишком по­влияет на точность. Кроме того, некоторая площадь, теряемая при проведении касательных, будет компенсирована. Основание треугольника определяют пересечением касательных с базовой линией, а площадь - произведением 7г основания на высоту. Для определения площадей асимметричных пиков этот метод наилучший. Однако воспроизводимость при построении каса­тельных различными операторами различна и, следовательно; низкая.

5. Метод с применением дискового интегратора основан на электромеханическом приспособлении, присоединенном к само­писцу. Перо, прикрепленное к интегратору, перемещается по полосе внизу ленты со скоростью, пропорциональной переме­щению пера самописца.

Как и при ручном измерении, пик должен оставаться на шкале самописца, однако регулировки, компенсирующие сме­щение базовой линии и неполное разделение смежных пиков, снижает надежность и увеличивает продолжительность ана­лиза.

Метод более точен, чем ручные методы измерения, особен­но при асимметричных пиках, и дает преимущество в скорости. Кроме того, он обеспечивает постоянную количественную за­пись анализа.

6. Методы с применением электронных интеграторов, опре­деляющих площадь пиков и печатающих информацию об этой площади и о временах удерживания, могут включать коррек­цию смещения базовой линии и определять площадь лишь ча­стично разделенных пиков. Основные преимущества - точность, скорость, независимость действия от работы самописца. Инте­граторы имеют память, и их можно программировать для кон­кретного анализа, используя предварительно заложенную про­грамму. К достоинствам интегратора относят его способность использовать поправочные коэффициенты на отклик детектора при пересчете исходных данных о площадях пиков, компенси­руя различие чувствительности детектора к разным веществам. Подобные системы экономят время, улучшают аналитическую точность и полезны для рутинного аналитического анализа.

7. В жидкостной хроматографии широко применяют ЭВМ, измеряющие площади пиков. Они выводят на печать полное сообщение, включая название веществ, площади пиков, време­на удерживания, поправочные коэффициенты на отклик детек­тора и содержание (в масс.%) для различных компонентов образца.

ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ

Взамен ст. ГФ XI

Высокоэффективная жидкостная хроматография (жидкостная хроматография высокого давления) – это метод колоночной хроматографии, в котором подвижной фазой служит жидкость, движущаяся через хроматографическую колонку, заполненную неподвижной фазой (сорбентом). Колонки для высокоэффективной жидкостной хроматографии характеризуются высоким гидравлическим сопротивлением на входе.

В зависимости от механизма разделения веществ различают следующие варианты высокоэффективной жидкостной хроматографии: адсорбционную, распределительную, ионообменную, эксклюзионную, хиральную и др. в соответствии с характером основных проявляющихся межмолекулярных взаимодействий. В адсорбционной хроматографии разделение веществ происходит за счет их различной способности адсорбироваться и десорбироваться с поверхности сорбента с развитой поверхностью, например, силикагеля. В распределительной высокоэффективной жидкостной хроматографии разделение происходит за счет различия коэффициентов распределения разделяемых веществ между неподвижной (как правило, химически привитой к поверхности неподвижного носителя) и подвижной фазами.

В зависимости от типа подвижной и неподвижной фазы различают нормально-фазовую и обращенно-фазовую хроматографию. В нормально-фазовой высокоэффективной жидкостной хроматографии неподвижная фаза – полярная (чаще всего силикагель или силикагель с привитыми NH 2 — или CN-группами и др.), а подвижная фаза – неполярная (гексан, либо смеси гексана с более полярными органическими растворителями – хлороформом, спиртами и т.д.). Удерживание веществ растет с увеличением их полярности. В нормально-фазовой хроматографии элюирующая способность подвижной фазы увеличивается с ростом ее полярности.

В обращенно-фазовой хроматографии неподвижная фаза – неполярная (гидрофобные силикагели с привитыми группами С4, С8, С18 и др.); подвижная фаза – полярная (смеси воды и полярных растворителей: ацетонитрила, метанола, тетрагидрофурана и др.). Удерживание веществ растет с увеличением их гидрофобности (неполярности). Чем больше содержание органического растворителя, тем выше элюирующая способность подвижной фазы.

В ионообменной хроматографии молекулы веществ смеси, диссоциированные в растворе на катионы и анионы, разделяются при движении через сорбент (катионит или анионит) за счет различной силы взаимодействия определяемых ионов с ионными группами сорбента.

В эксклюзионной (ситовой, гель-проникающей, гель-фильтрационной) хроматографии молекулы веществ разделяются по размеру за счет их разной способности проникать в поры неподвижной фазы. При этом первыми из колонки выходят наиболее крупные молекулы, способные проникать в минимальное число пор неподвижной фазы, а последними выходят вещества с малыми размерами молекул.

В хиральной хроматографии происходит разделение оптически активных соединений на отдельные энантиомеры. Разделение может осуществляется на хиральных неподвижных фазах или на ахиральных неподвижных фазах с использованием хиральных подвижных фаз.

Существуют и другие варианты высокоэффективной жидкостной хроматографии.

часто разделение протекает не по одному, а по нескольким механизмам одновременно, в зависимости от типа подвижной и неподвижной фаз, а также природы определяемого соединения.

Область применения

Высокоэффективная жидкостная хроматография успешно применяется как для качественного, так и для количественного анализа лекарственных средств в испытаниях «Подлинность», «Посторонние примеси», «Растворение», «Однородность дозирования», «Количественное определение». Следует отметить, что хроматография позволяет совмещать в одной пробе несколько испытаний, в том числе «Подлинность» и «Количественное определение».

Оборудование

Для проведения анализа используют соответствующие приборы – жидкостные хроматографы.

В состав жидкостного хроматографа обычно входят следующие основные узлы:

— узел подготовки подвижной фазы, включая емкость с подвижной фазой (или емкости с отдельными растворителями, входящими в состав подвижной фазы) и систему дегазации подвижной фазы;

— насосная система;

— смеситель подвижной фазы (при необходимости);

— система ввода пробы (инжектор), может быть ручным или автоматическим (автосамплер);

— хроматографическая колонка (может быть установлена в термостате);

— детектор (один или несколько с разными способами детектирования);

— система управления хроматографом, сбора и обработки данных.

Помимо этого в состав хроматографа могут входить: система пробоподготовки и предколоночный реактор, система переключения колонок, постколоночный реактор и другое оборудование.

Насосная система

Насосы обеспечивают подачу подвижной фазы в колонку с заданной скоростью. Состав подвижной фазы и скорость потока могут быть постоянными или меняющимся во время анализа. В случае постоянного состава подвижной фазы процесс называют изократическим, а во втором – градиентным. Современная насосная система жидкостного хроматографа состоит из одного или нескольких насосов, управляемых компьютером. Это позволяет менять состав подвижной фазы по определенной программе при градиентном элюировании. Насосы для аналитической высокоэффективной жидкостной хроматографии позволяют поддерживать скорость подачи подвижной фазы в колонку в интервале от 0,1 до 10 мл/мин при давлении на входе в колонку до 40 МПа. Пульсации давления минимизируются специальными демпферными системами, входящими в конструкцию насосов. Рабочие детали насосов изготавливаются из коррозионностойких материалов, что позволяет использовать в составе подвижной фазы агрессивные компоненты.

Смесители

В смесителе происходит образование единой подвижной фазы из отдельных растворителей, подаваемых насосами, если необходимая смесь не была приготовлена заранее. Смешение компонентов подвижной фазы в смесителе может происходить как при низком давлении (до насосов), так и при высоком давлении (после насосов). Смеситель можно использовать для подготовки подвижной фазы и при изократическом элюировании.

Объем смесителя может влиять на время удерживания компонентов при градиентном элюировании.

Инжекторы

Инжекторы могут быть универсальными, с возможностью изменения объема вводимой пробы, или дискретными для ввода пробы только определенного объема. Оба типа инжекторов могут быть автоматическими («автоинжекторы» или «автосэмплеры»). Инжектор для ввода пробы (раствора) расположен непосредственно перед хроматографической колонкой. Конструкция инжектора позволяет изменять направление потока подвижной фазы и осуществлять предварительное введение пробы в петлю-дозатор определенного объема (обычно от 10 до 100 мкл) или в специальное дозирующее устройство переменного объема. Объем петли указан на ее маркировке. Конструкция дискретного инжектора, как правило, позволяет осуществлять замену петли. Современные автоматические инжекторы могут обладать рядом дополнительных функций, например, выполнять функцию станции пробоподготовки: осуществлять смешение и разбавление образцов, проводить реакцию предколоночной дериватизации.

Хроматографическая колонка

Хроматографические колонки обычно представляют собой трубки из нержавеющей стали, стекла или пластика, заполненные сорбентом и закрытые с обеих сторон фильтрами с диаметром пор 2–5 мкм. Длина аналитической колонки может находиться в диапазоне от 5 до 60 см и более, внутренний диаметр – от 2 до 10 мм. Колонки с внутренним диаметром менее 2 мм используются в микроколоночной хроматографии. Существуют также капиллярные колонки с внутренним диаметром около 0,3–0,7 мм. Колонки для препаративной хроматографии могут иметь внутренний диаметр 50 мм и более.

Перед аналитической колонкой могут устанавливаться короткие колонки (предколонки), выполняющие различные вспомогательные функции, основная из которых — защита аналитической колонки. Обычно анализ проводят при комнатной температуре, однако для увеличения эффективности разделения и сокращения продолжительности анализа может быть использовано термостатирование колонок при температурах до 80 — 100 °С. Возможность использования повышенной температуры при разделении ограничивается стабильностью неподвижной фазы, поскольку при повышенных температурах возможна ее деструкция.

Неподвижная фаза (сорбент)

В качестве сорбентов обычно применяются:

  • силикагель, оксид алюминия, используются в нормально-фазовой хроматографии. Механизм удерживания в данном случае – обычно адсорбция;
  • силикагель, смолы или полимеры с привитыми кислотными или основными группами. Область применения – ионообменная и ионная хроматография;
  • силикагель или полимеры с заданным распределением размеров пор (эксклюзионная хроматография);
  • химически модифицированные сорбенты (сорбенты с привитыми фазами), приготовленные чаще всего на основе силикагеля. Механизм удерживания ‑ адсорбция или распределение между подвижной и неподвижной фазами. Область применения зависит от типа привитых функциональных групп. Некоторые типы сорбентов могут использоваться как в обращенной, так и в нормально фазовой хроматографии;
  • химически модифицированные хиральные сорбенты, например, производные целлюлозы и амилозы, протеины и пептиды, циклодекстрины, хитозаны, используемые для разделения энантиомеров (хиральная хроматография).

Сорбенты с привитыми фазами могут иметь различную степень химической модификации. В качестве привитых фаз наиболее часто применяются:

– октадецильные группы (сорбент октадецилсилан (ODS) или С 18);

– октильные группы (сорбент октилсилан или С 8);

– фенильные группы (сорбент фенилсилан);

– цианопропильные группы (сорбент CN);

– аминопропильные группы (сорбент NH 2);

– диольные группы (сорбент диол).

Наиболее часто анализ выполняют на неполярных привитых фазах в обращенно-фазовом режиме с применением сорбента С 18 .

Сорбенты с привитыми фазами, полученные на основе силикагеля, химически устойчивы при значениях pH от 2,0 до 7,0, если другое специально не оговаривается производителем. Частицы сорбента могут иметь сферическую или неправильную форму и разнообразную пористость. Размер частиц сорбента в аналитической высокоэффективной жидкостной хроматографии обычно составляет 3–10 мкм, в препаративной высокоэффективной жидкостной хроматографии – 50 мкм и более. Существуют также монолитные колонки, в которых сорбент представляет собой монолит со сквозными порами, заполняющий весь объем колонки.

Высокая эффективность разделения обеспечивается высокой площадью поверхности частиц сорбента (которая является следствием их микроскопических размеров и наличия пор), а также равномерностью состава сорбента и плотной и равномерной его упаковкой.

Детекторы

В высокоэффективной жидкостной хроматографии используются различные способы детектирования. В общем случае подвижная фаза с растворенными в ней компонентами после хроматографической колонки попадает в ячейку детектора, где непрерывно измеряется то или иное ее свойство (поглощение в ультрафиолетовой или видимой области спектра, флуоресценция, показатель преломления, электропроводность и др.). Полученная при этом хроматограмма представляет собой график зависимости некоторого физического или физико-химического параметра подвижной фазы от времени.

Наиболее распространенными детекторами в высокоэффективной жидкостной хроматографии являются спектрофотометрические. В процессе элюирования веществ в специально сконструированной микрокювете измеряется оптическая плотность элюата при заранее выбранной длине волны. Широкая область линейности детектора позволяет анализировать как примеси, так и основные компоненты смеси на одной хроматограмме. Спектрофотометрический детектор позволяет проводить детектирование при любой длине волны в его рабочем диапазоне (как правило, 190-600 нм). Применяются также мультиволновые детекторы, позволяющие проводить детектирование при нескольких длинах волн одновременно и детекторы на диодной матрице, позволяющие регистрировать оптическую плотность одновременно во всем рабочем диапазоне длин волн (как правило, 190-950 нм). Это позволяет регистрировать спектры поглощения проходящих через ячейку детектора компонентов.

Флуориметрический детектор применяется для определения флуоресцирующих соединений или не флуоресцирующих соединений в виде их флуоресцирующих производных. Принцип действия флуориметрического детектора основан на измерении флуоресцентного излучения поглощенного света. Поглощение обычно проводят в ультрафиолетовой области спектра, длины волн флуоресцентного излучения превышают длины волн поглощенного света. Флуориметрические детекторы обладают очень высокой чувствительностью и селективностью. Чувствительность флуоресцентных детекторов примерно в 1000 раз выше чувствительности спектрофотометрических. Современные флуоресцентные детекторы позволяют не только получать хроматограммы, но и регистрировать спектры возбуждения и флуоресценции анализируемых соединений.

Для определения соединений, слабо поглощающих в ультрафиолетовой и видимой областях спектра (например углеводов), используют рефрактометрические детекторы (рефрактометры). Недостатки этих детекторов – их низкая (по сравнению со спектрофотометрическими детекторами) чувствительность и значительная температурная зависимость интенсивности сигнала (детектор необходимо термостатировать), а также невозможность их использование в режиме градиентного элюирования.

Принцип работы испарительных детекторов лазерного светового рассеяния основан на различии давлений паров хроматографических растворителей, входящих в состав подвижной фазы, и анализируемых веществ. Подвижная фаза на выходе из колонки вводится в распылитель, смешивается с азотом или СО 2 и в виде мелкодисперсного аэрозоля попадает в обогреваемую испарительную трубку с температурой 30 – 160 °С, в которой подвижная фаза испаряется. Аэрозоль из нелетучих частиц анализируемых веществ рассеивает световой поток в камере рассеивания. По степени рассеивания светового потока можно судить о количестве определяемого соединения. Детектор более чувствителен, чем рефрактометрический, его сигнал не зависит от оптических свойств пробы, от типа функциональных групп в определяемых веществах, от состава подвижной фазы и может быть использован в режиме градиентного элюирования.

Электрохимические детекторы (кондуктометрические, амперометрические, кулонометрические и др.). Амперометрический детектор применяют для определения электроактивных соединений, которые могут быть окислены или восстановлены на поверхности твердого электрода. Аналитическим сигналом является величина тока окисления или восстановления. В ячейке детектора имеется по крайне мере два электрода – рабочий и электрод сравнения (хлоридсеребрянный или стальной). К электродам прикладывается рабочий потенциал, величина которого зависит от природы определяемых соединений. Измерения могут проводиться как при постоянном потенциале, так и в импульсном режиме, когда задается профиль изменения потенциала рабочего электрода в течении одного цикла регистрации сигнала. В амперометрическом детекторе используют рабочие электроды из углеродных материалов (наиболее часто стеклоуглеродный или графитовый), и металлические: платиновый, золотой, медный, никелевый.

Кондуктометрический детектор используют для детектирования анионов и катионов в ионной хроматографии. Принцип его работы основан на измерении электропроводности подвижной фазы в процессе элюирования вещества.

Исключительно информативным является масс-спектрометрический детектор, который обладает высокой чувствительностью и селективностью. Последние модели масс-спектрометров для жидкостной хроматографии работают в диапазоне масс m/z от 20 до 4000 а.е.м.

В высокоэффективной жидкостной хроматографии используются также, Фурье-ИК-детекторы, радиоактивности и некоторые другие.

Система сбора и обработки данных

Современная система обработки данных представляет собой сопряженный с хроматографом персональный компьютер с установленным программным обеспечением, позволяющим регистрировать и обрабатывать хроматограмму, а также управлять работой хроматографа и следить за основными параметрами хроматографической системы.

Подвижная фаза

Подвижная фаза в высокоэффективной жидкостной хроматографии выполняет двоякую функцию: обеспечивает перенос десорбированных молекул по колонке и регулирует константы равновесия, а, следовательно, и удерживание в результате взаимодействия с неподвижной фазой (сорбируясь на поверхности) и с молекулами разделяемых веществ. Таким образом, изменяя состав подвижной фазы в высокоэффективной жидкостной хроматографии можно влиять на времена удерживания соединений, селективность и эффективность их разделения.

Подвижная фаза может состоять из одного растворителя, часто из двух, при необходимости – из трех и более. Состав подвижной фазы указывают как объемное соотношение входящих в нее растворителей. В отдельных случаях может указываться массовое соотношение, что должно быть специально оговорено. В качестве компонентов подвижной фазы могут быть использованы буферные растворы с определенным значением рН, различные соли, кислоты и основания и другие модификаторы.

В нормально-фазовой хроматографии обычно применяются жидкие углеводороды (гексан, циклогексан, гептан) и другие относительно неполярные растворители с небольшими добавками полярных органических соединений, которые регулируют элюирующую силу подвижной фазы.

В обращено-фазовой хроматографии в качестве подвижной фазы используется вода или водно-органические смеси. Органическими добавками обычно служат полярные органические растворители (ацетонитрил и метанол). Для оптимизации разделения могут использоваться водные растворы с определенным значением рН, в частности буферные раствор, а также различные добавки в подвижную фазу: фосфорная и уксусная кислоты при разделении соединений кислотного характера; аммиак и алифатические амины при разделении соединений основного характера, и другие модификаторы.

На хроматографический анализ большое влияние оказывает степень чистоты подвижной фазы, поэтому предпочтительно применять растворители, выпущенные специально для жидкостной хроматографии (включая воду).

При использовании УФ-спектрофотометрического детектора подвижная фаза не должна иметь выраженного поглощения при выбранной для детектирования длине волны. Предел прозрачности или оптическая плотность при определенной длине волны растворителя конкретного изготовителя часто указывается на упаковке.

Подвижная фаза и анализируемые растворы не должны содержать нерастворившиеся частиц и пузырьки газа. Воду, полученную в лабораторных условиях, водные растворы, предварительно смешанные с водой органические растворители, а также анализируемые растворы необходимо подвергать тонкой фильтрации и дегазации. Для этих целей обычно применяют фильтрование под вакуумом через инертный по отношению к данному растворителю или раствору мембранный фильтр с размером пор 0,45 мкм

Перечень условий хроматографирования, подлежащих указанию

В фармакопейной статье должны быть приведены: полное коммерческое наименование колонки с указанием производителя и каталожного номера, размеры колонки (длина и внутренний диаметр), типа сорбента с указанием размера частиц, размера пор, температура колонки (если необходимо термостатирование), объем вводимой пробы (объем петли), состав подвижной фазы и способ ее приготовления, скорость подачи подвижной фазы, тип детектора и условия детектирования (при необходимости параметры используемой ячейки детектора), описание градиентного режима (если используется), включающее в себя стадию переуравновешивания к исходным условиям, время хроматографирования, подробное описание методики и формулы расчета, описания приготовления стандартных и испытуемых растворов.

В случае использования предколоночной дериватизации в автосамплере приводится информацию о программе работы автосамплера. В случае использования постколоночной дериватизации указывается скорость подачи дериватизирующего реагента, объем петли смешения и ее температура.

Модифицированные виды высокоэффективной жидкостной хроматографии

Ион-парная хроматография

Одной из разновидностей обращено-фазовой высокоэффективной жидкостной хроматографии является ион парная хроматография – позволяющая определять ионизированные соединения. Для этого в состав традиционной обращено-фазовой высокоэффективной жидкостной хроматографии подвижной фазы добавляют гидрофобные органические соединения с ионогенными группами (ион парные реагенты). Для разделения оснований обычно используют алкилсульфаты натрия, для разделения кислот применяют соли тетраалкиламмония (тетрабутиламмония фосфат, цетилтриметиламмония бромид и др.). В ион-парном режиме селективность разделения неионогенных компонентов будет лимитироваться обращено-фазовым механизмом удерживания, а удерживание оснований и кислот заметно возрастает, при этом улучшается форма хроматографических пиков.

Удерживание в ион-парном режиме обусловлено достаточно сложными равновесными процессами, конкурирующими между собой. С одной стороны, за счет гидрофобных взаимодействий и эффекта вытеснения полярной среды подвижной фазы возможна сорбция гидрофобный ионов на поверхности алкилсиликагеля таким образом, что заряженные группы обращены к подвижной фазе. В этом случае поверхность приобретает ионообменные свойства, и удерживание подчиняется закономерностям ионообменной хроматографии. С другой стороны, возможно образование ионной пары непосредственно в объеме элюента, с последующей ее сорбцией на сорбенте по обращено-фазовому механизму.

Хроматография гидрофильного взаимодействия ( HILIC хроматография)

Хроматография гидрофильного взаимодействия используется для разделения полярных соединений, слабо удерживаемых в обращенно-фазовой высокоэффективной жидкостной хроматографии. В качестве подвижной фазы в этом варианте хроматографии используются водно-ацетонитрильные смеси с добавлением солей, кислот или оснований. Неподвижными фазами, как правило, являются силикагели, модифицированные полярными группами (амино-, диольные, цианопропильные группы и т.д.). Более полярные соединения удерживаются сильнее. Элюирующая способность подвижной фазы возрастает с увеличением полярности.

Ионообменная и ионная высокоэффективная жидкостная хроматография

Ионообменная хроматография используется для анализа как органических (гетероциклические основания, аминокислоты, белки и др.), так и неорганических (различные катионы и анионы) соединений. Разделение компонентов анализируемой смеси в ионообменной хроматографии основано на обратимом взаимодействии ионов анализируемых веществ с ионообменными группами сорбента. Эти сорбенты представляют собой, в основном, либо полимерные ионообменные смолы (обычно сополимеры стирола и дивинилбензола с привитыми ионообменными группами), либо силикагели с привитыми ионообменными группами. Сорбенты с группами: -NH 3 + , -R 3 N + , -R 2 HN + , -RH 2 N + и др. используются для разделения анионов (аниониты), а сорбенты с группами: -SО 3 – , -RSО 3 – , –СООН, -PО 3 – и др. для разделения катионов (катиониты).

В качестве подвижной фазы в ионообменной хроматографии применяют водные растворы кислот, оснований и солей. Обычно используют буферные растворы, позволяющие поддерживать определенные значения рН. Возможно также использование небольших добавок смешивающихся с водой органических растворителей – ацетонитрила, метанола, этанола, тетрагидрофурана.

Ионная хроматография – вариант ионообменной хроматографии, в котором для детектирования определяемых соединений (ионов) используется кондуктометрический детектор. Для высокочувствительного определения изменений электропроводности проходящей через детектор подвижной фазы фоновая электропроводность подвижной фазы должна быть низкой.

Существуют два основных варианта ионной хроматографии.

Первый из них — двухколоночная ионная хроматография, основан на подавлении электропроводности электролита подвижной фазы с помощью второй ионообменной колонки или специальной мембранной системы подавления, находящейся между аналитической колонкой и детектором. При прохождении через систему электропроводность подвижной фазы снижается.

Второй вариант ионной хроматографии – одноколоночная ионная хроматография. В этом варианте используется подвижная фаза с очень низкой электропроводностью. В качестве электролитов широко применяют слабые органические кислоты: бензойную, салициловую или изофталевую.

Эксклюзионная высокоэффективная жидкостная хроматография

Эксклюзионная хроматография (гель-хроматография) – особый вариант высокоэффективной жидкостной хроматографии, основанный на разделении молекул по их размерам. Распределение молекул между неподвижной и подвижной фазами основано на размерах молекул и частично на их форме и полярности.

Возможны два предельных типа взаимодействия молекул с пористой неподвижной фазой. Молекулы с размерами, превышающими максимальный диаметр пор, вообще не удерживаются и элюируются первыми, перемещаясь одновременно с подвижной фазой. Молекулы с размерами, меньшими чем минимальный диаметр пор сорбента, свободно проникают в поры и элюируются из колонки последними. Остальные молекулы, имеющие промежуточные размеры, удерживаются в порах частично и в ходе элюирования разделяются на фракции в соответствии со своими размерами и, частично, формой проникают в поры сорбента в зависимости от размера и частично в зависимости от своей формы. В результате вещества элюируются с различными временами удерживания.

Ионоэксклюзионная хроматография

В основе механима ионоэксклюзионной хроматографии лежит эффект, в результате которого соединения в ионизированной форме не удерживаются на сорбенте-ионообменнике, тогда как соединения в молекулярной форме распределяются между неподвижной и водной фазами внутри пор ионообменного сорбента и подвижной фазой мигрирующее в пространстве между частицами сорбента. Разделение основано на электростатическом отталкивании, полярных и гидрофобных взаимодействиях между растворенными соединениями и сорбентом.

Анионогенные группы на поверхности сорбента действуют как полупроницаемая «мембрана» между стационарной и подвижной фазами. Отрицательно заряженные компоненты не достигают стационарной подвижной фазы, так как отталкиваются одноименно заряженными функциональными группами и элюируются в «мертвом» (свободном) объеме колонки. Компоненты в молекулярном виде не «отторгаются» катионообменным сорбентом и распределяются между стационарной и подвижной фазами. Различие в степени удерживания неионных компонентов смеси продиктовано совокупностью полярных взаимодействий неионных компонентов с функциональными группами катионообменного сорбента и гидрофобных взаимодействий неионных компонентов с неполярной матрицей сорбента.

Хиральная хроматография

Целью хиральной хроматографии является разделение оптических изомеров. Разделение осуществляется на хиральных неподвижных фазах или на обычных ахиральных неподвижных фазах с использованием хиральных подвижных фаз. В качестве хиральных неподвижных фаз используются сорбенты с поверхностью модифицированной, группами или веществами, имеющими хиральные центры (хитозаны, циклодекстрины, полисахариды, белки и др. (хиральные селекторы). В качестве подвижных фаз в этом случае могут использоваться те же фазы, что и в нормально-фазовой или обращенно-фазовой хроматографии. При использовании ахиральных неподвижных фаз для обеспечения разделения энантиомеров в подвижные фазы добавлятся хиральные модификаторы: хиральные комплексы металлов, нейтральные хиральные лиганды, хиральные ион-парные реагенты и др.

Ультраэффективная жидкостная хроматография

Ультраэффективная жидкостная хроматография представляет собой вариант жидкостной хроматографии, отличающийся большей эффективностью по сравнению с классической высокоэффективной жидкостной хроматографией.

Особенностью ультраэффективной жидкостной хроматографии является использование сорбентов с размером частиц от 1,5 до 2 мкм. Размеры хроматографических колонок обычно составляют от 50 до 150 мм в длину и от 1 до 4 мм в диаметре. Объем вводимой пробы может составлять от 1 до 50 мкл. Использование таких хроматографических колонок позволяет значительно уменьшить время анализа и повысить эффективность хроматографического разделения. Однако, при этом давление на колонке может достигать 80 – 120 МПа, требуемая частота сбора данных детектора может возрастать до 40-100 герц, внеколоночный объем хроматографической системы должен быть минимизирован. Хроматографическое оборудование и колонки, используемые в ультраэффективной жидкостной хроматографии специально адаптированы для выполнения требований этого вида хроматографии.

Оборудование, предназначенное для ультраэффективной жидкостной хроматографии, может использоваться и в классическом варианте высокоэффективной жидкостной хроматографии.

Содержащий смесь образца через колонку, заполненную твердым адсорбирующим материалом . Каждый компонент в образце взаимодействует несколько иначе, с адсорбирующим материалом, в результате чего различные скорости потока для различных компонентов и приводит к разделению компонентов, поскольку они вытекают из колонны.

ВЭЖЙ были использовано для изготовления (например , в процессе производства фармацевтических и биологических продукты), правовой (например , обнаружение наркотиков повышения производительности в моче), исследование (например , разделение компонентов комплексного биологического образца, или аналогичных синтетических химических веществ друг от друга), и медицинской (например , обнаруживать уровни витамина D в сыворотке крови) цели.

Использование более полярных растворителей, в подвижной фазе, будет уменьшать время удерживания аналитов, в то время как более гидрофобные растворители, как правило, вызывают более медленные элюирования (увеличение времени удерживания). Очень полярные растворители, такие как следы воды в подвижной фазе, как правило, адсорбируются на твердую поверхность неподвижной фазы, образующей неподвижный слой связанного (воду) , который считается играть активную роль в сохранении. Такое поведение является несколько свойственный нормальной фазовой хроматографии, поскольку она регулируется почти исключительно с помощью механизма адсорбционного (т.е. , аналитов взаимодействуют с твердой поверхностью, а не с сольватированного слоем лиганда, прикрепленной к поверхности сорбента; смотри также обращенно-фазовой ВЭЖХ ниже). Адсорбционная хроматография до сих пор широко используются для структурных изомеров разделений в обеих столбцах и тонкослойных форматах хроматография на активированном (высушенный) кремнезем или глинозем опоре.

Partition- и НП-ВЭЖХ выпал из пользу в 1970 - х с развитием обращенно-фазовой высокоэффективной жидкостной хроматографии из - за плохой воспроизводимости времени удерживания в связи с наличием воды или протонном слоя органического растворителя на поверхности диоксида кремния или оксида алюминия хроматографических сред, Этот слой изменяет с любыми изменениями в составе подвижной фазы (например , уровень влажности) , что вызывает дрейфующих времена удерживания.

В последнее время, распределительная хроматография стала популярной снова с развитием Hilic скрепленных фаз, которые демонстрируют улучшенные воспроизводимости, и из - за лучшее понимание диапазона полезности техники.

Объем хроматографии

Вытеснительной хроматографии

Размер-эксклюзионной хроматографии (SEC), также известный как гель - проникающей хроматографии или гель - фильтрационной хроматографии , отделяет частицы на основе молекулярного размера (на самом деле с помощью частицы радиуса Стокса). Это, как правило, разрешение хроматография низкая и, таким образом, он часто зарезервирован для окончательной полировки, «» стадии очистки. Это также полезно для определения третичной структуры и четвертичной структуры очищенных белков. SEC используется в основном для анализа больших молекул, таких как белки или полимеры. SEC работает за счет захвата этих меньших молекул в порах частицы. Более крупные молекулы просто проходят мимо пор, как они слишком велики, чтобы войти в поры. Поэтому крупные молекулы, протекать через колонку быстрее, чем более мелкие молекулы, то есть, чем меньше молекула, тем дольше время удерживания.

Этот метод широко используется для определения молекулярной массы полисахаридов. SEC является официальным метод (предложенный Европейской фармакопее) для молекулярного веса по сравнению различных коммерчески доступных низкомолекулярных гепаринов .

Ионообменная хроматография

В ионообменной хроматографии (IC), удержание на основе притяжения между ионами растворенным веществом и заряженными объектами, связанными с неподвижной фазой. Ионы растворенных веществ одного и того же заряда как заряженные участки на колонке исключается из связывания, в то время как растворенные ионы противоположного заряда заряженных участков колонны удерживаются на колонке. Ионы растворенных веществ, которые сохраняются на колонке, можно элюировать с колонки путем изменения условий растворителя (например , увеличение ионной эффект системы растворителей путем увеличения концентрации соли в растворе, повышение температуры колонки, изменения рН растворителя, так далее.).

Типы ионообменников включают в себя полистирольные смолы, целлюлозы и декстрана ионообменников (гели), а также с контролируемым пористое стекло или пористый диоксид кремни. Полистирольные смолы позволяют кросс связь, которая увеличивает стабильность цепи. Выше поперечное сцепление уменьшает сворачивание, что увеличивает время установления равновесия и в конечном счете повышает селективность. Целлюлоза и декстраны иониты обладают большим размером пор и плотности низкого заряда делают их пригодными для разделения белков.

В общем, ионообменники пользу связывания ионов большего заряда и меньшего радиуса.

Узкий расточки колонны (1-2 мм) используются для применений, когда больше чувствительности желательно либо с помощью специальных UV-VIS детекторы, флуоресценции обнаружения или с помощью других методов обнаружения, как для жидкостной хроматографии-масс - спектрометрии

Капиллярных колонок (до 0,3 мм) используются почти исключительно с альтернативным средства обнаружения, таких как масс - спектрометрии . Они, как правило, изготовлены из плавленого кварца капилляров, а не трубки из нержавеющей стали, что большие колонны нанимать.

Размер частицы

Большинство традиционных ВЭЖХ проводят с неподвижной фазой, прикрепленной к внешней стороне небольших сферических кварцевых частиц (очень маленьких шариков). Эти частицы бывают различных размеров с 5 мкм бусин являются наиболее распространенными. Более мелкие частицы обычно обеспечивают большую площадь поверхности и более разделения, но давление, необходимое для достижения оптимального линейного увеличения скорости по обратной величине диаметра частиц в квадрате.

Это означает, что изменение к частицам, которые в два раза большим, сохраняя размер столбца то же самое, удвоит производительность, но увеличивают требуемое давление, в четыре раза. Более крупные частицы используют в препаративной ВЭЖХ (колонка диаметром 5 см до> 30 см) , и для не-ВЭЖХ приложений, таких как твердофазной экстракции .

размер пор

Многие стационарные фазы являются пористыми, чтобы обеспечить большую площадь поверхности. Малые поры обеспечивают большую площадь поверхности, в то время как больший размер пор имеет лучшую кинетику, особенно для больших аналитов. Например, белок, который лишь немного меньше, чем поры может ввести поры, но не легко оставить один раз внутри.

давление насоса



© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний