Граничные и начальные условия. Начальные и граничные условия Краевые начальные и граничные условия

Главная / Иван Бунин

Определяет температуру на поверхности тела в любой момент времени, то есть

T s = T s (x, y, z, t) (2.15)

Рис. 2.4 – Изотермическое граничное условие.

Как бы не изменялась температура внутри тела, температура точек на поверхности подчиняется уравнению (2.15).

Кривая распределения температуры в теле (рис. 2.4) на границе тела имеет заданную ординату T s , которая может изменяться во времени. Частным случаем граничного условия первого рода является изотермическое граничное условие, при котором температура поверхности тела остается в течение всего процесса теплопередачи постоянной:

T s = const.

Рис. 2.5 – Условие первого рода

Чтобы представить себе такое состояние тела необходимо предположить, что симметрично источнику тепла, действующему в теле, действует другой, фиктивный источник тепла вне его с отрицательным знаком (так называемый сток тепла). Причем свойства этого стока теплоты в точности совпадают со свойствами действительного источника тепла, а распределение температур описывается одинаковым математическим выражением. Суммарное действие этих источников приведет к тому, что на поверхности тела установится постоянная температура, в частном случае Т = 0 8С , в то время как в пределах тела температура точек непрерывно меняется.

Граничное условие второго рода

Определяет плотность теплового потока в любой точке поверхности тела в любой момент времени, т.е.

По закону Фурье плотность теплового потока прямо пропорциональна градиенту температуры. Поэтому температурное поле на границе имеет заданный градиент (рис. б), в частном случае постоянные, когда

Частным случаем граничного условия второго рода является адиабатическое граничное условие, когда тепловой поток через поверхность тела равен нулю (рис. 2.6), т.е.

Рис. 2.6 - Граничное условие второго рода

В технических расчетах часто встречаются случаи, когда тепловой поток с поверхности тела мал по сравнению с потоками внутри тела. Тогда можно принять эту границу как адиабатическую. При сварке такой случай может быть представлен следующей схемой (Рис. 2.7).

Рис. 2.7 – Условие второго рода

В точке О действует источник тепла. Чтобы выполнить условие – граница не пропускает тепло, необходимо симметрично этому источнику поместить такой же источник вне тела, в точке О 1 , причем тепловой поток от него направлен против потока основного источника. Они взаимно уничтожаются, то есть граница тепла не пропускает. Однако температура края тела окажется вдвое больше, если бы это тело было бесконечным. Этот прием компенсации теплового потока носит название метода отражения, так как в этом случае теплонепроницаемая граница, может рассматриваться как граница, отражающая тепловой поток, идущий со стороны металла.

Граничное условие третьего рода.

Определяет температуру окружающей среды и закон теплообмена между поверхностью тела и окружающей средой. Наиболее простую форму граничного условия третьего рода получим, если теплообмен на границе зададим уравнение Ньютона, которое выражает, что плотность теплового потока теплоотдачи через граничную поверхность прямо пропорциональную разности температур граничной поверхности и окружающей среды

Плотность теплового потока, подтекающая к граничной поверхности со стороны тела, по закону Фурье прямо пропорционально градиенту температуры на граничной поверхности:

Приравнивая поток теплоты, поступающей со стороны тела, к потоку теплоотдачи, получаем граничное условие 3-го рода:

,

выражающее, что градиент температуры на граничной поверхности прямо пропорционален перепаду температуры между поверхностью тела и окружающей средой. Это условие требует, чтобы касательная к кривой распределения температуры в граничной точке переходит через направляющую точку О с температурой , находящуюся вне тела на расстоянии от граничной поверхности (рис. 2.8).

Рисунок 2.8 – Граничное условие 3 рода

Из граничного условия 3-го рода можно получить как частный случай изотермическое граничное условие. Если , что имеет место при очень большом коэффициенте теплоотдачи или очень малом коэффициенте теплопроводности , то:

и , т.е. температура поверхности тела постоянна в течение всего процесса теплообмена и равна температуре окружающей среды.

U| x=0 = g 1 (t), U| x=l = g 2 (t)

Эти условия физически означают, что на концах заданы режимы колебаний.

II. Граничные условия второго рода

U x | x=0 = g 1 (t), U x | x=l = g 2 (t)

Такие условия соответствуют тому, что на концах заданы силы.

III. Граничные условия третьего рода

(U x 1 U)| x=0 = g 1 (t) , (U x –σ 2 U)| x=l = g 2 (t)

Эти условия соответствуют упругому закреплению концов.

Граничные условия (5), (6) и (7) называются однородными, если правые части g 1 (t) и g 2 (t) тождественно равны нулю при всех значениях t. Если хотя бы одна из функций в правых частях не равна нулю, то граничные условия называются неоднородными.

Аналогично формулируются граничные условия и в случае трех или четырех переменных при условии, что одна из этих переменных - время. Границей в этих случаях будет или замкнутая кривая Г, ограничивающая некоторую плоскую область, или замкнутая поверхность Ω, ограничивающая область в пространстве. Соответственно изменится и производная от функции, фигурирующая в граничных условиях второго и третьего рода. Это будет производная по нормали n к кривой Г на плоскости или к поверхности Ω в пространстве, причем, как правило, рассматривают нормаль, внешнюю по отношению к области(см.рис.5).

К примеру, граничное условие (однородное) первого рода на плоскости записывается в виде U| Γ =О, в пространствеU| Ω =0. Граничное условие второго рода на плоскости имеет вид ,а в пространстве . Конечно, физический смысл этих условий разный для различных задач.

При постановке начальных и граничных условий возникает задача об отыскании решения дифференциального уравнения, удолетворяющего заданным начальным и граничным (краевым) условиям. Для волнового уравнения (3) или (4), начальных условий U(x,0)=φ(x), U t (x,0)=ψ(x) и в случае граничных условий первого рода (5), задача называетсяпервой начально-краевой задачей для волнового уравнения . Если вместо граничных условий первого рода задавать условия второго рода (6) или третьего рода (7), то задача будет называться, соответственно, второй и третьей начально-краевой задачей . Если граничные условия на разных участках границы имеют различные типы, то такие начально-краевые задачи называют смешанными .

Рассмотрим две типичных электростатических задачи :

1) Найти потенциал электрического поля при неизвестном местоположении исходных зарядов, но заданном электрическом потенциале на границах области. (Например, задача о распределении потенциала электрического поля, создаваемого системой неподвижных проводников, помещенных в вакуум и подключенных к батареям. Здесь можно измерить потенциал каждого проводника, но задать распределение электрических зарядов на проводниках, зависящее от их формы, весьма сложно.)

2) Найти потенциал электрического поля, создаваемого заданным распределением в пространстве электрических зарядов .

Хорошо известно, что прямой метод вычисления потенциала электрического поля в этих задачах состоит в решении уравнения Лапласа (задача 1)

(1)

и уравнения Пуассона (задача 2)

. (2)

Уравнения (1), (2) относится к классу дифференциальных уравнений в частных производных эллиптического типа .

Далее мы будем рассматривать только частный случай эллиптических уравнений для поля  , зависящего от двух пространственных переменных. Совершенно очевидно, что для полного решения задачи уравнения (1), (2) необходимо дополнить граничными условиями. Различают три типа граничных условий:

1) граничные условия Дирихле (значения  задаются на некоторой замкнутой кривой в плоскости (х,у) и, возможно, на некоторых дополнительных кривых, расположенных внутри области (рис. 1));

2) граничные условия Неймана (на границе задается нормальная производная потенциала );

3) смешанная краевая задача (на границе задается линейная комбинация потенциала  и его нормальной производной).

Начальные условия

Для возможности отсчета изменений температуры в точках тела в ту или другую сторону в последующие моменты времени должно быть задано исходное начальное термическое состояние для его каждой точки. Другими словами, должна быть задана непрерывная или разрывная функция координат Т0 (х, у, z), полностью описывающая температурное состояние во всех точках тела в начальный момент времени t = 0, и искомая функция Т (х, у, z, t), являющаяся решением дифференциального уравне­ния (1.8), должна удовлетворять начальному условию

Т (х, у, z, 0i=o = Т0 (х, у, z). (1.11)

Граничные условия

Теплопроводящее тело может находиться в различных условиях внешнего термического воздействия через его поверхность. По­этому из всех решений дифференциального уравнения (1.8) нужно выбрать то, которое удовлетворяет данным условиям на поверхности S, т. е. данным конкретным граничным условиям. Используются следующие формы математического задания гра­ничных условий.

1. Температура в каждой точке поверхности тела может изме­няться с течением времени по конкретному заданному закону, т. е. температура поверхности тела будет представлять непрерыв­ную (или разрывную) функцию координат и времени Ts (х, у, z, і). При этом искомая функция Т (х, у, z, t), являющаяся решением уравнения (1.8), должна удовлетворять граничному условию

Т (х, у, z, 0 Is = Ts (х, у, z, і). (1.12)

В простейших случаях температура на поверхности тела 7 (х, у, z, t) может быть периодической функцией времени или она может быть постоянной.

2. Известен поток тепла через поверхность тела как непре­рывная (или разрывная) функция координат точек поверхности и времени qs (х, у, z, I). Тогда функция Т (х, у, г, I) должна удов­летворять граничному условию:

X grad Т (х, у, z, 0U = Qs (*. У> г> 0- (1 -13)

3. Заданы температура окружающей среды Та и закон тепло­обмена между окружающей средой и поверхностью тела, в ка­честве которого для простоты используется закон Ньютона. В соответствии с этим законом количество теплоты dQ, отдаваемое

за время dt элементом поверхности dS с температурой

Ts (х, у, z, t) в окружающую среду, определяется по формуле

dQ = k (Ts - Та) dS dt, (1.14)

где k - коэффициент теплоотдачи в кал/см2 - сек-°С. С другой сто­роны, в соответствии с формулой (1.6), это же количество тепла подводится к элементу поверхности изнутри и определяется ра­венством

dQ = - х (grad„ 7")s dS dt. (1.15)

Приравнивая (1.14) и (1.15), получим, что искомая функция Т (х, у, z, t) должна удовлетворять граничному условию

(gradnr)s = -±-(Ts-Та). (1.16)

Как отмечалось выше, при стыковании на монтаже двух сек­ций конструкции условия для выполнения сварки являются наиболее тяжелыми. Выполнение сварки всего сечения одно­временно- совершенно невозможно, а поэтому после наложения части швов …

Если на общие деформации сварных конструкций большое влияние оказывает последовательность наложения отдельных швов, то на местные деформации и деформации из плоскости свариваемых листов существенное влияние оказывает метод выполнения каждого шва. …

Как отмечалось выше, при сварке сложных составных сече­ний и конструкций характер возникающих деформаций зависит от порядка наложения швов. Поэтому одним из основных средств борьбы с деформациями при изготовлении сварных конструкций …

), задающее его поведение в начальный момент времени или на границе рассматриваемой области соответственно.

Обычно дифференциальное уравнение имеет не одно решение, а целое их семейство. Начальные и граничные условия позволяют выбрать из него одно, соответствующее реальному физическому процессу или явлению. В теории обыкновенных дифференциальных уравнений доказана теорема существования и единственности решения задачи с начальным условием (т. н. задачи Коши). Для уравнений в частных производных получены некоторые теоремы существования и единственности решений для определённых классов начальных и краевых задач.

Терминология

Иногда к граничным относят и начальные условия в нестационарных задачах, таких как решение гиперболических или параболических уравнений .

Для стационарных задач существует разделение граничных условий на главные и естественные .

Главные условия обычно имеют вид u (∂ Ω) = g {\displaystyle u(\partial \Omega)=g} , где ∂ Ω {\displaystyle \partial \Omega } - граница области Ω {\displaystyle \Omega } .

Естественные условия содержат также и производную решения по нормали к границе.

Пример

Уравнение d 2 y d t 2 = − g {\displaystyle {\frac {d^{2}y}{dt^{2}}}=-g} описывает движение тела в поле земного тяготения . Ему удовлетворяет любая квадратичная функция вида y (t) = − g t 2 / 2 + a t + b , {\displaystyle y(t)=-gt^{2}/2+at+b,} где a , b {\displaystyle a,b} - произвольные числа. Для выделения конкретного закона движения необходимо указать начальную координату тела и его скорость, то есть начальные условия .

Корректность постановки граничных условий

Задачи математической физики описывают реальные физические процессы, а потому их постановка должна удовлетворять следующим естественным требованиям:

  1. Решение должно существовать в каком-либо классе функций;
  2. Решение должно быть единственным в каком-либо классе функций;
  3. Решение должно непрерывно зависеть от данных (начальных и граничных условий, свободного члена, коэффициентов и т. д.).

Требование непрерывной зависимости решения обусловливается тем обстоятельством, что физические данные, как правило, определяются из эксперимента приближённо, и поэтому нужно быть уверенным в том, что решение задачи в рамках выбранной математической модели не будет существенно зависеть от погрешности измерений. Математически это требование можно записать, например, так (для независимости от свободного члена):

Пусть задано два дифференциальных уравнения: L u = F 1 , L u = F 2 {\displaystyle Lu=F_{1},~Lu=F_{2}} с одинаковыми дифференциальными операторами и одинаковыми граничными условиями, тогда их решения будут непрерывно зависеть от свободного члена, если:

∀ ε > 0 ∃ δ > 0: (‖ F 1 − F 2 ‖ < δ) ⇒ (‖ u 1 − u 2 ‖ < ε) {\displaystyle \forall \varepsilon >0~\exists \delta >0:~\left(\|F_{1}-F_{2}\|<\delta \right)\Rightarrow \left(\|u_{1}-u_{2}\|<\varepsilon \right)} , где u 1 {\displaystyle u_{1}} , u 2 {\displaystyle u_{2}} - решения соответствующих уравнений.

Множество функций, для которых выполняются перечисленные требования, называется классом корректности . Некорректную постановку граничных условий хорошо иллюстрирует

Одного уравнения движения (1.116) при математическом описании физического процесса недостаточно. Надо сформулировать условия, достаточные для однозначного определения процесса. При рассмотрении задачи о колебании струны дополнительные условия могут быть двух видов: начальные и граничные (краевые).

Сформулируем дополнительные условия для струны с закрепленными концами. Так как концы струны длины закреплены, то их отклонения в точках и должны быть равны нулю при любых :

, . (1.119)

Условия (1.119) называются граничными условиями; они показывают, что происходит на концах струны на протяжении процесса колебания.

Очевидно, процесс колебаний будет зависеть от того, каким способом струна выводится из состояния равновесия. Удобнее считать, что струна начала колебаться в момент времени . В начальный момент времени всем точкам струны сообщаются некоторые смещения и скорости:

,

, , (1.120)

где и - заданные функции.

Условия (1.120) называются начальными условиями.

Итак, физическая задача о колебаниях струны свелась к следующей математической задаче: найти такое решение уравнения (1.116) (или (1.117) или (1.118)), которое удовлетворяло бы граничным условиям (1.119) и начальным условиям (1.120). Эта задача называется смешанной краевой задачей, так как включает в себя и граничные и начальные условия. Доказано, что при некоторых ограничениях, наложенных на функции и , смешанная задача имеет единственное решение.

Оказывается, что к задаче (1.116), (1.119), (1.120), помимо задачи о колебаниях струны, сводятся многие другие физические задачи: продольные колебания упругого стержня, крутильные колебания вала, колебания жидкостей и газа в трубе и др.

Помимо граничных условий (1.119) возможны граничные условия других типов. Наиболее распространенными являются следующие:

I. , ;

II. , ;

III. , ,

где , - известные функции, а , - известные постоянные.

Приведенные граничные условия называют соответственно граничными условиями первого, второго, третьего рода. Условия I имеют место в том случае, если концы объекта (струна, стержень и т.д.) перемещаются по заданному закону; условия II – в случае, если к концам приложены заданные силы; условия III – в случае упругого закрепления концов.

Если функции, заданные в правой части равенств, равны нулю, то граничные условия называются однородными. Так, граничные условия (1.119) – однородные.

Комбинируя различные перечисленные типы граничных условий, получим шесть типов простейших краевых задач.

Для уравнения (1.116) может быть поставлена и другая задача. Пусть струна достаточно длинная и нас интересует колебание ее точек, достаточно удаленных от концов, причем в течение малого промежутка времени. В этом случае режим на концах не будет оказывать существенного влияния и поэтому его не учитывают; струну же при этом считают бесконечной. Вместо полной задачи ставят предельную задачу с начальными условиями для неограниченной области: найти решение уравнения (1.116) для при , удовлетворяющее начальным условиям:

, .



© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний