Коэффициенты полинома (Polynomial Coefficients). Массивы Интерполяция функции многочленами

Главная / И. С. Тургенев

Полиномиальные коэффициенты

Мультиномиальные коэффициенты - коэффициенты в разложении по мономам :

Значение мультиномиального коэффициента определено для всех целых неотрицательных чисел n и таких, что :

.

Биномиальный коэффициент для неотрицательных n ,k является частным случаем мультиномиального коэффициента (для m = 2 ), а именно

.

В комбинаторном смысле мультиномиальный коэффициент равен числу упорядоченных разбиений n -элементного множества на m подмножеств мощностей .

Свойства

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Полиномиальные коэффициенты" в других словарях:

    - (от англ. spline, от spline гибкое лекало, полоса металла, используемая для черчения кривых линий) функция, область определения которой разбита на конечное число отрезков, на каждом из которых сплайн совпадает с некоторым… … Википедия

    Мультиномиальные (полиномиальные) коэффициенты коэффициенты в разложении по мономам: Явная формула Значение мультиномиального коэффициента … Википедия

    Запрос «Полином» перенаправляется сюда; см. также другие значения. Многочлен (или полином) от n переменных это конечная формальная сумма вида, где есть набор из целых неотрицательных чисел (называется мультииндекс), число… … Википедия

    В математике, многочлены или полиномы от одной переменной функции вида где ci фиксированные коэффициенты, а x переменная. Многочлены составляют один из важнейших классов элементарных функций. Изучение полиномиальных уравнений и их решений… … Википедия

    В математике, многочлены или полиномы от одной переменной функции вида где ci фиксированные коэффициенты, а x переменная. Многочлены составляют один из важнейших классов элементарных функций. Изучение полиномиальных уравнений и их решений… … Википедия

    В математике, многочлены или полиномы от одной переменной функции вида где ci фиксированные коэффициенты, а x переменная. Многочлены составляют один из важнейших классов элементарных функций. Изучение полиномиальных уравнений и их решений… … Википедия

    В математике, многочлены или полиномы от одной переменной функции вида где ci фиксированные коэффициенты, а x переменная. Многочлены составляют один из важнейших классов элементарных функций. Изучение полиномиальных уравнений и их решений… … Википедия

    В математике, многочлены или полиномы от одной переменной функции вида где ci фиксированные коэффициенты, а x переменная. Многочлены составляют один из важнейших классов элементарных функций. Изучение полиномиальных уравнений и их решений… … Википедия

    Прямоугольная таблица состоящая из тстрок и n столбцов, элементы к рой принадлежат нек рому множеству К. Таблица (1) наз. также матрицей над К, или мат рицей размера над K. Пусть совокупность всех матриц над К. Если т=п, то (1) наз. квадратной… … Математическая энциклопедия

Если для полинома n-й степени найден корень , то можно понизить степень полинома, построив полином степени , у которого все корни совпадают с корнями полинома за исключением того, что у него нет корня .

Запишем соотношение, связывающее полиномы:

Учитывая соотношение 6.3 о равенстве двух полиномов одной степени, можно выписать соотношение, связывающее коэффициенты этих полиномов. Эти соотношения нетрудно разрешить относительно неизвестных коэффициентов . В результате получим:

(6.4)

Заметьте, неизвестных всего , а уравнений можно построить - . Но последнее уравнение является следствием предыдущих и используется для контроля вычислений.

К новому полиному можно применить тот же процесс - найти его корень и понизить затем степень полинома. Реально понижение степени не намного упрощает задачу отыскания корней, так что чаще всего проще искать корни исходного полинома, изменяя начальные приближения в итерационном процессе или отыскивая различные интервалы, на которых полином меняет свой знак.

Нахождение коэффициентов полинома по его корням

До сих пор рассматривалась задача отыскания корней полинома с заданными коэффициентами. Иногда приходится решать обратную задачу - найти коэффициенты полинома, если известны его корни - . Полиномов с одинаковыми корнями существует бесчисленное множество. Однако среди них существует единственный полином с коэффициентом , равным единице. Этот полином называется приведенным, его-то и будем строить. Все остальные полиномы получаются из приведенного полинома умножением всех коэффициентов на произвольное число , от которого требуется лишь, чтобы оно не было равно нулю. Поэтому для однозначного решения задачи требуется задать n корней и коэффициент при старшем члене полинома. Тогда можно записать следующее равенство:

Для нахождения коэффициентов полинома воспользуемся, как обычно, соотношением 6.3. Но применить его напрямую сложно. Поэтому воспользуемся процессом, обратным к процессу понижения степени. Построим вначале - полином первой степени, у которого является единственным корнем. Затем повысим степень и построим полином второй степени - , у которого появляется еще один корень - . Продолжая этот процесс, дойдем до искомого полинома . При вычислении коэффициентов нового полинома будем использовать коэффициенты уже посчитанного полинома на единицу меньшей степени. Получающиеся в результате соотношения близки к тем, что приведены для случая понижения степени полинома.

Коэффициенты полинома первой степени выписываются явно:

Коэффициенты полинома k-й степени вычисляются через коэффициенты полинома степени k-1:

Переходя к коэффициентам, получим следующие уравнения:

(6.5)

В соотношении 6.5 через обозначены коэффициенты полинома степени . На самом деле схема безопасна и позволяет считать коэффициенты на том же месте, не требуя дополнительной памяти. Приведу алгоритм вычисления коэффициентов полинома по его корням в виде схемы, приближенной к языку C#.

Вычислить:

//Вычисляем коэффициенты полинома первой степени a= 1; a = -x; //цикл по числу полиномов for(int k=2;k<=n; k++) { //Вычисляем коэффициенты полинома степени k //Вначале старший коэффициент a[k]= a; //затем остальные коэффициенты, кроме последнего for(int i=k-1;i>0; i--) { a[i] = a- a[i]*x; } //теперь младший коэффициент a= -a*x; } //Последний этап - умножение коэффициентов на an for(int i=0; i<=n; i++) a[i] = a[i]*an;

Полином Лагранжа

Пусть на плоскости заданы точка: . Полиномом Лагранжа называется полином n-й степени, проходящий через все точки . Если точки не образуют возвратов, то такой полином существует и является единственным. Под возвратом понимается ситуация, когда существуют две точки и такие, что .

Как построить такой полином? Лагранж предложил следующий алгоритм. Полином строится как сумма полиномов n-й степени:

Каждый из полиномов , входящих в сумму, строится следующим образом. Корнями полинома являются все точки за исключением точки . Единственность обеспечивается за счет того, что коэффициент при старшем члене an подбирается так, чтобы полином проходил через точку . В записи Лагранжа полином выглядит следующим образом.

Подходящие кривые и поверхности к данным с помощью регрессии, интерполяции и сглаживания

Curve Fitting Toolbox™ предоставляет приложение и функции для подбора кривой кривым и поверхностям к данным. Тулбокс позволяет вам выполнить исследовательский анализ данных, предварительно обработать и постобработать данные, сравнить модели кандидата и удалить выбросы. Можно провести регрессионный анализ, пользующийся библиотекой линейных и нелинейных предоставленных моделей, или задать собственные уравнения. Библиотека обеспечивает оптимизированные параметры решателя и стартовые условия улучшить качество ваших подгонок. Тулбокс также поддерживает непараметрические техники моделирования, такие как сплайны, интерполяция и сглаживание.

После создания подгонки можно применить множество методов последующей обработки для графического вывода, интерполяции и экстраполяции; оценка доверительных интервалов; и вычисляя интегралы и производные.

Начало работы

Изучите основы Curve Fitting Toolbox

Линейная и нелинейная регрессия

Подходящие кривые или поверхности с линейными и нелинейными моделями библиотеки и пользовательскими моделями

Интерполяция

Подходящие кривые интерполяции или поверхности, оцените значения между известными точками данных

Сглаживание

Подходящее сглаживание использования шлицует и локализованная регрессия, сглаженные данные со скользящим средним значением и другими фильтрами

Подходящая постобработка

Графический вывод, выбросы, невязки, доверительные интервалы, данные о валидации, интегралы и производные, генерирует код MATLAB ®

Сплайны

Создайте сплайны с или без данных; ppform, B-форма, продукт тензора, рациональный, и сплайны тонкой пластины stform

Если выражение является полиномом относительно некоторой переменной х, заданным не в обычном виде а 0 +а 1 х+а 2 х 2 +..., а как произведение других, более простых полиномов, то коэффициенты а 0 +а 1 +а 2 легко определяются символьным процессором Mathcad. Коэффициенты сами могут быть функциями (подчас, довольно сложными) других переменных.

Рис. 5.10. Вычисление коэффициентов полинома

Чтобы вычислить полиномиальные коэффициенты в выражении при помощи меню (рис. 5 10):

  • Введите выражение.
  • Выделите в нем имя переменной или выражение, для которого требуется рассчитать полиномиальные коэффициенты (в примере на рис. 5.10 это переменная z).
  • Выполните команду Symbolic / Polynomial Coefficients (Символика / Коэффициенты полинома).

В результате под выражением появится вектор, состоящий из полиномиальных коэффициентов. Первым элементом вектора является свободный член а 0 , вторым - а 1 , и т. д.

Конкретная задача, требующая вычисления полиномиальных коэффициентов, приведена в разделе, посвященном численному отделению корней полинома (см. разд. "Корни полинома" гл. 8).

Чтобы вычислить полиномиальные коэффициенты с помощью оператора символьного вывода:

  • Введите выражение.
  • Нажмите кнопку Coeffs на панели Symbolic (Символика).
  • Введите в местозаполнитель после вставленного ключевого слова coeffs аргумент полинома.
  • Введите оператор символьного вывода ->
  • Нажмите клавишу .

Примеры вычисления коэффициентов полинома приведены в листингах 5.7 и 5.8. Листинг 5.7 показывает расчет коэффициентов для разных аргументов. Последний листинг демонстрирует возможность определения коэффи-щентов не только для отдельных переменных, но для более сложных выражений, входящих в рассматриваемую формулу в качестве составной части.

Листинг 5.7. Вычисление коэффициентов полинома

Листинг 5.8. Вычисление полиноминальных коэффициентов для простой переменной и выражения

В отмечается, что в случае, когда характеристика нелинейного элемента аппроксимируется выражением, содержащим более трех точек, значение функции целесообразно выбирать при равноотстоящих значениях аргумента. Кроме того, если число заданных точек превышает число подлежащих определению коэффициентов аппроксимации, рекомендуется использовать «метод наименьших квадратов», при котором среднеквадратичная ошибка минимальна, т.е. при этом способе сумма квадратов отклонений полинома данной степени от кривой является наименьшей.

В соответствии с этим, несмотря на существующие компьютерные программы, целесообразно привести краткую рецептуру пользования этим методом, что позволит студенту осмыслить математическую суть метода и с помощью простых микрокалькуляторов выполнить любую аппроксимацию за оптимально короткое время.

В отмечается, что вычислить коэффициенты полинома по способу наименьших квадратов наиболее рационально с помощью введенных Ю.Б. Кобзаревым ортогональных полиномов для заданного числа N – равноотстоящих точек.

Обозначим через полином степениl . Тогда система полиномов будет ортогональной для данного числа точек, если при любых
выполняется равенство

. (16)

Воспользовавшись известными ортогональными многочленами Чебышева по методу Ю.Б. Кобзарева найдены все семь полиномов, образующих такую систему на отрезке
дляN=11 равноотстоящих точек , т.е. при
; –0,8; … 0 … 0,8; 1,0 имеем:

(17)

Система (17) ортогональных полиномов обладает тем замечательным свойством, что разложение по ним любой заданной функции дает наилучшее приближение в смысле наименьших квадратов. Поэтому вместо, например, выражения (18) коэффициента передачи по степеням напряжения
с неизвестными коэффициентами, можно записать его, представив в виде суммы (19) рассмотренных выше полиномов:

(18)

. (19)

Здесь Р – степень полинома; р – целое число, равное номеру слагаемого; – коэффициент, имеющий размерность
, который можно назвать крутизной порядкар , т.е. есть крутизна нулевого порядка,– первого порядка и т.д.

Входящая сюда величина х пропорциональна напряжению
, отсчитываемому от середины участка аппроксимации
, т.е. при изменении
в пределах
,х меняется от –1 до 1, поэтому

. (20)

Для определения коэффициента
в (19) умножим обе части равенства на полином
и просуммируем по всем точкам. Тогда, используя свойство ортогональности (16), находим

. (21)

, (22)

где
– нормированный полином

. (23)

Так как нулевому узлу соответствует левый конец участка аппроксимации, т.е.
, то сумму (22) удобно разбить на суммы, гдех <0 и х >0, так как четные полиномы (р = 0, 2, 4, 6) на этих участках ничем не отличаются, а нечетные (р =1, 3, 5, 7) отличаются лишь знаками. В связи с этим целесообразно ввести нечетную
и четную
компоненты коэффициента усиленияК :

(24)

где
- шаг изменениях (в нашем случае при N =11
);

- величина коэффициента усиления в точках
.

Теперь вместо сумм по положительным и отрицательным значениям можно взять суммы только по положительным с использованием четной и нечетной составляющей коэффициента усиления. Тогда

(25)

Сведя в табл. 1 значения коэффициентов нормированных полиномов
и используя их, легко найти коэффициенты
по формулам (25), далее в (19) сгруппировать члены по степенямх и перейти к представлению коэффициента усиления в виде полинома по степеням
. Коэффициенты этого полинома будут подобраны наилучшим в смысле наименьших квадратов способом, при котором экспериментальная кривая
будет практически сливаться с теоретической кривой
.

Вычисление коэффициентов полинома, используемого при гармоническом анализе для определения коэффициентов и параметров нелинейности и, в конечном итоге, для выбора оптимального режима усилительного прибора рассмотрим на конкретном примере.

Таблица 1



© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний