Курсовая работа численные методы решения типовых математических задач. Среднеквадратическое приближение функции Среднеквадратическое приближение функций

Главная / Л. Н. Толстой

Часто значения интерполируемой функции у, у 2 , ..., у„ определяются из эксперимента с некоторыми ошибками, поэтому пользоваться точным приближением в узлах интерполяции неразумно. В этом случае более естественно приближать функцию не по точкам, а в среднем, т. е. в одной из норм L p .

Пространство 1 р - множество функций д(х), определенных на отрезке [а,Ь] и интегрируемых по модулю с р-й степенью, если определена норма

Сходимость в такой норме называется сходимостью в среднем. Пространство 1,2 называется гильбертовым, а сходимость в нем - среднеквадратичной.

Пусть заданы функция Дх) и множество функций ф(х) из некоторого линейного нормированного пространства. В контексте проблемы интерполирования, аппроксимации и приближения можно сформулировать следующие две задачи.

Первая задача - это аппроксимация с заданной точностью, т. е. по заданному е найти такую ф(х), чтобы выполнялось неравенство |[Дх) - ф(х)|| г..

Вторая задача - это поиск наилучшего приближения, т. е. поиск такой функции ф*(х), которая удовлетворяет соотношению:

Определим без доказательства достаточное условие существования наи- лучшего приближения. Для этого в линейном пространстве функций выберем множество, параметризованное выражением

где набор функций ф[(х), ..., ф„(х) будем считать линейно независимым.

Можно показать , что в любом нормированном пространстве при линейной аппроксимации (2.16) наилучшее приближение существует, хотя нс во всяком линейном пространстве оно единственно.

Рассмотрим гильбертово пространство ЬгСр) действительных функций, интегрируемых с квадратом с весом р(х) > 0 на [ , где скалярное произведение (g,h ) определено по

формуле:

Подставляя в условие наилучшего приближения линейную комбинацию (2.16), находим

Приравнивая к нулю производные по коэффициентам (Д, k = 1, ..., П, получим систему линейных уравнений

Определитель системы уравнений (2.17) называется определителем Гра- ма. Определитель Грама отличен от нуля, поскольку считается, что система функций ф[(х), ..., ф„(х) линейно независима.

Таким образом, наилучшее приближение существует и единственно. Для его получения необходимо решить систему уравнений (2.17). Если система функций ф1(х), ..., ф„(х) ортогонализирована, т. е. (ф/,ф,) = 5у, где 5, = 1, 8у = О, Щ, ij = 1, ..., п, то система уравнений может быть решена в виде:

Найденные согласно (2.18) коэффициенты Q, ..., й п называются коэффициентами обобщенного ряда Фурье.

Если набор функций ф t (X), ..., ф„(х),... образует полную систему, то в силу равенства Парсеваля при П -» со норма погрешности неограниченно убывает. Это означает, что наилучшсс приближение среднеквадратично сходится к Дх) с любой заданной точностью.

Отметим, что поиск коэффициентов наилучшего приближения с помощью решения системы уравнений (2.17) практически нсреализуем, поскольку с ростом порядка матрицы Грама ее определитель быстро стремится к нулю, и матрица становится плохо обусловленной. Решение системы линейных уравнений с такой матрицей приведет к значительной потере точности. Проверим это.

Пусть в качестве системы функций ф„ i =1, ..., П, выбираются степени, т. е. ф* = X 1 ", 1 = 1, ..., п, тогда, полагая в качестве отрезка аппроксимации отрезок , находим матрицу Грама

Матрицу Грама вида (2.19) называют еще матрицей Гильберта. Это классический пример так называемой плохо обусловленной матрицы.

С помощью MATLAB рассчитаем определитель матрицы Гильберта в форме (2.19) для некоторых первых значений п. В листинге 2.5 приведен код соответствующей программы.

Листинг 23

%Вычисление определителя матриц Гильберта %очищаем рабочую область clear all;

%выберем максимальное значение порядка %матрицы Гильберта птах =6;

%строим цикл для формирования матриц %Гильберта и вычисления их определителей

for n = 1: птах d(n)=det(hi I b(п)); end

%выводим значения определителей %матриц Гильберта

f о г та t short end

После отработки кода листинга 2.5, в командном окне MATLAB должны появиться значения детерминантов матриц Гильберта для первых шести матриц. В таблице ниже приведены соответствующие численные значения порядков матриц (п) и их определителей (d). Из таблицы отчетливо видно, сколь быстро определитель матрицы Гильберта стремится к нулю при росте порядка и, уже начиная с порядков 5, 6, становится неприемлемо малым.

Таблица значений определителя матриц Гильберта

Численная ортогонализация системы функций ф, i = 1, ..., П также приводит к заметной потере точности, поэтому чтобы учитывать большое число членов в разложении (2.16), необходимо либо проводить ортогонализацию аналитически, т. е. точно, либо пользоваться уже готовой системой ортогональных функций.

Если при интерполяции обычно используют в качестве системы базисных функций степени, то при аппроксимации в среднем в качестве базисных функций выбирают многочлены, ортогональные с заданным весом. Наиболее употребительными из них являются многочлены Якоби, частным случаем которых являются многочлены Лежандра и Чебышева. Используют также полиномы Лагсрра и Эрмита. Более подробно об этих полиномах можно узнать, например, в приложении Ортогональные полиномы книги .

Возьмем полуквадратичную систему координат. Это такая система координат, у которой по оси абсцисс шкала квадратичная, т. е. значения делений откладываются согласно выражению , здесь m – масштаб в каких-либо единицах длины, например, в см.

По оси ординат откладывается линейная шкала в соответствии с выражением

Нанесем на эту систему координат опытные точки. Если точки этого графика располагаются приблизительно по прямой, то это подтверждает наше предположение, что зависимость y от x хорошо выражается функцией вида (4.4). Для отыскания коэффициентов a и b можно теперь применить один из рассмотренных выше способов: способ натянутой нити, способ выбранных точек или способ средней.

Способ натянутой нити применяется также, как и для линейной функции.

Способ выбранных точек можем применить так. На прямолинейном графике возьмем две точки (далекие друг от друга). Координаты этих точек обозначим и (x, y ). Тогда можем записать

Из приведенной системы двух уравнений найдем a и b и подставим их в формулу (4.4) и получим окончательный вид эмпирической формулы.

Можно и не строить прямолинейного графика, а взять числа , (x,y ) прямо из таблицы. Однако полученная при таком выборе точек формула будет менее точна.

Процесс преобразования криволинейного графика в прямолинейный называется выравниванием.

Способ средней . Он применяется аналогично как в случае с линейной зависимостью. Разбиваем опытные точки на две группы с одинаковым (или почти одинаковым) числом точек в каждой группе. Равенство (4.4) перепишем так

Находим сумму невязок для точек первой группы и приравниваем нулю. То же делаем для точек второй группы. Получим два уравнения с неизвестными a и b . Решая систему уравнений, найдем a и b .

Заметим, что при применении этого способа не требуется строить приближающую прямую. Точечный график в полуквадратичной системе координат нужен только для проверки того, что функция вида (4.4) подходит для эмпирической формулы.

Пример. При исследовании влияния температуры на ход хронометра получены следующие результаты:

z -20 -15,4 -9,0 -5,4 -0,6 +4,8 +9,4
2,6 2,01 1,34 1,08 0,94 1,06 1,25

При этом нас интересует не сама температура, а ее отклонение от . Поэтому за аргумент примем , где t – температура в градусах Цельсия обычной шкалы.

Нанеся на декартову систему координат соответствующие точки, замечаем, что за приближающую кривую можно принять параболу с осью, параллельной оси ординат (рис.4). Возьмем полуквадратичную систему координат и нанесем на нее опытные точки. Видим, что эти точки достаточно хорошо укладываются на прямой. Значит, эмпирическую формулу

можно искать в виде (4.4).

Определим коэффициенты a и b по методу средней. Для этого разобьем опытные точки на две группы: в первой группе – первые три точки, во второй – остальные четыре точки. Используя равенство (4.5) находим сумму невязок по каждой группе и приравниваем каждую сумму нулю.

3. Среднеквадратическое приближение функции

3.1 Постановка задачи

Разработать схему алгоритма и написать программу на языке Turbo Pascal 7.0 для выполнения среднеквадратического приближения функции, заданной в узлах.

3.2 Математическая формулировка задачи

Пусть имеется множество функций , принадлежащих линейному пространству функций. Под близостью в среднем интерполируемой и интерполирующей функций будем понимать результат оценки интеграла

, (3.1)

где - весовая функция.

Такое приближение называют среднеквадратичным.

3.3 Обзор существующих численных методов решения задачи

Задача среднеквадратичного приближения возникает во многих областях прикладных исследований, например, при статистической обработке данных эксперимента с использованием регрессивного анализа, при оценивании параметров моделей, в задачах фильтрации и т.п.

Когда уровень неопределенности в задании приближаемой функции f(x i), i=1..m, достаточно велик, что характерно для обработки экспериментальных данных, бессмысленно требовать выполнения условий интерполирования; кроме того, число точек задания функции f(x i) часто весьма велико. Все это делает применение интерполирования мало перспективным по причинам плохой обусловленности задачи высокой размерности и проблем сходимости процесса интерполяции

Одной из наиболее простых и, поэтому, широко используемых приближающих функций является алгебраический полином

Метод среднеквадратичного приближения обеспечивает построение полинома Pn(x), исходя из минимизации величины

Рассмотренный метод приближения минимизирует среднеквадратичное уклонение аппроксимирующего полинома от аппроксимируемой функции, но не гарантирует от значительных локальных ошибок. Для предотвращения подобной возможности используют полиномы наилучшего равномерного приближения.

в пространстве параметров a 0 , a 1 ,...,a n. Существуют различные подходы к решению задачи минимизации функции D(a). Простейший из них приводит к необходимости решения нормальной системы линейных алгебраических уравнений

Однако, уже при n > 5 матрица такой системы оказывается настолько плохо обусловленной, что полученные из (3.4) значения a j оказываются мало пригодными для вычисления P n (x). Поэтому, при необходимости построения полиномов наилучшего среднеквадратичного приближения более высоких степеней применяют другие алгоритмы, например, метод сингулярного разложения.

3.4 Численный метод решения задачи

Можно рассмотреть две задачи:

1 - подобрать функцию так, чтобы выполнялось неравенство

2 - найти наилучшее приближение, т.е. такую функцию , чтобы было справедливым соотношение

. (3.6)

Разложим функцию по системе линейно независимых функций :

. (3.7)

В дальнейшем для сокращения записи будем пользоваться определением скалярного произведения в пространстве функций :

.

Подставляя (3.7) в условие (3.6), получим

Дифференцируя это выражение по и приравнивая производные нулю, получим

. (3.8)

Определитель этой системы есть определитель Грама функций . В силу их линейной независимости этот определитель не равен нулю. Следовательно, из системы (3.8) можно найти коэффициенты , определяющие функцию согласно (3.6) и минимизирующие интеграл от погрешности . Таким образом, наилучшее среднеквадратичное приближение существует и оно единственно.

При использовании ортонормированной системы функций система (3.8) упрощается:

,

т.е. являются коэффициентами Фурье, а наилучшее приближение есть ряд Фурье, обрываемый на каком-то члене.

Доказано, что в любом линейно нормированном пространстве при линейной аппроксимации вида (3.4) наилучшее приближение существует, хотя оно может быть не единственным.

В тех случаях, когда функции не ортогональны, при определитель Грама уменьшается, приближаясь к нулю. Тогда система становится плохо обусловленной и ее решение дает большую погрешность. В этой ситуации обычно берут не более пяти-шести членов в сумме (3.7).

В качестве чаще всего используют полиномы Лежандра, Чебышева, Лагерра, Эрмита, ортогональные с заданным весом.

Рассмотрим частный случай, когда необходимо найти наилучшее приближение функции, заданной таблично. Для вещественных функций, заданных на конечном множестве точек, скалярное произведение определяется формулой

, (3.9)

где - число заданных узлов.

Условие наилучшего среднеквадратичного приближения записывается следующим образом:

. (3.10)

Полагая , где , и подставляя этот многочлен в (3.10), придем к системе (3.8), в которой скалярные произведения вычисляют согласно (3.9). Описанная процедура аппроксимации носит название метода наименьших квадратов.

Наиболее употребительный вариант метода наименьших квадратов соответствует случаю степенного вида функций , т.е. , причем .

Система уравнений (3.8) при этом принимает вид

, , (3.11)

Сформировать более высокий уровень абстракции и обобщения, чем тот, на который ориентировалось традиционное преподавание». Следовательно, традиционные формы обучения не в состоянии поднять математическое мышление младших школьников на более высокий уровень. Как же решает эту проблему нетрадиционное обучение? Какие свойства математического мышления развивает решение нестандартных задач? Во- ...

сети, построенной на основе различных топологий. Программное обеспечение прикладных систем, предназначенных для профессиональной деятельности руководителя, включает: · системные программные средства; · базовые пакеты прикладных программ; · средства сетевой поддержки компьютеров в локальных и глобальных сетях; · системы прикладного программирования; · тестовые программные средства. ...

Среднеквадратическое приближение функции.

Рассмотрим задачу наилучшего среднеквадратичного приближения функции полиномом
по системе
.

Определение 1.

Обобщенным полиномом порядка m по системе { k } называется линейная комбинация

где C k – произвольные вещественные коэффициенты.

Задача. Найти полином
, наименее уклоняющийся от функции f в метрике L 2 , т.е. удовлетворяющий условию:

Теорема 1.

Если система
линейно независима, то задача наилучшего среднеквадратичного приближения по этой системе однозначно разрешима.

Запишем квадрат расстояния между функцией и полиномом:

(1)

Очевидно, что величина
- неотрицательно определенная квадратичная функция переменных
, а такая функция достигает минимального значения. Таким образом, решение задачи среднеквадратичного приближения существует.

Докажем единственность решения.

Запишем необходимые условия минимума:

, i=0,…,m .

Вычисляя частные производные по c i выражения (1), получим линейную cистему уравнений:

(2)

Система (2) называется нормальной системой .

Выпишем определитель этой системы

(3)

Определитель системы (3) – так называемый определитель Грама системы
. Известно, что если система
- линейно независима, то определитель
0 (легко доказывается от противного). Согласно условию теоремы
0 и система (2) имеет единственное решение.

1.6. Классические ортогональные многочлены и их применение в задачах приближения функций.

Пусть H- гильбертово пространство со скалярным произведением и, соответственно, нормой
. Важным примером такого пространства является так называемое пространство
- пространство функций f(x), для которых конечен интеграл:

(1)

Здесь h(x)- так называемая весовая функция , удовлетворяющая условиям:


Если же =(0,+), то должно выполняться условие:

т.е. должны существовать любые моменты весовой функции.

Определение 1.

Для
определено скалярное произведение:

(2)

и соответственно норма:

согласно условию (1).

Используя неравенство Коши – Буняковского - Шварца, получаем

Поэтому скалярное произведение существует для

Определение 2.

Расстояние между элементами f и g определяется равенством:

.

Возникает вопрос о том, как понимать нулевой элемент. Если норма
, следует ли отсюда, что f=g? Вводится терминология: f=g почти всюду, то есть они могут отличаться в конечном числе точек.

Определение 3.

f и g ортогональны на отрезке с весом h(x), если =0 (кратко пишут
).

Если в гильбертовом пространстве взять любую линейно независимую систему
, i=0,1,2,…, то ее можно ортогонализировать.

Рассмотрим в качестве примера систему:
При
конечный набор степенных функций линейно независим, поэтому на базе этой системы можно построить ортогональные полиномы. Известна следующая рекуррентная процедура ортогонализации (процедура Грама - Шмидта):

(3)

Коэффициенты b k+1,j определяются из условий ортогональности:

Последовательно умножая (3) на
получаем

(4)

Пример 1.

Пусть h(x)1, =[-1,1].

Построить первые три ортогональных полинома по процедуре (3) - (4).


Далее имеем:

следовательно,

Для системы ортогональных многочленов на отрезке [-1,1] с весом h(x)=1 справедлива формула Родрига:

(5)

Из (5) последовательно получаем:

Получаемые таким образом полиномы называются полиномами Лежандра.

Замечание.

Найденные по процедуре (3) – (4) ортогональные многочлены могут лишь множителями отличаться от тех, которые строятся по явной формуле Родрига (5).

Квадрат нормы у этих полиномов равен:

То есть эти многочлены не нормированы, так как

Для всех классических многочленов существует рекуррентная формула. Для полиномов Лежандра она имеет следующий вид:

Пусть
Рассмотрим среднеквадратичное приближение:

где
- среднеквадратичная ошибка аппроксимации,

- отрезок ряда Фурье для функции f(x) по системе ортогональных многочленов {P k (x)}.

В силу ортогональности многочленов Лежандра, система нормальных уравнений (2) из §1.5 становится диагональной, и ее решение приводит к следующим выражениям для коэффициентов c k:

(7)

то есть обеспечивается минимум нормы в L 2 .

Распишем подробно ошибку аппроксимации

С другой стороны

в силу ортогональности.

Подставляя в (8), получим

. (9)

Пример 2.

Пусть f(x)=|x|.

Аппроксимировать f(x) на [-1,1] в среднеквадратичном многочленом второй степени. Вычислить среднеквадратичную ошибку.

Используем ортогональную систему Лежандра:


Коэффициенты c k находим по формуле (7), учитывая вид полиномов Лежандра:

1.7. Некоторые общие свойства ортогональных полиномов.

    Многочлен P n (x) ортогонален любому алгебраическому многочлену m-ой степени M m (x) при m

M m (x) можно единственным образом представить в виде линейной комбинации многочленов Лежандра:

Равенство (10) тождественное, поэтому коэффициенты a k единственным образом вычисляются путем приравнивания коэффициентов при старших степенях. Умножая обе части (10) на P n (x), имеем

в силу ортогональности системы

    Полином P n (x) имеет на отрезке [-1,1] ровно n действительных и различных корней.

Заметим, что в силу теоремы Гаусса многочлен P n (x) не может иметь более чем n корней (вообще говоря, комплексных). Пусть P n (x) имеет меньше, чем n простых действительных корней. Обозначим их
По этим точкам построим фундаментальный многочлен

Рассмотрим многочлен:
- многочлен степени (k+n), который имеет нули
четной кратности. Значит, новый многочлен
сохраняет знак при переходе через эти нули, т.е. сохраняет знак на [-1,1]. Отсюда следует, что

Но это противоречит свойству 1, так как P n (x) обязательно должен быть ортогонален M k (x).

    Между двумя соседними нулями многочлена P n (x) лежит ровно один нуль многочлена P n-1 (x).

Доказывается по индукции с помощью рекуррентного соотношения (6).

    При n- четном многочлен P n (x) – четная функция от x, при n- нечетном, P n (x) – нечетная функция от x.

Наряду с многочленами Лежандра классическими ортогональными многочленами называют следующие системы многочленов (далее (a,b) – промежуток ортогональности, r(x) – весовая функция).

1) Многочлены Якоби {Р п (l ,m) (х )} - при а = -1, b = 1 r(х ) = (1-х ) l (1 + x ) m , l > -1, m > -1. Специальные частные случаи многочленов Якоби соответствуют следующим значениям l и m: l = m- ультрасферические многочлены (их иногда называют многочленами Гегенбауэра); l = m = - 1 / 2 , т. е. -многочлены Чебышева 1-го рода T n (x ); l = m = 1 / 2 , т. е. - многочлены Чебышева 2-го рода U n (x );

2) Многочлены Лагерра L n (x ) - при а = 0, b = + ∞ и r(х ) = е (их наз. также многочленами Чебышева - Лагерра) и обобщённые многочлены Лагерра - при . 3) М ногочлены Эрмита Н n (х ) - при а = -∞, b = + ∞ и (их называют также многочленами Чебышева - Эрмита).

Пусть в таблице заданы значения функции, полученные, например, из эксперимента, т. е. измеренные с погрешностью. Тогда приближение с использованием аппарата интерполяции , в основе которого приравнивание значений многочлена в узлах интерполяции табличным значениям, нецелесообразно.

При такой постановке задачи следует выполнить приближение в среднем, т. е. описать таблично заданную функцию некоторой достаточно простой аналитической зависимостью, имеющей небольшое количество параметров. Оптимальный выбор этих параметров и позволит выполнить среднеквадратичное приближение функции, заданной таблицей.

Выбор типа аналитической зависимости следует начинать с нанесения табличных данных на координатную плоскость - так будет сформировано поле экспериментальных точек. Сквозь поле этих точек проводится плавная кривая так, чтобы часть точек легли на эту кривую, часть точек были выше, а часть точек оказались ниже проведённой кривой. По виду этой кривой и следует определить тип аналитической зависимости – линейная ли она, степенная, гиперболическая или какая- либо иная.

Однако по графику на глаз весьма трудно выбрать тип аналитической зависимости. Поэтому был предложен способ ориентировочной оценки и выбора типа аналитической зависимости. Этот способ действительно приблизительный и неточный, так как и кривую можно провести по-разному сквозь поле экспериментальных точек, и в таблице взять разные опорные точки для расчёта да и неизвестна точность предлагаемой методики. Вместе с тем в качестве ориентировочного способа выбора типа зависимости его можно рассмотреть.

Предлагается следующий алгоритм действий.

1. В исходной таблице выбрать две далеко отстоящие друг от друга точки с координатами (x 1 ,y 1) и (x n ,y n) - опорные точки, и для каждой пары координат вычислить среднее арифметическое, среднее геометрическое и среднее гармоническое.

2. На кривой, проведённой через поле экспериментальных точек, найти три ординаты, соответствующие найденным абсциссам x ар,x геом,x гарм:

3. Выполнить сравнение найденных на кривой с вычисленными путём вычисления следующих модулей разностей:

4. Из найденных значений выбирается минимальное:

5. Выводы: если минимальным оказалось

Зависимость линейная

Зависимость показательная

Зависимость дробно-линейная

Зависимость логарифмическая

Зависимость степенная

Зависимость гиперболическая

Зависимость дробно-рациональная



Любую из этих зависимостей можно свести к линейной, выполнив преобразование координат или так называемое выравнивание данных.
Таким образом, первый этап завершается выбором вида аналитической зависимости, параметры которой не определены.

Второй этап состоит в определении наилучших значений коэффициентов выбранной аналитической зависимости. Для этого применяют математический метод наименьших квадратов.

В основе метода – минимизация суммы квадратов отклонений заданных табличных значений () от вычисленных по теоретической зависимости (): .

Пусть выбранная зависимость – прямая линия: . Подставим в функционал : . Тогда минимизируется функционал:

Для нахождения наилучших значений коэффициентов и надо найти частные производные от по и и приравнять их нулю:

После преобразований система уравнений приобретает вид:

Решение этой системы линейных уравнений позволяет найти наилучшие значения коэффициентов и линейной зависимости.

Если выбранной зависимостью является квадратичная парабола:

то минимизируется функционал: .

Парабола имеет три варьируемых коэффициента - , наилучшие значения которых следует найти, приравняв нулю частные производные от минимизируемого функционала по искомым коэффициентам . Это позволяет получить следующую систему трёх линейных уравнений для нахождения коэффициентов :

Пример 1. Определить вид зависимости, заданной следующей таблицей.

X
Y 0,55 0,64 0,78 0,85 0,95 0,98 1,06 1,11

Решение.

На координатную плоскость следует нанести заданные в таблице точки – образуется поле экспериментальных данных. Сквозь это поле проводится гладкая кривая.

По таблице выбираются две опорных точки с координатами (3;0,55) и (10;1,11) и для каждой пары абсцисс и ординат вычисляются среднее арифметическое, геометрическое и гармоническое:



Для трёх вычисленных абсцисс по кривой, проведённой через поле экспериментальных точек, определяются три соответствующих ординаты:

Обратить внимание на ориентировочность проводимых вычислений. Далее определяются семь модулей разности:

Получены три минимальных, близких друг к другу значения

На втором этапе следует для каждой из этих зависимостей определить наилучшие значения коэффициентов, применив метод наименьших квадратов, а затем вычислить среднее квадратичное отклонение от заданных табличных значений.

Окончательный выбор аналитической зависимости выполняют по минимальной величине среднего квадратичного отклонения.

Пример 2. В таблице приведены результаты экспериментальных исследований, которые можно аппроксимировать прямой линией. Найти наилучшие значения коэффициентов прямой, применив метод наименьших квадратов.

Решение.

k X k Y k X k Y k X k 2 Y k теор Y k -Y k теор (Y k -Y k теор) 2
66,7 67,50 0,20 0,0400
71,0 284,0 70,98 0,02 0,0004
76,3 763,0 76,20 0,10 0,0100
80,6 1209,0 80,55 0,05 0,0025
85,7 1799,7 85,77 - 0,07 0,0049
92,9 2694,1 92,73 0,17 0,0289
99,4 3578,4 98,82 0,58 0,3364
113,6 5793,6 111,87 1,73 2,9929
125,1 8506,8 126,66 - 1,56 2,4336
суммы 811,3 24628,6 5,8496

Общее уравнение прямой: .

Система линейных уравнений, из которой следует определять наилучшие значения коэффициентов и , руководствуясь методом наименьших квадратов, имеет вид:

Подставим в систему уравнений вычисленные суммы из 2-го, 3-го, 4-го и 5-го столбцов последней строки таблицы:

Откуда определены коэффициенты линейной зависимости Значит уравнение теоретической прямой имеет вид:

. (*)

В шестом столбце таблицы приведены вычисленные по теоретическому уравнению значений функции для заданных значений аргумента. В седьмом столбце таблицы приведены значения разностей между заданными значениями функции (3-ий столбец) и теоретическими значениями (6-ой столбец), вычисленными по уравнению (*).

В восьмом столбце приведены квадраты отклонений теоретических значений от экспериментальных и определена сумма квадратов отклонений. Теперь можно найти

Пример 3. Пусть данные эксперимента, приведённые в таблице, аппроксимируются квадратичной параболой: Найти наилучшие значения коэффициентов параболы, применив метод наименьших квадратов.

Решение.

k X k Y k X k 2 X k 3 X k 4 X k Y k X k 2 Y k Y k теор Y k -Y k теор
29,8 29,28 0,52 0,2704
22,9 45,8 91,6 22,22 0,68 0,4624
17,1 68,4 273,6 17,60 -0,50 0,2500
15,1 75,5 377,5 15,56 -0,46 0,2116
10,7 85,6 684,8 11,53 -0,83 0,6889
10,1 101,0 1010,0 10,60 -0,50 0,2500
10,6 127,2 1526,4 11,06 -0,46 0,2116
15,2 228,0 3420,0 14,38 0,82 0,6724
Сум 122,5 731,5 7383,9 3,0173

Система линейных уравнений для определения коэффициентов параболы имеет вид:

Из последней строки таблицы в систему уравнений подставляют соответствующие суммы:

Решение системы уравнений позволяет определить значения коэффициентов:

Итак, заданная таблицей зависимость на отрезке аппроксимируется квадратичной параболой:

Расчёт по приведённой формуле для заданных значений аргумента позволяет сформировать девятый столбец таблицы, содержащий теоретические значения функции.

Сумма квадратов отклонений теоретических значений от экспериментальных приведена в последней строке 11-го столбца таблицы. Это позволяет определить среднее квадратичное отклонение:

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №3

Тема: Методы решения систем уравнений

Метод Гаусса - метод последовательного исключения неизвестных – относится к группе точных методов, и если бы отсутствовала погрешность вычислений, можно было бы получить точное решение.

При ручных расчётах вычисления целесообразно вести в таблице, содержащей столбец контроля. Ниже представлен общий вариант такой таблицы для решения системы линейных уравнений 4-го порядка.

Свободные члены Столбец контроля

Свободные члены Столбец контроля

Пример 1. Методом Гаусса решить систему уравнений 4-го порядка:

Эти приближённые значения корней можно подставить в исходную систему уравнений и вычислить невязки - , являющиеся разностями между правой и левой частями каждого уравнения системы при подстановке в левую часть найденных корней. Затем подставляются в качестве свободных членов системы невязки и получают поправки

корней - :



© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний