Какая масса радиоактивного элемента называется критической. Критические размеры и критическая масса реактора

Главная / Н. А. Некрасов

Для осуществления цепной реакции деления необходимо создать размножающую среду, состоящую из чистого делящегося вещества или делящегося вещества и замедлителя, состав которой и обеспечивает возможность развития реакции. Следует учесть, что в этой среде неизбежно будут присутствовать конструкционные материалы. Однако подбор размножающей среды с нужными параметрами еще не обеспечивает все условия для цепной реакции. При небольших размерах, а соответственно и массе размножающей среды большая часть возникающих в ней нейтронов будет вылетать наружу, не успев вызвать делений, и самоподдерживающаяся цепная реакция (СЦР) не возникнет. Утечка нейтронов из объема с размножающей средой приводит к тому же результату, что и их поглощение без деления.

По мере увеличения размеров размножающей среды увеличивается средняя длина пути нейтронов в ней, а следовательно, и число столкновений с ядрами с последующим делением и возникновением новых нейтронов.. Для описания поведения реактора во времени был введен коэффициент размножения k эфф - отношение числа нейтронов в последующем поколении к числу нейтронов в предыдущем. В такой трактовке при увеличении размеров среды k эфф растет от нуля при нулевой вероятности делений до величин, больших единицы, при лавиноподобном росте числа нейтронов в ряду поколений.

При k эфф, равном единице, интенсивность процесса делений не меняется во времени - процесс является самоподдерживающимся, и такая система называется критической . При k эфф < 1 скорость делений будет уменьшаться, и в этом случае систему называют подкритической . При k эфф > 1 система надкритическая .

Минимальная масса делящегося материала, необходимая для осуществления самоподдерживающейся реакции деления, называется критической массой . Если масса превысит критическую, то в каждом следующем поколении будет рождаться больше нейтронов, чем в предыдущем, и цепная реакция будет развиваться. Значение критической массы зависит от свойств делящегося нуклида (235 U или 239 Pu), состава размножающей среды и ее окружения. Величина критической массы может меняться от нескольких сот граммов в экспериментальных устройствах до десятков килограммов в ядерных боеголовках и нескольких тонн в больших энергетических реакторах. Рассмотрим ядерный реактор на естественном уране . В нем может возникнуть самоподдерживающаяся цепная реакция, если число вторичных нейтронов, рожденных при делении и способных вызвать дальнейшие деления, оказывается достаточным для того, чтобы поддерживать скорость деления в реакторе на постоянном уровне.

Контрольная работа № 5

Вариант 1


  1. Явление радиоактивности , открытое Беккерелем, свидетельствует о том, что…
А. Все вещества состоят из неделимых частиц-атомов.

Б. В состав атома входят электроны.

В. Атом имеет сложную структуру.

Г. Это явление характерно только для урана.


  1. Кто предложил ядерную модель строения атома?
А. Беккерель. Б. Гейзенберг. В. Томсон. Г. Резерфорд.

  1. На рисунке изображены схемы четырёх атомов. Чёрные точки- электроны. Какая схема соответствует атому 2 4 Не?

  1. В состав атома входят следующие частицы:
А. Только протоны.

Б. нуклоны и электроны.

В. протоны и нейтроны.

Г. Нейтроны и электроны.


  1. Чему равно массовое число ядра атома марганца 25 55 Мn?
А. 25. Б. 80. В. 30. Г. 55.

  1. В каких из следующих реакций нарушен закон сохранения заряда?
А. 8 15 О→ 1 1 Н+ 8 14 О.

Б. 3 6 Li + 1 1 Н→ 2 4 Не + 2 3 Не.

В. 2 3 Не + 2 3 Не→ 2 4 Не + 1 1 Н + 1 1 Н.

Г. 3 7 Li + 2 4 Не → 5 10 В + 0 1 n.


  1. ^ Атомное ядро состоит из протонов и нейтронов. Между какими парами частиц внутри ядра действуют ядерные силы?
А. Протон- протон

Б. Протон- нейтрон.

В. Нейтрон- нейтрон.

Г. Во всех парах А- В.


  1. Массы протона и нейтрона…
А. Относятся как 1836:1.

Б. Приблизительно одинаковы.

В. Относятся как 1:1836.

Г. Приблизительно равны нулю.


  1. В ядре атома кальция 20 40 Са содержится…
А. 20 нейтронов и 40 протонов.

Б. 40 нейтронов и 20 электронов.

В. 20 протонов и 40 электронов.

Г. 20 протонов и 20 нейтронов.


  1. ^ В каком приборе след движения быстрой заряженной частицы в газе делается видимым (в результате конденсации пересыщенного пара на ионах)?
А. В счетчике Гейгера.

Б. В камере Вильсона.

Г. В пузырьковой камере.


  1. ^ Определить второй продукт Х в ядерной реакции: 13 27 Al + 0 1 n → 11 24 Na+Х.
А. Альфа- частица. Б. нейтрон. В. протон. Г. электрон

  1. Атомное ядро состоит из Z протонов и N нейтронов. Масса свободного нейтрона m n , свободного протона m p . Какое из приведенных ниже условий выполняется для массы ядра m g ?
А. m g =Zm p + Nm n

Б. m g
В. m g > Zm p + Nm n.

Г. Для стабильных ядер условие А, для радиоактивных ядер условие В.


  1. Рассчитать ∆ m (дефект масс) ядра атома 3 7 Li (в а.е.м.).
m p =1,00728; m n =1,00866;m = 7,01601.

А. ∆m ≈ 0,04. Б. ∆m ≈ –0,04. В. ∆m =0. Г. ∆m ≈ 0,2.

14 В каких единицах должно быть выражено значение массы при вычислении энергии связи атомных ядер с использованием формулы ∆Е= ∆m*c 2 ?

А. В килограммах.

Б. В граммах.

В. В атомных единицах массы.

Г. В джоулях.


  1. ^ Что называется критической массой в урановом ядерном реакторе?
А. Масса урана в реакторе, при которой он может работать без взрыва.

Б. Минимальная масса урана , при которой в реакторе может быть осуществлена цепная реакция.

В. Дополнительная масса урана , вносимая в реактор для его запуска.

Г. Дополнительная масса вещества, вносимого в реактор для его остановки в критических случаях.


  1. ^ Какой вид радиоактивного излучения наиболее опасен при внешнем облучении человека?
А. Бета- излучение.

Б. гамма- излучение.

В. Альфа- излучение.

^ Дополнительное задание.


  1. Все химические элементы существуют в виде двух или большего количества изотопов. Определите отличие в составе ядер изотопов 17 35 Cl и 17 37 Cl.
А. изотоп 17 35 Cl имеет в ядре на 2 протона больше, чем 17 37 Cl.

Б. изотоп 17 37 Cl имеет в ядре на 2 протона меньше , чем 17 35 Cl.

В. изотоп 17 37 Cl имеет в ядре на 2 нейтрона больше , чем 17 35 Cl.

Г. изотоп 17 37 Cl имеет в ядре на 2 нейтрона меньше, чем 17 35 Cl.

18. При альфа- распаде атомных ядер…

массовое число сохраняется , а заряд увеличивается на единицу.

Б. Массовое число уменьшается на 4, а заряд остается неизменным.

В. Массовое число уменьшается на 4, а заряд увеличивается на 2.

Г. Массовое число уменьшается на 4, заряд также уменьшается на 2.

^ 19. Выделяется или поглощается энергия в ядерной реакции. 3 6 Li + 1 1 Н→ 2 4 Не + 2 3 Не? Массы ядер и частиц в а. м. соответственно равны: m 3 6 Li=6,01513, m 1 1 Н= 1,00728, m 2 4 Не= 4,00260, m 2 3 Не =3,01602.

А. Поглощается, т.к. ∆m
Б. Выделяется, т.к. ∆m
В.Поглощается, т.к. ∆m> 0.

Г. Выделяется, т.к. ∆m> 0.

20. При бомбардировке изотопа 5 10 В нейтронами из образовавшегося ядра выбрасывается альфа- частица. Пользуясь законами сохранения массового числа и заряда , а также периодической системой элементов, запишите ядерную реакцию.

Контрольная работа № 5

по теме «Строение атома и атомного ядра»

Вариант 2

^ 1. В состав радиоактивного излучения могут входить…

А. Только электроны.

Б. Только нейтроны.

В. Только альфа-частицы.

Г. Бета- частицы, альфа-частицы, гамма-кванты.

^ 2. С помощью опытов Резерфорд установил, что…

А. Положительный заряд распределён равномерно по всему объёму атома.

Б. Положительный заряд сосредоточен в центре атома и занимает очень малый объём.

В. В состав атома входят электроны.

Г. Атом не имеет внутренней структуры.


  1. ^ На рисунке изображены схемы четырёх атомов. Электроны изображены в виде чёрных точек.
Какая схема соответствует атому 7 3 Li?

  1. В состав ядра входят следующие частицы:
А. Только протоны.

Б. Протоны и электроны.

В. Протоны и нейтроны

Г. Нейтроны и электроны.

^ 5. Чему равен заряд ядра атома стронция 38 88 Sr?

А. 88 Б. 38 В. 50 Г. 126.


  1. В каком из приведённых ниже уравнений ядерных реакций нарушен закон сохранения массового числа?
А. 4 9 Ве + 2 4 Не → 6 12 С + 0 1 Н

Б. 7 14 N + 2 4 Не → 8 17 О + 1 1 Н

В. 7 14 N + 1 1 Н → 5 11 В + 2 4 Не

Г. 92 239 U → 93 239 Np + -1 0 е

^ 6. Ядерные силы, действующие между нуклонами …

А. Во много раз превосходят гравитационные силы и действуют между заряжёнными частицами.

Б. Во много раз превосходят все виды сил и действуют на любых расстояниях.

В. Во много раз превосходят все другие виды сил , но действуют только на расстояниях, сравнимых с размерами ядра.

Г. Во много раз превосходят гравитационные силы и действуют между любыми частицами.


  1. Массы протона и электрона…
А. Относятся как 1836: 1.

Б. Приблизительно одинаковы.

В. Относятся как 1: 1836.

Г. Приблизительно равно нулю.

^ 8. В ядре атома железа 26 56 Fe содержится:

А. 26 нейтронов и 56 протонов.

Б. 56 нейтронов и 26 протонов.

В. 26 протонов и 56 электронов.

Г. 26 протонов и 30 нейтронов.


  1. В каком приборе происхождение ионизирующей частицы регистрируется по возникновению импульса электрического тока в результате возникновения самостоятельного разряда в газе?
А. В камере Вильсона.

Б. В счётчике Гейгера.

В. В сцинцилляционном счетчике.

Г. В пузырьковой камере.


  1. ^ Определите второй продукт Х ядерной реакции:
13 27 Al + 2 4 Не 15 30 Р + Х

А. Альфа-частица (2 4 Не).

Б. Нейтрон.

В. Протон.

Г. Электрон.

^ 12. Атомное ядро состоит из Z протонов и N нейтронов. Масса свободного нейтрона m n , свободного протона m p . Какое из приведённых ниже условий выполняется для массы ядра m я ?

А. m я Z*m p + m n ; В. m я = Z*m p + N*m n

Г. Для стабильных ядер условие А, для радиоактивных- условие Б.

^ 13. Рассчитать дефект масс (∆ m) в а. е. м. Ядра атома 2 3 Не. Массы частиц и ядра, выраженные в а. е. м., соответственно равны: m n = 1,00866; m p = 1,00728;

m я = 3,01602.

А. ∆ m ≈ 0,072 Б. ∆ m ≈ 0,0072 В. ∆ m ≈ -0,0072 Г.∆ m ≈ 0

^ 14. В каких единицах будет получено значение энергии при вычислении энергии связи атомных ядер с использованием формулы ∆E=m*c 2 ?

А. В электрон-вольтах (эВ).

Б. В мегаэлектрон-вольтах (МэВ)

В. В джоулях.

Г. В а. е. м.

^ 15. В ядерном реакторе в качестве так называемых замедлителей используются такие вещества, как графит или вода. Что они должны замедлять и зачем?

А. Замедляют нейтроны для уменьшения вероятности осуществления ядерной реакции деления.

Б. Замедляют нейтроны для увеличения вероятности осуществления ядерной реакции деления.

В. Замедляют осуществление цепной реакции деления , чтобы легче было управлять реактором.

Г. Замедляют осколки ядер, образовавшихся в результате деления урана, для практического использования их кинетической энергии.

^ 16. Какой вид радиоактивного излучения наиболее опасен при внутреннем облучении человека?

А. Бета-излучение.

Б. Гамма-излучение.

В. Альфа-излучение.

Г. Все три вида излучения: альфа, бета, гамма.

^ Дополнительное задание.


  1. Все химические элементы существуют в виде двух или большего количества изотопов. Определите отличие в составе ядер изотопов 10 20 Ne и 10 22 Ne
А. изотоп 10 20 Ne имеет в ядре на 2 протона больше, чем 10 22 Ne

Б. изотоп 10 20 Ne имеет в ядре на 2 протона меньше , чем 10 22 Ne

В. изотоп 10 22 Ne имеет в ядре на 2 нейтрона больше , чем 10 20 Ne

Г. изотоп 10 22 Ne имеет в ядре на 2 нейтрона меньше, чем 10 20 Ne

18.При бетта- распаде атомных ядер…

А. Масса ядра остается практически неизменной, поэтому массовое число сохраняется , а заряд увеличивается.

Б. Массовое число увеличивается на 1, а заряд уменьшается на 1.

В. Массовое число сохраняется, а заряд уменьшается на 1.

Г. Массовое число уменьшается на 1, заряд сохраняется.

19. Выделяется или поглощается энергия в ядерной реакции 7 14 N + 2 4 Не → 8 17 О + 1 1 Н? Массы ядер и частиц(в а. м.) соответственно равны: m 7 14 N= 14,00307, m 2 4 Не = 4,00260, m 8 17 О=16,99913, m 1 1 Н =1,00728.

А. Поглощается, т.к. ∆m
Б. Выделяется, т.к. ∆m
В.Поглощается, т.к. ∆m> 0.

Г. Выделяется, т.к. ∆m> 0.

20. Пользуясь законами сохранения массового числа и заряда , а также периодической системой элементов, написать ядерную реакцию , происходящую при бомбардировке 5 11 В альфа – частицами и сопровождаемую выбиванием нейтронов

^ Бланк ответов

к контрольной работе № 5

по теме «Строение атома и атомного ядра»

Класс _____________

Вариант _______

зад.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Ответ

дополнит.

задания


17

18

19

20

Ответ

^ Бланк ответов

к контрольной работе № 5

по теме «Строение атома и атомного ядра»

Дата: ___________________20__г.

Класс _____________

ФИО ________________________________

Вариант _______

зад.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Ответ

дополнит.

задания


17

18

19

20

Ответ

^ Коды правильных ответов.


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

В1

В

Г

В

Б

Г

А

Г

Б

Г

Б

А

Б

А

А

Б

В

В

Г

Б

В2

Г

Б

В

В

Б

В

В

А

Г

Б

Б

А

А

В

В

В

В

А

Б

№20 5 10 В + 0 1 n. → 3 7 Li + 2 4 Не (1 ВАРИАНТ)

5 11 В + 2 4 Не→ 7 14 N + 1 1 Н (2 ВАРИАНТ)

^ Таблица перевода числа правильных ответов на обязательные вопросы в оценку по пятибалльной шкале.

Ядерное оружие начало вызывать у людей страх уже с того самого момента, когда теоретически была доказана возможность его создания. И уже более полувека мир живет в этом страхе, меняется лишь его величина: от паранойи 50-60-х до перманентной тревоги сейчас. Но как вообще стала возможной подобная ситуация? Как в человеческий разум могла прийти сама идея создания такого жуткого оружия? Мы ведь знаем, что ядерная бомба фактически была создана руками величайших ученых-физиков тех времен, многие из них были на тот момент нобелевскими лауреатами или стали ими впоследствии.

Автор попытался дать понятный и доступный ответ на эти и многие другие вопросы, рассказав о гонке за обладание ядерным оружием. Главное внимание при этом уделяется судьбам отдельных ученых-физиков, непосредственно причастных к рассматриваемым событиям.

Глава 3 Критическая масса

В январе 1939 года Отто Фриш наконец-то получил добрые вести. Он узнал, что его отец, хотя и оставался пока в концлагере Дахау, все-таки получил шведскую визу. Вскоре его отпустили и в Вене он смог встретиться с матерью Фриша. Вдвоем они перебрались туда, где им ничто не угрожало, - в Стокгольм.

Но даже настолько радостные известия не могли избавить Отто от предчувствия близкой большой беды, с недавних пор его переполнявшего. Ожидание начала войны, которое было уже не за горами, погружало его все глубже в пучину депрессии. Фриш не видел никакого смысла продолжать те исследования, которыми занимался в Копенгагене. Росло и чувство незащищенности. Когда в лабораторию Бора приехали британец Патрик Блэкетт и австралиец Марк Олифант, Отто попросил их о помощи.

Олифант вырос в Аделаиде. Поначалу он интересовался медициной и, в частности, стоматологией , но в университете увлекся физикой. Наслушавшись Эренста Резерфорда, новозеландца по происхождению, впечатлительный студент решил заняться ядерной физикой. В 1927 году он присоединился к возглавляемой Резерфордом группе исследователей, которая работала в Кавендишской лаборатории в Кембридже. Там в начале 1930-х он стал непосредственным свидетелем множества замечательных открытий в области ядерной физики. В 1934 году в соавторстве с Резерфордом (а также немецким химиком Паулем Гартеком) Олифант опубликовал статью, в которой описывалась реакция ядерного синтеза с участием тяжелого водорода - дейтерия .

В 1937 году Олифант получил профессорскую должность в Бирмингемском университете, став деканом факультета физики. Он очень участливо отнесся к просьбе Фриша о помощи и вскоре прислал ему письмо, в котором приглашал Отто посетить Бирмингем летом 1939-го и уже на месте посмотреть, что можно для него сделать. Спокойствие и уверенность Олифанта весьма впечатлили Фриша, который никак не мог выйти из депрессии, и он не стал ждать еще одного приглашения. Упаковав два маленьких чемодана, он выехал в Англию, «ничем не отличаясь от других туристов».

Австралиец устроил Отто на должность младшего преподавателя. Тот теперь работал в довольно неформальной обстановке. Олифант читал студентам лекции и направлял к Фришу тех, кто испытывал затруднения с освоением нового материала. Отто работал с несколькими десятками студентов, которые задавали ему огромное количество вопросов, и так завязывалась весьма оживленная дискуссия. Фришу очень нравилась подобная работа.

В Бирмингеме Фриш встретился с другим эмигрантом, своим земляком - Рудольфом Пайерлсом. Рудольф родился в Берлине, в семье ассимилировавшихся евреев. Физику он изучал в Берлине, Мюнхене и Лейпциге, где и защитился в 1928 году у Гейзенберга. Затем Пайерлс переехал в швейцарский Цюрих и уже там в 1932 году был удостоен рокфеллеровской стипендии. Обучаться он должен был сначала в Риме, у Ферми, а затем в английском Кембридже - у физика-теоретика Ральфа Фаулера. Когда в 1933 году Гитлер пришел к власти, Пайерлс как раз находился в Англии. Вскоре ему стало ясно, что обратный путь в Германию закрыт. Завершив обучение, Рудольф отправился в Манчестер, где работал вместе с Лоренсом Брэггом, а затем снова вернулся в Кембридж, где пробыл еще пару лет. В 1937 году он стал профессором математики в Бирмингемском университете.

С сентября 1939 года, после начала войны, лаборатории в Бирмингеме стали главным образом заниматься крайне важными - и засекреченными - исследованиями для военных.

Работа ученых была связана с резонансным магнетроном - приспособлением, необходимым для генерации интенсивного СВЧ-излучения в наземных и бортовых самолетных радарах. Позже Ч. П. Сноу назвал эти устройства «самым ценным научным изобретением англичан, сделанным во время войны с Гитлером».

Будучи гражданами враждебного государства, Фриш и Пайерлс не должны были ничего знать об этих работах. Однако секретность проекта имела какой-то непонятный характер. Порой Олифант задавал Пайерлсу гипотетические вопросы, которые начинались со слов: «Если бы вы столкнулись со следующей проблемой…». Как позднее напишет Фриш, «Олифант знал, что Пайерлс знает, и, думаю, Пайерлс знал, что Олифант знает, что тот знает. Однако никто из них и вида не показывал».

Фриш работал со студентами не постоянно, так что, имея достаточно свободного времени, он мог снова заняться проблемой деления ядер. Используя лабораторию в те моменты, когда она не была занята, Отто провел несколько небольших экспериментов. Бор с Уилером утверждали, что уран расщепляем главным образом благодаря изотопу U 235 , обладающему не очень высокой стабильностью. Фриш решил доказать это экспериментальным путем, получив данные по образцам с немного увеличенным содержанием редкого изотопа. Чтобы выделить небольшое количество урана-235, он собрал маленький аппарат, в котором использовался метод термодиффузии, изобретенный Клузиусом и Дикелем. Прогресс, однако, был крайне медленным.

Тем временем к Фришу обратилось Британское химическое общество с просьбой написать для них обзорный материал и осветить в нем все недавние успехи в изучении атомного ядра, чтобы это было понятно и интересно химикам. Статью Отто писал в своей съемной комнате. Не снимая пальто, он сидел, держа машинку на коленях, около газовой горелки, пытаясь хоть немного согреться: температура той зимой опускалась до -18 °C. По ночам замерзала вода в стакане.

Рассказывая о расщеплении ядра, он повторял общепринятое на тот момент мнение: если однажды и удастся осуществить самоподдерживающуюся цепную реакцию, то с учетом того, что в ней должны использоваться медленные нейтроны, атомную бомбу, в которой цепная реакция будет происходить, взорвать практически невозможно. «По крайней мере похожего результата мы бы достигли, если бы просто подожгли аналогичное количество пороха», - так писал он в заключительной части. Фриш вообще не верил в возможность создания атомной бомбы.

Однако, закончив статью, он задумался. Основная проблема на данный момент, по утверждению Бора и Уилера, заключалась в медленных нейтронах. Ядро урана-238 всегда захватывало быстрые нейтроны, имевшие определенную «резонансную» энергию, или скорость, для реакции же с природным ураном необходимы исключительно медленные нейтроны. Однако их использование означало, что и получаемая энергия будет накапливаться весьма медленно. Если построить реакцию на медленных нейтронах, то высвобождаемая энергия нагреет уран и, возможно, расплавит его или даже испарит задолго до того, как он сможет взорваться. По мере нагревания урана в реакцию будет вступать все меньше нейтронов, и в итоге она попросту затухнет.

Физики «Уранового общества» пришли к тому же самому мнению. Однако Фриша теперь очень интересовал ответ на вопрос: что все-таки произойдет, если использовать быстрые нейтроны? Считалось, что уран-235 расщепляется нейтронами обоих типов. Однако если в расщепляемом уране слишком много U 238 , то от быстрых вторичных нейтронов, испускаемых U 235 при распаде, будет мало пользы: по всей видимости, эти быстрые вторичные нейтроны выйдут из реакции в силу резонансного захвата ядром урана-238. Но это препятствие легко обойти, если использовать чистый или почти чистый уран-235. Фриш без особого труда собрал маленький аппарат Клузиуса-Дикеля для отделения U 235 . Было понятно, что таким способом получить большие объемы чистого урана-235, например несколько тонн, невозможно. Но вдруг для цепной реакции на быстрых нейтронах окажется достаточно и гораздо меньшего количества?

Цепная реакция на быстрых нейтронах с использованием чистого урана-235 - если считать, что у атомной бомбы изначально и был какой-то секрет, то теперь он стал известен Фришу.

Отто поделился своими мыслями с Пайерлсом, который в начале июня 1939 года доработал формулу расчета критической массы материала, необходимой для поддержания цепной ядерной реакции. Составлена эта формула была французским физиком-теоретиком Франсисом Перреном. Для смеси изотопов с большим содержанием U 238 Пайерлс использовал свою измененную формулу, но, поскольку счет велся на тонны, для создания оружия такой вариант не подходил.

Теперь же Фришу необходимо было проводить вычисления совсем другого порядка - с участием чистого урана-235 и не медленных, а быстрых нейтронов. Проблема заключалась в том, что никто пока не знал, какой должна быть доля U 235 , чтобы обеспечить успешное участие в реакции быстрых нейронов . А не знали этого ученые потому, что пока еще не удавалось получить достаточное количество урана-235 в чистом виде.

В такой ситуации оставалось только выдвигать предположения. Результаты, полученные Бором и Уилером, ясно давали понять, что ядро U 235 легко расщепляется медленными нейтронами. Далее логично было предположить, что воздействие быстрых нейтронов ничуть не менее эффективно, и возможно даже, что ядро урана-235 делится при любом контакте с ними. Впоследствии Пайерлс так написал про эту гипотезу: «Судя по всему, из данных, которые получили Бор и Уилер, следовало сделать именно такой вывод: каждый нейтрон, попадающий в ядро 235-го [урана], вызывает его распад». Подобное допущение чрезвычайно упрощало расчеты. Теперь оставалось только высчитать, какое количество урана-235 необходимо для того, чтобы он легко расщеплялся быстрыми нейтронами.

Ученые подставили в формулу Пайерлса новые числа и были сражены наповал полученным результатом. О тоннах урана теперь и речи быть не могло. Критическая масса, согласно расчетам, составляла всего несколько килограммов. Для вещества с плотностью, как у урана, объем такого количества не превышал бы величины мячика для гольфа . По оценкам Фриша, столько U 235 можно получить за несколько недель, использовав порядка ста тысяч трубок аппаратов Клузиуса-Дикеля, подобных тому, который он собрал в бирмингемской лаборатории.

«Тут мы все переглянулись, осознав, что создать атомную бомбу все-таки возможно».

Часть нейтронов, освобождаемых при реакции деления, вылетает из сферы реакции или же захватывается, не производя деления. Если создать условия, при которых скорость потери нейтронов будет больше скорости высвобождения новых нейтронов при делении, то цепная реакция при этих условиях перестанет быть самоподдерживающейся, то есть прекратится. При этом будет выделено некоторое количество энергии, но оно будет недостатoчным, a скорость высвобождения новых нейтронов будет слишком мала, чтобы вызвaть эффeктивный взрыв. Поэтому для осуществления ядерного взрыва необходимо создать условия, при которых потеря нейтронов была бы минимальной. B связи c этим особенно важное значение имеют нейтроны, которые вылетают из массы делящегося вещества и не принимают участия в реакции деления.

Вылет нейтронов из сферы реакции происходит через наружную поверхность массы урана (или плутония). Следовательно, скорость потери нейтронов за счёт их вылета из массы делящегося вещества будет определяться величиною поверхности этой массы. C другой стороны, процесс деления, в результате которого освобождается много новых нейтронов, происходит во всей массе делящегося вещества, и поэтому скорость освобождения этих нейтронов зависит от величины этой массы. При увеличении объёма делящегося вещества отношение величины его поверхности к массе уменьшается; следовательно, отношение числа потерянных (вылетевших) нейтронов к числу освобожденных при реакции деления новых нейтронов при этом будет уменьшаться.

Это положение легче понять, если рассмотреть рисунок справа, на котором изображены два сферических куска делящегося вещества, один из которых больше другого; в обоих случаях процeсс деления начинается одним нейтроном, изображённом на рисунке в виде точки в окружности. Предполагается, что при каждом акте деления освобождается три нейтрона, то есть один нейтрон захва-

Если масса урана или плутония мала, то eсть если отношение величины поверхности к объёму велико, то число нейтронов, потерянных в результате вылета, окажется настолько большим, что создание цепной ядерной реакции деления, a следовательно, и осуществление ядерного взрывa окажутся невозможными. Но с увеличением массы урана или плутония отпосительная потеря нейтронов уменьшается, и наступает момент, когда цепная реакция может стать самоподдерживающейся. Количество дeлящегося вещества, соответствующее этому моменту, называется критической массой.

Таким образом, для того чтобы произошёл ядерный взрыв, необходимо, чтобы в ядерном боeприпасе содержалось достаточное количество урана или плутония, превосходящее критическую массу при данных условиях. В действительности критическая масса зависит, кроме прочего, от формы куска делящегoся вещества, его составa и степени загрязнения посторонними примесями, которые могут поглощать нейтроны, не подвергаясь делению. Окружая делящееся вещество соответствующей оболочкой - отражателем нейтронов, можно уменьшить потерю нейтронов за счёт их вылета, a следовательно, и уменьшить величину критической массы. Кроме того, элементы, обладающие высокой плотностью и хорошей отражающей способностью для нейтронов высоких энергий, обеспечивают также некоторую инерционность делящегося вещества, задерживая его расширение в момент взрывa. Отражатель нейтронов благодаря своему экранирующему действию и инерциальным свойствам позволяет более эффективно использовать делящееся вещество в ядерном боеприпасе.

Для безопасной работы с ядерноопасными делящимися веществами параметры оборудования должны быть меньше критических. В качестве нормативных параметров ядерной безопасности используют: количество, концентрацию и объем ядерноопасного делящегося материала; диаметр оборудования, имеющего цилиндрическую форму; толщину плоского слоя для оборудования, имеющего форму пластины. Нормативный параметр устанавливают исходя из допустимого параметра, который меньше критического и не должен быть превышен при эксплуатации оборудования. При этом необходимо, чтобы характеристики, влияющие на критические параметры, находились в строго определенных пределах. Используются следующие допустимые параметры: количество М доп , объем V доп , диаметр D доп , толщина слоя t доп .

Используя зависимость критических параметров от концентрации ядерноопасного делящегося нуклида, определяют такое значение критического параметра, ниже которого при любой концентрации СЦРД невозможна. Например, для растворов солей плутония и обогащенного урана критические масса, объем, диаметр бесконечного цилиндра, толщина бесконечного плоского слоя имеют минимум в области оптимального замедления. Для смесей металлического обогащенного урана с водой критическая масса, как и для растворов, имеет ярко выраженный минимум в области оптимального замедления, а критические объем, диаметр бесконечного цилиндра, толщина бесконечного плоского слоя при высоком обогащении (>35 %) имеют минимальные значения при отсутствии замедлителя (r н /r 5 =0); для обогащения ниже 35% критические параметры смеси имеют минимум при оптимальном замедлении. Очевидно, что параметры, установленные исходя из минимальных критических параметров, обеспечивают безопасность во всем интервале изменения концентрации. Эти параметры называются безопасными , они меньше минимальных критических параметров. Используются следующие безопасные параметры: количество, концентрация, объем, диаметр, толщина слоя.

При обеспечении ядерной безопасности системы по допустимому параметру обязательно ограничивается концентрация делящегося нуклида (иногда количество замедлителя), в то же время при использовании безопасного параметра никаких ограничений на концентрацию (или по количеству замедлителя) не накладывается.

2 КРИТИЧЕСКАЯ МАССА

Будет или не будет развиваться цепная реакция, зависит от результата соревнования четырёх процессов:

(1) Вылет нейтронов из урана,

(2) захват нейтронов ураном без деления,

(3) захват нейтронов примесями.

(4) захват нейтронов ураном с делением.

Если потеря нейтронов в первых трех процессах меньше количества нейтронов, освобождаемых в четвёртом, то цепная реакция происходит; в противном случае она невозможна. Очевидно, что если из первых трёх процессов весьма вероятен, то избыток нейтронов, освобождаемых при делении, не сможет обеспечить продолжение реакции. Например, в том случае, когда вероятность процесса (2) (захват ураном без деления) намного больше вероятности захвата с делением, цепная реакция невозможна. Дополнительную трудность вносит изотопный природного урана: он состоит из трех изотопов: 234 U, 235 U и 238 U, вклады которых 0,006, 0,7 и 99,3% соответственно. Важно, что вероятности процессов (2) и (4) различны для разных изотопов и по-разному зависят от энергии нейтронов.

Для оценки конкуренции различных процессов с точки зрения развития в веществе цепного процесса деления ядер вводится понятие «критическая масса».

Критическая масса – минимальная масса делящегося вещества, обеспечивающая протекание самоподдерживающейся ядерной цепной реакции деления. Критическая масса тем меньше, чем меньше период полураспада деления и чем выше обогащение рабочего элемента делящимся изотопом.

Критическая масса - минимальное количество делящегося вещества, необходимое для начала самоподдерживающейся цепной реакции деления. Коэффициент размножения нейтронов в таком количестве вещества равен единице.

Критическая масса - масса делящегося вещества реактора, находящегося в критическом состоянии.

Критические размеры ядерного реактора - наименьшие размеры активной зоны реактора, при которых ещё может осуществляться самоподдерживающаяся реакция деления ядерного горючего. Обычно под критическим размером принимают критический объём активной зоны.

Критический объём ядерного реактора - объём активной зоны реактора в критическом состоянии.

Относительное количество нейтронов, которые вылетают из урана, может быть уменьшено изменением размеров и формы. В сфере поверхностные эффекты пропорциональны квадрату, а объемные - кубу радиуса. Вылет нейтронов из урана является поверхностным эффектом, зависящим от величины поверхности; захват с делением происходит во всем объеме, занимаемом материалом, и поэтому является

объемным эффектом. Чем больше количество урана, тем меньше вероятность того, что вылет нейтронов из объема урана будет преобладать над захватами с делением и препятствовать цепной реакции. Потеря нейтронов на захваты без деления является объемным эффектом, подобно освобождению нейтронов при захвате с делением, так что увеличение размеров не изменяет их относительной важности.

Критические размеры устройства, содержащего уран, можно определить как размеры, при которых количество освобождаемых при делении нейтронов в точности равно их потере вследствие вылета и захватов, не сопровождающихся делением. Другими словами, если размеры меньше критических, то, по определению, цепная реакция не может развиться.

Критическую массу могут образовывать только нечётные изотопы. Лишь 235 U встречается в природе, а 239 Pu и 233 U - искусственные, они образуются в ядерном реакторе (в результате захвата нейтронов ядрами 238 U

и 232 Th с двумя последующими β - распадами).

В природном уране цепная реакция деления не может развиться ни при каком количестве урана, однако, в таких изотопах, как 235 U и 239 Pu цепной процесс достигается сравнительно легко. При наличии замедлителя нейтронов, цепная реакция идёт и в природном уране.

Необходимым условием для осуществления цепной реакции является наличие достаточно большого количества делящегося вещества, так как в образцах малых размеров большинство нейтронов пролетает сквозь образец, не попав ни в одно ядро. Цепная реакция ядерного взрыва возникает при достижении

делящимся веществом некоторой критической массы.

Пусть имеется кусок вещества, способного к делению, например, 235 U, в который попадает нейтрон. Этот нейтрон либо вызовет деление, либо бесполезно поглотится веществом, либо, продиффундировав, выйдет через наружную поверхность. Важно, что будет на следующем этапе – уменьшится или уменьшится число нейтронов в среднем, т.е. ослабнет или разовьется цепная реакция, т.е. будет ли система в подкритическом или в надкритическом (взрывном) состоянии. Так как вылет нейтронов регулируется размером (для шара – радиусом), то возникает понятие критического размера (и массы). Для развития взрыва размер должен быть больше критического.

Критический размер делящейся системы можно оценить, если известна длина пробега нейтронов в делящемся материале.

Нейтрон, летая по веществу, изредка сталкивается с ядром, он как бы видит его поперечное сечение. Размер поперечного сечения ядра σ=10-24 см2 (барн). Если N - число ядер в кубическом сантиметре, то комбинация L =1/N σ дает среднюю длину пробега нейтрона по отношению к ядерной реакции. Длина пробега нейтрона – единственная размерная величина, которая может послужить отправной точкой оценки критразмера. В любой физической теории используются методы подобия, которые, в свою очередь, строятся из безразмерных комбинаций размерных величин, характеристик системы и вещества. Таким безразмерным

числом является отношение радиуса куска делящегося материала к длине пробега в нем нейтронов. Если принять, что безразмерное число порядка единицы, а длина пробега при типичном значении N =1023 , L = 10 см

(для σ =1) (обычно σ обычно намного выше 1, так что критическая масса меньше нашей оценки). Критическая масса зависит от сечения реакции деления конкретного нуклида. Так, для создания атомной бомбы необходимо примерно 3 кг плутония или 8 кг 235 U (при имплозивной схеме и в случае чистого 235 U) При стволовой схеме атомной бомбы требуется примерно 50 кг оружейного урана (При плотности урана 1,895·104 кг/м3 радиус шара такой массы равен примерно 8,5 см, что на удивление хорошо совпадает с нашей оценкой

R =L =10 см).

Выведем теперь более строгую формулу для расчета критического размера куска делящегося материала.

Как известно, при распаде ядра урана образуется несколько свободных нейтронов. Часть из них покидает образец, а часть поглощается другими ядрами, вызывая их деление. Цепная реакция возникает, если число нейтронов в образце начинает лавинообразно расти. Для определения критической массы можно использовать уравнение диффузии нейтронов:

∂C

D C + β C

∂t

где С - концентрация нейтронов, β>0 – константа скорости реакции размножения нейтронов (аналогично постоянной радиоактивного распада имеет размерность 1/сек, D -коэффициент диффузии нейтронов,

Пусть образец имеет форму шара радиусом R . Тогда нам надо найти решение уравнения (1), удовлетворяющее краевому условию: C (R,t )=0.

Сделаем замену C = ν e β t , тогда

∂C

∂ν

ν = D

+ βν e

∂t

∂t

Получили классическое уравнение теплопроводности:

∂ν

D ν

∂t

Решение этого уравнения хорошо известно

π 2 n 2

ν (r , t )=

sin π n re

π 2 n

β −

C(r, t) =

sin π n re

r n = 1

Цепная реакция пойдёт при условии (то есть

C(r, t)

t →∞ → ∞ ), что хотя бы при одном n коэффициент в

показателе степени положителен.

Если β − π 2 n 2 D > 0,

то β > π 2 n 2 D и критический радиус сферы:

R = π n

Если π

≥ R , то ни при каком n не будет растущей экспоненты

Если π

< R , то хотя бы при одном n мы получим растущую экспоненту.

Ограничимся первым членом ряда, n =1:

R = π

Критическая масса:

M = ρ V = ρ

Минимальное значение радиуса шара, при котором возникает цепная реакция называется

критическим радиусом, а масса соответствующего шара - критической массой.

Подставив значение для R , получим формулу для расчета критической массы:

M кр = ρπ 4 4 D 2 (9) 3 β

Величина критической массы зависит от формы образца, коэффициента размножения нейтронов и коэффициента диффузии нейтронов. Их определение является сложной экспериментальной задачей, поэтому полученная формула используется для определения указанных коэффициентов, а проведенные выкладки являются доказательством существования критической массы.

Роль размеров образца очевидна: с уменьшением размеров процент нейтронов, вылетающих через ее поверхность, увеличивается, так что при малых (ниже критических!) размерах образца цепная реакция становится невозможной даже при благоприятном соотношении между процессами поглощения и образования нейтронов.

Для высокообогащенного урана значение критической массы составляет около 52 кг, для оружейного плутония - 11 кг. В нормативных документах по охране ядерных материалов от хищения указываются критические массы: 5 кг 235 U или 2 кг плутония (для имплозивной схемы атомной бомбы). Для пушечной схемы критические массы намного больше. На базе этих значений строится интенсивность защиты делящихся веществ от нападения террористов.

Замечание. Критическая масса системы из металлического урана 93,5% обогащения (93,5% 235 U; 6,5% 238 U) равна 52 кг без отражателя и 8,9 кг, когда система окружена отражателем нейтронов из оксида бериллия. Критическая масса водного раствора урана – примерно 5 кг.

Величина критической массы зависит от свойств вещества (таких, как сечения деления и радиационного захвата), от плотности, количества примесей, формы изделия, а также от окружения. Например, наличие отражателей нейтронов может сильно уменьшить критическую массу. Для конкретного делящегося вещества количество материала, которое составляет критическую массу, может изменяться в широком диапазоне и зависит от плотности, характеристик (вид материала и толщина) отражателя, а также от природы и процентного содержания любых присутствующих инертных разбавителей (таких как кислород в оксиде урана, 238 U в частично обогащенном 235 U или химические примеси).

В целях сравнения, привёдем критические массы шаров без отражателя для нескольких видов материалов с некоторой стандартной плотностью.

Для сравнения приведем следующие примеры критических масс: 10 кг 239 Pu, металл в альфа-фазе

(плотность 19,86 г/см3 ); 52 кг 94%-го 235 U (6% 238 U), металл (плотность 18,72 г/см3 ); 110 кг UO2 (94% 235 U)

при плотности в кристаллическом виде 11 г/см3 ; 35 кг PuO2 (94% 239 Pu) при плотности в кристаллическом

виде 11,4 г/см3 . Наименьшей критической массой обладают растворы солей чистых делящихся нуклидов в воде с водяным отражателем нейтронов. Для 235 U Критическая масса равна 0,8 кг, для 239 Pu - 0,5 кг, для 251 Cf -

Критическая масса M связана с критической длиной l: М l x , где x зависит от формы образца и лежит в пределах от 2 до 3. Зависимость от формы связана с утечкой нейтронов через поверхность: чем больше поверхность, тем больше критическая масса. Образец с минимальной критической массой имеет форму шара. Табл. 5. Основные оценочные характеристики чистых изотопов способных к ядерному делению

Нейтроны

Получение

Критическая

Плотность

Температура

Тепловыделение

спонтанного

полураспада

(источник)

г/см³

плавления °С

T 1/2

105 (кг·сек)

231Pa

232U

Реактор на

нейтронах

233U

235U

Природный

7,038×108 лет

236U

2,3416×107 лет? кг

237Np

2,14×107 лет

236Pu

238Pu

239Pu

240Pu

241Pu

242Pu

241Am

242mAm

243mAm

243Am

243Cm

244Cm

245Cm

246Cm

247Cm

1,56×107 лет

248Cm

249Cf

250Cf

251Cf

252Cf

Остановимся несколько подробнее на критических параметрах изотопов некоторых элементов. Начнём с урана.

Как уже неоднократно упоминалось, 235 U (кларк 0,72%) имеет особо важное значение, поскольку делится под действием тепловых нейтронов (σ f =583 барн), выделяя при этом «тепловой нергетический эквивалент» 2×107 кВт×ч/к. Поскольку помимо α -распада 235 U ещё и спонтанно делится (Т 1/2 =3,5×1017 лет), то в массе урана всегда присутствуют нейтроны, а значит возможно создание условий для возникновения самоподдерживающейся цепной реакции деления. Для металлического урана с обогащением 93,5 % критическая масса равна: 51 кг без отражателя; 8,9 кг с отражателем из оксида бериллия; 21,8 кг с полным водяным отражателем. Критические параметры гомогенных смесей урана и его соединений приведены в

Критические параметры изотопов плутония: 239 Pu: М кр = 9,6 кг, 241 Pu: М кр =6,2 кг, 238 Pu: М кр = от 12 до 7,45 кг. Наибольший интерес представляют смеси изотопов: 238 Pu, 239 Pu, 240 Pu, 241 Pu. Большое удельное энерговыделение 238 Pu приводит к окислению металла в воздухе, поэтому наиболее вероятно его использование в виде оксидов. При получении 238 Pu сопутствующим изотопом является 239 Pu. Соотношение этих изотопов в смеси определяет как значение критических параметров, так и их зависимость при изменении содержания замедлителя. Различные оценки критической массы для голой металлической сферы из 238 Pu дают значения от 12 до 7,45 кг по сравнению с критической массой для 239 Pu, равной 9,6 кг. Так как ядро 239 Pu содержит нечетное число нейтронов, то критическая масса при добавлении в систему воды будет уменьшаться. Критическая масса 238 Pu при добавлении воды увеличивается. Для смеси этих изотопов суммарный эффект добавления воды зависит от соотношения изотопов. При массовом содержании 239 Pu, равном 37% или меньше, критическая масса смеси изотопов 239 Pu и 238 Pu не уменьшается при добавлении в систему воды. В этом случае допустимое количество диоксидов 239 Pu-238 Pu составляет 8 кг. При других

соотношениях диоксидов 238 Pu и 239 Pu минимальное значение критической массы изменяется от 500 г для чистого 239 Pu до 24,6 кг для чистого 238 Pu.

Табл. 6. Зависимость критической массы и критического объёма урана от обогащения по 235 U.

Примечание. I - гомогенная смесь металлического урана и воды; II - гомогенная смесь диоксида урана и воды; III - раствор уранилфторида в воде; IV - раствор уранилнитрата в воде. * Данные, полученные с помощью графической интерполяции.

Другим изотопом с нечетным числом нейтронов является 241 Pu. Минимальное значение критической массы для 241 Pu достигается в водных растворах при концентрации 30 г/л и составляет 232 кг. При получении 241 Pu из облученного горючего ему всегда сопутствует 240 Pu, который по содержанию не превосходит его. При равном отношении нуклидов в смеси изотопов минимальная критическая масса 241 Pu превышает критическую массу 239 Pu. Следовательно, по отношению к минимальной критической массе изотоп 241 Pu при

оценке ядерной безопасности можно заменить 239 Pu, если в смеси изотопов находятся равные количества

241 Pu и 240 Pu.

Табл. 7. Минимальные критические параметры урана с обогащением 100% по 233 U.

Рассмотрим теперь критические характеристики изотопов америция. Присутствие в смеси изотопов 241 Am и 243 Am увеличивает критическую массу 242 m Am. Для водных растворов существует такое соотношение изотопов, при котором система всегда подкритична. При массовом содержании 242 m Am в смеси 241 Am и 242 m Am менее 5% система остается подкритической вплоть до концентрации америция в растворах и механических смесях диоксида с водой, равной 2500 г/л. 243 Am в смеси с 242m Am также увеличивает

критическую массу смеси, но в меньшей степени, так как сечение захвата тепловых нейтронов для 243 Am на порядок ниже, чем у 241 Am

Табл. 8. Критические параметры гомогенных плутониевых (239 Pu+240 Pu) сферических сборок.

Табл. 9. Зависимость критических массы и объема для соединений плутония* от изотопного состава плутония

* Основной нуклид 94 239 Pu.

Примечание . I - гомогенная смесь металлического плутония и воды; II - гомогенная смесь диоксида плутония и воды; IIIгомогенная смесь оксалата плутония и воды; IV - раствор нитрата плутония в воде.

Табл. 10. Зависимость минимальной критической массы 242 m Am от его содержания в смеси 242 m Am и 241 Am (критическая масса рассчитана для AmO2 +H2 O в сферической геометрии с водяным отражателем):

Критическая масса 242 m Am, г

При малой массовой доле 245 Cm нужно учитывать, что 244 Cm также имеет конечную критическую массу в системах без замедлителей. Другие изотопы кюрия с нечетным числом нейтронов имеют минимальную критическую массу в несколько раз большую, чем 245 Cm. В смеси СmО2 + Н2 О изотоп 243 Cm имеет минимальную критическую массу порядка 108 г, a 247 Cm - порядка 1170 г. По отношению к

критической массе можно считать, что 1 г 245 Cm эквивалентен 3 г 243 Cm или 30 г 247 Cm. Минимальная критическая масса 245 Cm, г, в зависимости от содержания 245 Cm в смеси изотопов 244 Cm и 245 Cm для СmО2 +

Н2 О достаточно хорошо описывается формулой

М кр = 35,5 +

ξ + 0,003

где ξ - массовая доля 245 Cm в смеси изотопов кюрия.

Критическая масса зависит от сечения реакции деления. При создании оружия, всяческими ухищрениями можно уменьшить требуемую для взрыва критическую массу. Так, для создания атомной бомбы необходимо 8 кг урана-235 (при имплозивной схеме и в случае чистого урана-235; при использовании же 90% урана-235 и при стволовой схеме атомной бомбы требуется не менее 45 кг оружейного урана). Критическую массу можно существенно уменьшить, окружив образец делящегося вещества слоем материала, отражающего нейтроны, например, бериллия или природного урана. Отражатель возвращает значительную часть нейтронов, вылетающих через поверхность образца. Например, если использовать отражатель толщиной в 5 см, изготовленный из таких материалов, как уран, железо, графит, критическая масса составит половину от критической массы «голого шара». Более толстые отражатели уменьшают критическую массу. Особенно эффективен бериллий, обеспечивающий критическую массу в 1/3 от стандартной критической массы. Система на тепловых нейтронах имеет самый большой критический объем и минимальную критическую массу.

Важную роль играет степень обогащения по делящемуся нуклиду. Природный уран с содержанием 235 U 0,7% не может быть использован для изготовления атомного оружия, поскольку остальной уран (238 U) интенсивно поглощает нейтроны, препятствуя развитию цепного процесса. Поэтому изотопы ураны необходимо разделить, что представляет собой сложную и трудоёмкую задачу. Разделение приходится вести до степеней обогащения по 235 U выше 95%. Попутно необходимо избавляться от примесей элементов с высоким сечением захвата нейтронов.

Замечание. При приготовлении оружейного урана, не просто избавляются от ненужных примесей, а замещают их на другие примеси, способствующие цепному процессу, например, вводят элементы – размножители нейтронов.

Уровень обогащения урана оказывает существенное влияние на величину критической массы. Например, критическая масса урана с обогащением 235 U 50% составляет 160 кг (в 3 раза больше массы 94%- го урана), а критическая масса 20%-го урана составляет 800 кг (то есть в ~15 раз больше, чем критическая масса 94%-го урана). Аналогичные коэффициенты зависимости от уровня обогащения применимы и к оксиду урана.

Критическая масса обратно пропорциональна квадрату плотности материала, М к ~1/ρ 2 , . Так, критическая масса металлического плутония в дельта-фазе (плотность 15,6 г/см3 ) составляет 16 кг. Это обстоятельство учитывается при конструировании компактной атомной бомбы. Поскольку вероятность захвата нейтронов пропорциональна концентрации ядер, увеличение плотности образца, например, в результате его сжатия, способно привести к возникновению в образце критического состояния. В ядерных взрывных устройствах масса делящегося вещества, находящаяся в безопасном подкритическом состоянии переводится во взрывное сверхкритическое с помощью направленного взрыва, подвергающего заряд сильной степени сжатия.



© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний