Линейная комбинация векторов для чайников. §2.Линейные операции над векторами

Главная / Уильям Шекспир

Понятие вектора

Определение 1. Вектором называется направленный отрезок (или, что то же, упорядоченная пара точек).

Обозначают: (точка А-начало вектора), точка В – конец вектора) или одной буквой -.

Определение 2. Длиной вектора (модулем) называется расстояние между началом и концом вектора. Длина вектора обозначаетсяили.

Определение 3. Нулевым вектором называется вектор, у которого начало и конец совпадают. Обозначают:

Определение 4. Единичным вектором называется вектор, длина которого равна единице.

Единичный вектор, имеющий одинаковое направление с данным вектором , называется ортом вектораи обозначается символом.

Определение 5. Векторы называютсяколлинеарными, если они расположены на одной прямой или на параллельных прямых. Нулевой вектор считается коллинеарным любому вектору.

Определение 6. Векторы называютсяравными , если они коллинеарны, имеют одинаковые длины и одинаковое направление.

Линейные операции над векторами

Определение 7. Линейными операциями над векторами называются сложение векторов и умножение вектора на число.

Определение 8. Суммой двух векторови называется вектор, который идет из начала векторав конец векторапри условии, что векторприложен к концу вектора(правило треугольника). В случае неколлинеарных векторовиможно вместо правила треугольника использовать правило параллелограмма: если векторыиотложены от общего начала и на них построен параллелограмм, то суммаесть вектор, совпадающий с диагональю этого параллелограмма, идущего из общего началаи.

Определение 9. Разностью двух векторов иназывается вектор, который в сумме с векторомсоставляет вектор. Если два вектораиотложены от общего начала, то их разность есть вектор, исходящий из конца вектора(«вычитаемого») к концу вектора(«уменьшаемого»).

Определение 10. Два коллинеарных вектора равной длины, направленные в противоположные стороны, называются противоположными. Вектор, противоположный вектору, обозначается.

Произведение вектора на числообозначают α.

Некоторые свойства линейных операций

7) ;

Теорема 1. (О коллинеарных векторах). Еслии– два коллинеарных вектора, причем вектор-ненулевой, то существует единственное число х такое, что=х

В частности, ненулевой вектор и его ортсвязаны равенством:=·.

Сформулированные свойства линейных операций позволяют преобразовать выражения, составленные из векторов, по обычным правилам алгебры: можно раскрыть скобки, приводить подобные члены, переносить некоторые члены в другую часть равенства с противоположным знаком и т.д.

Пример 1.

Доказать равенства:

и выяснить, каков их геометрический смысл.

Решение. а) В левой части равенства раскроем скобки, приведем подобные члены, получим вектор в правой части. Поясним это равенство геометрически. Пусть даны два вектораи, отложим их от общего начала и посмотрим параллелограмм и его диагонали, получим:

§2 Линейная комбинация векторов

Векторный базис на плоскости и в пространстве.

Определение 1. Линейной комбинацией векторов , ,называется сумма произведений этих векторов на какие-нибудь числа,,:++.

Определение 2. Векторным базисом в данной плоскости называется любая пара неколлинеарных векторовиэтой плоскости.

Вектор называют при этом первым базисным вектором, вектор-вторым.

Справедлива следующая теорема.

Теорема 1. Если базис,– векторный базис в плоскости, тогда любой векторэтой плоскости может быть представлен, и притом единственным образом, в виде линейной комбинации базисных векторов:= х+у. (*)

Определение 3. Равенство(*) называют, а числа х и у –координатами вектора в базисе, (илиотносительно базиса , ). Если заранее ясно, о каком базисе идет речь, то пишут кратко:={x,y}. Из определения координат вектора относительно базиса следует, что равные векторы имеют соответственно равные координаты.

Два и более векторов в пространстве называются компланарными, если они параллельны одной и той же плоскости или лежат в этой плоскости.

Определение 4. Векторным базисом в пространстве называют любые три вектора, ,.

Вектор называют при этом первым базисным вектором,- вторым,-третьим.

Замечание. 1. Три вектора= {},= {} и= {} образуют базис пространства, если определитель, составленный из их координат, отличен от нуля:

.

2. Основные положения теории определителей и способы их вычисления рассмотрены в модуле 1 «линейная алгебра».

Теорема 2. Пусть, ,- векторный базис в пространстве. Тогда любой векторв пространстве может быть представлен, и притом единственным образом, в виде линейной комбинации базисных векторов, и:

Х+у+z. (**)

Определение 5. Равенство (**) называютразложением вектора по базису, ,, а числаx,y,z–координатами (компонентами) векторав базисе, ,.

Если заранее ясно, о каком базисе идет речь, то пишут кратко: = {x,y,z}.

Определение 6. Базис, ,называетсяортонормированным, если векторы, ,попарно перпендикулярны и имеют единичную длину. В этом случае приняты обозначения,,.

Действия над векторами, заданными своими координатами.

Теорема 3. Пусть на плоскости выбран векторный базис, и относительно его векторыизаданы своими координатами:= {},= {}.

Тогда ={},={}, т.е. при сложении или вычитании векторов складываются или вычитаются их одноименные координаты;= {·;}, т.е. при умножении вектора на число его координаты умножаются на это число.

Условие коллинеарности двух векторов

Теорема 4. Векторколлинеарен ненулевому векторув том и только том случае, когда координаты векторапропорциональны соответственным координатам векторат.е.

Линейные операции над векторами, заданными своими координатами в пространстве, производятся аналогично.

Пример 1. Пусть даны векторы= {1;2;-1} ,= {3;2;1}, = {1;0;1} в некотором векторном базисе, ,. Найти координаты линейной комбинации 2+3-4.

Решение. Введем обозначение для линейной комбинации=2+3+(-4).

Коэффициенты линейной комбинации =2,=3,=-4. Запишем данное векторное равенство в координатной форме= {x,y,z}=:

2

Очевидно, что каждая координата линейной комбинации векторов равна такой же линейной комбинации одноименных координат, т.е.

х = 2·1+3·3+(-4)·1=7,

у = 2·2+3·2+(-4)·0=10,

z= 2·(-1)+3·1+(-4)·0=-3.

Координаты вектора в базисе , ,будут:

Ответ: = {7,10,-3}.

Общая (аффинная) декартова система координат

Определение 7. Пусть О- некоторая фиксированная точка, которую будем называтьначалом.

Если М- произвольная точка, то вектор называетсярадиус-вектором точки М по отношению к началу, коротко, радиус-вектор точки М.

Декартовы (аффинные) координаты на прямой

Пусть дана в пространстве некоторая прямая l . Выберем начало О лежащим на этой прямой. Кроме того, выберем на прямойl ненулевой вектор, который будем называть базисным.

Определение 8. Пусть точка М лежит на прямойl. Так как векторыиколлинеарны, то=х, где х- некоторое число. Это число назовемкоординатой точки М на прямой.

Начало О имеет положительные или отрицательные координаты, в зависимости от того, совпадают ли направления векторов иили они противоположны. Прямуюl, на которой координаты, будем называть осью координат или осью ОХ.

Введение координат на прямой соответствует единственное число х, и наоборот, существует единственная точка М, для которой это число является координатой.

Декартовы (аффинные) координаты на плоскости.

Выберем на плоскости О два неколлинеарных вектора и, образующих некоторый базис. Очевидно, что длины векторовимогут быть различны.

Определение 9. Совокупность {0;;} точки О и векторного базиса, называют декартовой (аффинной) системой на плоскости.

Две прямые, проходящие через О и параллельные соответственно векторам , называют осями координат. Первую из них обычно называют осью абсцисс и обозначают Ох, вторую- осью ординат и обозначают Оу.

Будем всегда изображать илежащими на соответствующих осях координат.

Определение 10. Координатами точки М на плоскости относительно декартовой (аффинной) системы координат {0;;} называют координаты ее радиус-векторапо базису,:

Х+у, тогда числа х и у будет координатами М относительно декартовой(аффинной) системы координат {0;;}. Координату х называютабсциссой точки М, координату у-ординатой точки М.

Итак, если выбрана система координат, {0;;} на плоскости, то каждой точке М плоскости соответствует единственная точка М на плоскости: эта точка является концом вектора

Введение системы координат лежит в основе метода аналитической геометрии, сущность которой состоит в том, чтобы уметь сводить любую геометрическую задачу к задачам арифметики или алгебры.

Определение 11. Координатами вектора на плоскости относительно декартовой системы координат {0;;} называют координаты этого вектора в базисе,.

Чтобы найти координаты вектора , надо разложить его по базису ,:

Х+у, где коэффициенты х,у и будут координатами вектора относительно декартовой системы {0;;}.

Декартова (аффинная) система координат в пространстве.

Пусть в пространстве зафиксирована некоторая точка О(начало) и выбран векторный базис

Определение 12. Совокупность {0;;;}называютдекартовой системой координат в пространстве.

Определение 13. Три прямые проходящие через О и параллельные соответственно векторам, ,, называютосями координат и обозначают соответственно Оz,Oy,Oz.Мы будем всегда изображать векторы, ,лежащими на соответственных осях.

Определение 14. Координатами точки М в пространстве относительно декартовой системы координат {0;;;} называют координаты ее радиус-векторав этой системе.

Иначе говоря, координаты точки М – это такие три числа х,у,zсоответственно абсцисса и ордината точки М; третью координатуzназывают аппликатой точки М.

Введение в пространстве декартовой системы координат позволяет установить взаимно-однозначное соответствие между точками М пространства и упорядоченными тройками чисел x,y,z.

Определение 15. Координатами вектора в пространстве относительно декартовой системы координат {0;;;}называют координаты этого вектора в базисе;;.

Пример 2.

Даны три последовательные вершины параллелограмма А(-2;1),В(1;3),С(4;0). Найти четвертую его координату D. Система координат аффинная.

Решение.

Векторы иравны, значит, равны их координаты (коэффициенты линейной комбинации):

= {3;2}, ={4-x;-y};. Значит,D(1;-2).

Ответ: D(1;-2).

Линейная зависимость. Понятие базиса

Определение 16. Векторы , называют линейно зависимыми, если существуют числа ,

Это определение линейной зависимости векторов ,эквивалентно такому: векторы,линейно зависимы, если один из них можно представить в виде линейной комбинации остальных (или разложить по остальным).

Векторы ,называются линейно зависимыми, если равенство (***) возможно в единственном случае, когда

Понятие линейной зависимости играет большую роль в линейной алгебре. В векторной алгебре линейная зависимость имеет простой геометрический смысл.

    Любые два коллинеарных вектора линейно зависимы, и наоборот, два неколлинеарных вектора линейно независимы.

    Три компланарных вектора линейно зависимы, и наоборот, три некомпланарных вектора линейно независимы.

    Каждые четыре вектора линейно зависимы.

Определение 17. Три линейно независимых вектора называютсябазисом пространства, т.е. любой векторможет быть представлен в виде некоторой.

Определение 18. Два лежащих в плоскости линейно независимых вектора называютбазисом плоскости, т.е. любой лежащий в этой плоскости вектор может быть представлен в виде линейной комбинации векторов.

Задания для самостоятельного решения.

векторы найти в этом базисе координаты.

В данной статье мы расскажем:

  • что такое коллинеарные векторы;
  • какие существуют условия коллинеарности векторов;
  • какие существуют свойства коллинеарных векторов;
  • что такое линейная зависимость коллинеарных векторов.
Определение 1

Коллинеарные векторы - это векторы, которые являются параллелями одной прямой или лежат на одной прямой.

Пример 1

Условия коллинеарности векторов

Два векторы являются коллинеарными, если выполняется любое из следующих условий:

  • условие 1 . Векторы a и b коллинеарны при наличии такого числа λ , что a = λ b ;
  • условие 2 . Векторы a и b коллинеарны при равном отношении координат:

a = (a 1 ; a 2) , b = (b 1 ; b 2) ⇒ a ∥ b ⇔ a 1 b 1 = a 2 b 2

  • условие 3 . Векторы a и b коллинеарны при условии равенства векторного произведения и нулевого вектора:

a ∥ b ⇔ a , b = 0

Замечание 1

Условие 2 неприменимо, если одна из координат вектора равна нулю.

Замечание 2

Условие 3 применимо только к тем векторам, которые заданы в пространстве.

Примеры задач на исследование коллинеарности векторов

Пример 1

Исследуем векторы а = (1 ; 3) и b = (2 ; 1) на коллинеарность.

Как решить?

В данном случае необходимо воспользоваться 2-м условием коллинеарности. Для заданных векторов оно выглядит так:

Равенство неверное. Отсюда можно сделать вывод, что векторы a и b неколлинеарны.

Ответ : a | | b

Пример 2

Какое значение m вектора a = (1 ; 2) и b = (- 1 ; m) необходимо для коллинеарности векторов?

Как решить?

Используя второе условие коллинераности, векторы будут коллинеарными, если их координаты будут пропорциональными:

Отсюда видно, что m = - 2 .

Ответ: m = - 2 .

Критерии линейной зависимости и линейной независимости систем векторов

Теорема

Система векторов векторного пространства линейно зависима только в том случае, когда один из векторов системы можно выразить через остальные векторы данной системы.

Доказательство

Пусть система e 1 , e 2 , . . . , e n является линейно зависимой. Запишем линейную комбинацию этой системы равную нулевому вектору:

a 1 e 1 + a 2 e 2 + . . . + a n e n = 0

в которой хотя бы один из коэффициентов комбинации не равен нулю.

Пусть a k ≠ 0 k ∈ 1 , 2 , . . . , n .

Делим обе части равенства на ненулевой коэффициент:

a k - 1 (a k - 1 a 1) e 1 + (a k - 1 a k) e k + . . . + (a k - 1 a n) e n = 0

Обозначим:

A k - 1 a m , где m ∈ 1 , 2 , . . . , k - 1 , k + 1 , n

В таком случае:

β 1 e 1 + . . . + β k - 1 e k - 1 + β k + 1 e k + 1 + . . . + β n e n = 0

или e k = (- β 1) e 1 + . . . + (- β k - 1) e k - 1 + (- β k + 1) e k + 1 + . . . + (- β n) e n

Отсюда следует, что один из векторов системы выражается через все остальные векторы системы. Что и требовалось доказать (ч.т.д.).

Достаточность

Пусть один из векторов можно линейно выразить через все остальные векторы системы:

e k = γ 1 e 1 + . . . + γ k - 1 e k - 1 + γ k + 1 e k + 1 + . . . + γ n e n

Переносим вектор e k в правую часть этого равенства:

0 = γ 1 e 1 + . . . + γ k - 1 e k - 1 - e k + γ k + 1 e k + 1 + . . . + γ n e n

Поскольку коэффициент вектора e k равен - 1 ≠ 0 , у нас получается нетривиальное представление нуля системой векторов e 1 , e 2 , . . . , e n , а это, в свою очередь, означает, что данная система векторов линейно зависима. Что и требовалось доказать (ч.т.д.).

Следствие:

  • Система векторов является линейно независимой, когда ни один из ее векторов нельзя выразить через все остальные векторы системы.
  • Система векторов, которая содержит нулевой вектор или два равных вектора, линейно зависима.

Свойства линейно зависимых векторов

  1. Для 2-х и 3-х мерных векторов выполняется условие: два линейно зависимых вектора - коллинеарны. Два коллинеарных вектора - линейно зависимы.
  2. Для 3-х мерных векторов выполняется условие: три линейно зависимые вектора - компланарны. (3 компланарных вектора - линейно зависимы).
  3. Для n-мерных векторов выполняется условие: n + 1 вектор всегда линейно зависимы.

Примеры решения задач на линейную зависимость или линейную независимость векторов

Пример 3

Проверим векторы a = 3 , 4 , 5 , b = - 3 , 0 , 5 , c = 4 , 4 , 4 , d = 3 , 4 , 0 на линейную независимость.

Решение. Векторы являются линейно зависимыми, поскольку размерность векторов меньше количества векторов.

Пример 4

Проверим векторы a = 1 , 1 , 1 , b = 1 , 2 , 0 , c = 0 , - 1 , 1 на линейную независимость.

Решение. Находим значения коэффициентов, при которых линейная комбинация будет равняться нулевому вектору:

x 1 a + x 2 b + x 3 c 1 = 0

Записываем векторное уравнение в виде линейного:

x 1 + x 2 = 0 x 1 + 2 x 2 - x 3 = 0 x 1 + x 3 = 0

Решаем эту систему при помощи метода Гаусса:

1 1 0 | 0 1 2 - 1 | 0 1 0 1 | 0 ~

Из 2-ой строки вычитаем 1-ю, из 3-ей - 1-ю:

~ 1 1 0 | 0 1 - 1 2 - 1 - 1 - 0 | 0 - 0 1 - 1 0 - 1 1 - 0 | 0 - 0 ~ 1 1 0 | 0 0 1 - 1 | 0 0 - 1 1 | 0 ~

Из 1-й строки вычитаем 2-ю, к 3-ей прибавляем 2-ю:

~ 1 - 0 1 - 1 0 - (- 1) | 0 - 0 0 1 - 1 | 0 0 + 0 - 1 + 1 1 + (- 1) | 0 + 0 ~ 0 1 0 | 1 0 1 - 1 | 0 0 0 0 | 0

Из решения следует, что у системы множество решений. Это значит, что существует ненулевая комбинация значения таких чисел x 1 , x 2 , x 3 , при которых линейная комбинация a , b , c равняется нулевому вектору. Следовательно, векторы a , b , c являются линейно зависимыми. ​​​​​​​

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Линейная зависимость и линейная независимость векторов.
Базис векторов. Аффинная система координат

В аудитории находится тележка с шоколадками, и каждому посетителю сегодня достанется сладкая парочка – аналитическая геометрия с линейной алгеброй. В данной статье будут затронуты сразу два раздела высшей математики, и мы посмотрим, как они уживаются в одной обёртке. Сделай паузу, скушай «Твикс»! …блин, ну и чушь спорол. Хотя ладно, забивать не буду, в конце концов, на учёбу должен быть позитивный настрой.

Линейная зависимость векторов , линейная независимость векторов , базис векторов и др. термины имеют не только геометрическую интерпретацию, но, прежде всего, алгебраический смысл . Само понятие «вектор» с точки зрения линейной алгебры – это далеко не всегда тот «обычный» вектор, который мы можем изобразить на плоскости или в пространстве. За доказательством далеко ходить не нужно, попробуйте нарисовать вектор пятимерного пространства . Или вектор погоды, за которым я только что сходил на Гисметео: – температура и атмосферное давление соответственно. Пример, конечно, некорректен с точки зрения свойств векторного пространства, но, тем не менее, никто не запрещает формализовать данные параметры вектором. Дыхание осени….

Нет, я не собираюсь грузить вас теорией, линейными векторными пространствами, задача состоит в том, чтобы понять определения и теоремы. Новые термины (линейная зависимость, независимость, линейная комбинация, базис и т.д.) приложимы ко всем векторам с алгебраической точки зрения , но примеры будут даны геометрические. Таким образом, всё просто, доступно и наглядно. Помимо задач аналитической геометрии мы рассмотрим и некоторые типовые задания алгебры . Для освоения материала желательно ознакомиться с уроками Векторы для чайников и Как вычислить определитель?

Линейная зависимость и независимость векторов плоскости.
Базис плоскости и аффинная система координат

Рассмотрим плоскость вашего компьютерного стола (просто стола, тумбочки, пола, потолка, кому что нравится). Задача будет состоять в следующих действиях:

1) Выбрать базис плоскости . Грубо говоря, у столешницы есть длина и ширина, поэтому интуитивно понятно, что для построения базиса потребуется два вектора. Одного вектора явно мало, три вектора – лишка.

2) На основе выбранного базиса задать систему координат (координатную сетку), чтобы присвоить координаты всем находящимся на столе предметам.

Не удивляйтесь, сначала объяснения будут на пальцах. Причём, на ваших. Пожалуйста, поместите указательный палец левой руки на край столешницы так, чтобы он смотрел в монитор. Это будет вектор . Теперь поместите мизинец правой руки на край стола точно так же – чтобы он был направлен на экран монитора. Это будет вектор . Улыбнитесь, вы замечательно выглядите! Что можно сказать о векторах ? Данные векторы коллинеарны , а значит, линейно выражаются друг через друга:
, ну, или наоборот: , где – некоторое число, отличное от нуля.

Картинку сего действа можно посмотреть на уроке Векторы для чайников , где я объяснял правило умножения вектора на число.

Будут ли ваши пальчики задавать базис на плоскости компьютерного стола? Очевидно, что нет. Коллинеарные векторы путешествуют туда-сюда по одному направлению, а у плоскости есть длина и ширина.

Такие векторы называют линейно зависимыми .

Справка: Слова «линейный», «линейно» обозначают тот факт, что в математических уравнениях, выражениях нет квадратов, кубов, других степеней, логарифмов, синусов и т.д. Есть только линейные (1-й степени) выражения и зависимости.

Два вектора плоскости линейно зависимы тогда и только тогда , когда они коллинеарны .

Скрестите пальцы на столе, чтобы между ними был любой угол, кроме 0 или 180 градусов. Два вектора плоскости линейно не зависимы в том и только том случае, если они не коллинеарны . Итак, базис получен. Не нужно смущаться, что базис получился «косым» с неперпендикулярными векторами различной длины. Очень скоро мы увидим, что для его построения пригоден не только угол в 90 градусов, и не только единичные, равные по длине векторы

Любой вектор плоскости единственным образом раскладывается по базису :
, где – действительные числа . Числа называют координатами вектора в данном базисе.

Также говорят, что вектор представлен в виде линейной комбинации базисных векторов . То есть, выражение называют разложением вектора по базису или линейной комбинацией базисных векторов.

Например, можно сказать, что вектор разложен по ортонормированному базису плоскости , а можно сказать, что он представлен в виде линейной комбинации векторов .

Сформулируем определение базиса формально: Базисом плоскости называется пара линейно независимых (неколлинеарных) векторов , , при этом любой вектор плоскости является линейной комбинацией базисных векторов.

Существенным моментом определения является тот факт, что векторы взяты в определённом порядке . Базисы – это два совершенно разных базиса! Как говорится, мизинец левой руки не переставишь на место мизинца правой руки.

С базисом разобрались, но его недостаточно, чтобы задать координатную сетку и присвоить координаты каждому предмету вашего компьютерного стола. Почему недостаточно? Векторы являются свободными и блуждают по всей плоскости. Так как же присвоить координаты тем маленьким грязным точкам стола, которые остались после бурных выходных? Необходим отправной ориентир. И таким ориентиром является знакомая всем точка – начало координат. Разбираемся с системой координат:

Начну со «школьной» системы. Уже на вступительном уроке Векторы для чайников я выделял некоторые различия между прямоугольной системой координат и ортонормированным базисом . Вот стандартная картина:

Когда говорят о прямоугольной системе координат , то чаще всего имеют в виду начало координат, координатные оси и масштаб по осям. Попробуйте набрать в поисковике «прямоугольная система координат», и вы увидите, что многие источники вам будут рассказывать про знакомые с 5-6-го класса координатные оси и о том, как откладывать точки на плоскости.

С другой стороны, создается впечатление, что прямоугольную систему координат вполне можно определить через ортонормированный базис . И это почти так. Формулировка звучит следующим образом:

началом координат , и ортонормированный базис задают декартову прямоугольную систему координат плоскости . То есть, прямоугольная система координат однозначно определяется единственной точкой и двумя единичными ортогональными векторами . Именно поэтому, вы видите чертёж, который я привёл выше – в геометрических задачах часто (но далеко не всегда) рисуют и векторы, и координатные оси.

Думаю, всем понятно, что с помощью точки (начала координат) и ортонормированного базиса ЛЮБОЙ ТОЧКЕ плоскости и ЛЮБОМУ ВЕКТОРУ плоскости можно присвоить координаты. Образно говоря, «на плоскости всё можно пронумеровать».

Обязаны ли координатные векторы быть единичными? Нет, они могут иметь произвольную ненулевую длину. Рассмотрим точку и два ортогональных вектора произвольной ненулевой длины:


Такой базис называется ортогональным . Начало координат с векторами задают координатную сетку, и любая точка плоскости, любой вектор имеют свои координаты в данном базисе. Например, или . Очевидное неудобство состоит в том, что координатные векторы в общем случае имеют различные длины, отличные от единицы. Если длины равняются единице, то получается привычный ортонормированный базис.

! Примечание : в ортогональном базисе, а также ниже в аффинных базисах плоскости и пространства единицы по осям считаются УСЛОВНЫМИ . Например, в одной единице по оси абсцисс содержится 4 см, в одной единице по оси ординат 2 см. Данной информации достаточно, чтобы при необходимости перевести «нестандартные» координаты в «наши обычные сантиметры».

И второй вопрос, на который уже на самом деле дан ответ – обязательно ли угол между базисными векторами должен равняться 90 градусам? Нет! Как гласит определение, базисные векторы должны быть лишь неколлинеарными . Соответственно угол может быть любым, кроме 0 и 180 градусов.

Точка плоскости, которая называется началом координат , и неколлинеарные векторы , , задают аффинную систему координат плоскости :


Иногда такую систему координат называют косоугольной системой. В качестве примеров на чертеже изображены точки и векторы:

Как понимаете, аффинная система координат ещё менее удобна, в ней не работают формулы длин векторов и отрезков, которые мы рассматривали во второй части урока Векторы для чайников , многие вкусные формулы, связанные со скалярным произведением векторов . Зато справедливы правила сложения векторов и умножения вектора на число, формулы деления отрезка в данном отношении , а также ещё некоторые типы задач, которые мы скоро рассмотрим.

А вывод таков, что наиболее удобным частным случаем аффинной системы координат является декартова прямоугольная система. Поэтому её, родную, чаще всего и приходится лицезреть. …Впрочем, всё в этой жизни относительно – существует немало ситуаций, в которых уместна именно косоугольная (или какая-набудь другая, например, полярная ) система координат. Да и гуманоидам такие системы могут прийтись по вкусу =)

Переходим к практической части. Все задачи данного урока справедливы как для прямоугольной системы координат, так и для общего аффинного случая. Сложного здесь ничего нет, весь материал доступен даже школьнику.

Как определить коллинеарность векторов плоскости?

Типовая вещь. Для того чтобы два вектора плоскости были коллинеарны, необходимо и достаточно, чтобы их соответствующие координаты были пропорциональны .По существу, это покоординатная детализация очевидного соотношения .

Пример 1

а) Проверить, коллинеарны ли векторы .
б) Образуют ли базис векторы ?

Решение:
а) Выясним, существует ли для векторов коэффициент пропорциональности , такой, чтобы выполнялись равенства :

Обязательно расскажу о «пижонской» разновидности применения данного правила, которая вполне прокатывает на практике. Идея состоит в том, чтобы сразу составить пропорцию и посмотреть, будет ли она верной:

Составим пропорцию из отношений соответствующих координат векторов:

Сокращаем:
, таким образом, соответствующие координаты пропорциональны, следовательно,

Отношение можно было составить и наоборот, это равноценный вариант:

Для самопроверки можно использовать то обстоятельство, что коллинеарные векторы линейно выражаются друг через друга. В данном случае имеют место равенства . Их справедливость легко проверяется через элементарные действия с векторами:

б) Два вектора плоскости образуют базис, если они не коллинеарны (линейно независимы). Исследуем на коллинеарность векторы . Составим систему:

Из первого уравнения следует, что , из второго уравнения следует, что , значит, система несовместна (решений нет). Таким образом, соответствующие координаты векторов не пропорциональны.

Вывод : векторы линейно независимы и образуют базис.

Упрощённая версия решения выглядит так:

Составим пропорцию из соответствующих координат векторов :
, значит, данные векторы линейно независимы и образуют базис.

Обычно такой вариант не бракуют рецензенты, но возникает проблема в тех случаях, когда некоторые координаты равны нулю. Вот так: . Или так: . Или так: . Как тут действовать через пропорцию? (действительно, на ноль же делить нельзя). Именно по этой причине я и назвал упрощенное решение «пижонским».

Ответ: а) , б) образуют.

Небольшой творческий пример для самостоятельного решения:

Пример 2

При каком значении параметра векторы будут коллинеарны?

В образце решения параметр найден через пропорцию .

Существует изящный алгебраический способ проверки векторов на коллинеарность., систематизируем наши знания и пятым пунктом как раз добавим его:

Для двух векторов плоскости эквивалентны следующие утверждения :

2) векторы образуют базис;
3) векторы не коллинеарны;

+ 5) определитель, составленный из координат данных векторов, отличен от нуля .

Соответственно, эквивалентны следующие противоположные утверждения :
1) векторы линейно зависимы;
2) векторы не образуют базиса;
3) векторы коллинеарны;
4) векторы можно линейно выразить друг через друга;
+ 5) определитель, составленный из координат данных векторов, равен нулю .

Я очень и очень надеюсь, что на данный момент вам уже понятны все встретившиеся термины и утверждения.

Рассмотрим более подробно новый, пятый пункт: два вектора плоскости коллинеарны тогда и только тогда, когда определитель, составленный из координат данных векторов, равен нулю :. Для применения данного признака, естественно, нужно уметь находить определители .

Решим Пример 1 вторым способом:

а) Вычислим определитель, составленный из координат векторов :
, значит, данные векторы коллинеарны.

б) Два вектора плоскости образуют базис, если они не коллинеарны (линейно независимы). Вычислим определитель, составленный из координат векторов :
, значит, векторы линейно независимы и образуют базис.

Ответ: а) , б) образуют.

Выглядит значительно компактнее и симпатичнее, чем решение с пропорциями.

С помощью рассмотренного материала можно устанавливать не только коллинеарность векторов, но и доказывать параллельность отрезков, прямых. Рассмотрим пару задач с конкретными геометрическими фигурами.

Пример 3

Даны вершины четырёхугольника . Доказать, что четырёхугольник является параллелограммом.

Доказательство : Чертежа в задаче строить не нужно, поскольку решение будет чисто аналитическим. Вспоминаем определение параллелограмма:
Параллелограммом называется четырёхугольник, у которого противоположные стороны попарно параллельны.

Таким образом, необходимо доказать:
1) параллельность противоположных сторон и ;
2) параллельность противоположных сторон и .

Доказываем:

1) Найдём векторы:


2) Найдём векторы:

Получился один и тот же вектор («по школьному» – равные векторы). Коллинеарность совсем очевидна, но решение таки лучше оформить с толком, с расстановкой. Вычислим определитель, составленный из координат векторов :
, значит, данные векторы коллинеарны, и .

Вывод : Противоположные стороны четырёхугольника попарно параллельны, значит, он является параллелограммом по определению. Что и требовалось доказать .

Больше фигур хороших и разных:

Пример 4

Даны вершины четырёхугольника . Доказать, что четырёхугольник является трапецией.

Для более строгой формулировки доказательства лучше, конечно, раздобыть определение трапеции, но достаточно и просто вспомнить, как она выглядит.

Это задание для самостоятельного решения. Полное решение в конце урока.

А теперь пора потихонечку перебираться из плоскости в пространство:

Как определить коллинеарность векторов пространства?

Правило очень похоже. Для того чтобы два вектора пространства были коллинеарны, необходимо и достаточно , чтобы их соответствующие координаты были пропорциональны .

Пример 5

Выяснить, будут ли коллинеарны следующие векторы пространства:

а) ;
б)
в)

Решение:
а) Проверим, существует ли коэффициент пропорциональности для соответствующих координат векторов:

Система не имеет решения, значит, векторы не коллинеарны.

«Упрощёнка» оформляется проверкой пропорции . В данном случае:
– соответствующие координаты не пропорциональны, значит, векторы не коллинеарны.

Ответ: векторы не коллинеарны.

б-в) Это пункты для самостоятельного решения. Попробуйте его оформить двумя способами.

Существует метод проверки пространственных векторов на коллинеарность и через определитель третьего порядка, данный способ освещен в статье Векторное произведение векторов .

Аналогично плоскому случаю, рассмотренный инструментарий может применяться в целях исследования параллельности пространственных отрезков и прямых.

Добро пожаловать во второй раздел:

Линейная зависимость и независимость векторов трехмерного пространства.
Пространственный базис и аффинная система координат

Многие закономерности, которые мы рассмотрели на плоскости, будут справедливыми и для пространства. Я постарался минимизировать конспект по теории, поскольку львиная доля информации уже разжёвана. Тем не менее, рекомендую внимательно прочитать вводную часть, так как появятся новые термины и понятия.

Теперь вместо плоскости компьютерного стола исследуем трёхмерное пространство. Сначала создадим его базис. Кто-то сейчас находится в помещении, кто-то на улице, но в любом случае нам никуда не деться от трёх измерений: ширины, длины и высоты. Поэтому для построения базиса потребуется три пространственных вектора. Одного-двух векторов мало, четвёртый – лишний.

И снова разминаемся на пальцах. Пожалуйста, поднимите руку вверх и растопырьте в разные стороны большой, указательный и средний палец . Это будут векторы , они смотрят в разные стороны, имеют разную длину и имеют разные углы между собой. Поздравляю, базис трёхмерного пространства готов! Кстати, не нужно демонстрировать такое преподавателям, как ни крути пальцами, а от определений никуда не деться =)

Далее зададимся важным вопросом, любые ли три вектора образуют базис трехмерного пространства ? Пожалуйста, плотно прижмите три пальца к столешнице компьютерного стола. Что произошло? Три вектора расположились в одной плоскости, и, грубо говоря, у нас пропало одно из измерений – высота. Такие векторы являются компланарными и, совершенно очевидно, что базиса трёхмерного пространства не создают.

Следует отметить, что компланарные векторы не обязаны лежать в одной плоскости, они могут находиться в параллельных плоскостях (только не делайте этого с пальцами, так отрывался только Сальвадор Дали =)).

Определение : векторы называются компланарными , если существует плоскость, которой они параллельны. Здесь логично добавить, что если такой плоскости не существует, то и векторы будут не компланарны.

Три компланарных вектора всегда линейно зависимы , то есть линейно выражаются друг через друга. Для простоты снова представим, что они лежат в одной плоскости. Во-первых, векторы мало того, что компланарны, могут быть вдобавок ещё и коллинеарны, тогда любой вектор можно выразить через любой вектор. Во втором случае, если, например, векторы не коллинеарны, то третий вектор выражается через них единственным образом: (а почему – легко догадаться по материалам предыдущего раздела).

Справедливо и обратное утверждение: три некомпланарных вектора всегда линейно независимы , то есть никоим образом не выражаются друг через друга. И, очевидно, только такие векторы могут образовать базис трёхмерного пространства.

Определение : Базисом трёхмерного пространства называется тройка линейно независимых (некомпланарных) векторов , взятых в определённом порядке , при этом любой вектор пространства единственным образом раскладывается по данному базису , где – координаты вектора в данном базисе

Напоминаю, также можно сказать, что вектор представлен в виде линейной комбинации базисных векторов.

Понятие системы координат вводится точно так же, как и для плоского случая, достаточно одной точки и любых трёх линейно независимых векторов:

началом координат , и некомпланарные векторы , взятые в определённом порядке , задают аффинную систему координат трёхмерного пространства :

Конечно, координатная сетка «косая» и малоудобная, но, тем не менее, построенная система координат позволяет нам однозначно определить координаты любого вектора и координаты любой точки пространства. Аналогично плоскости, в аффинной системе координат пространства не будут работать некоторые формулы, о которых я уже упоминал.

Наиболее привычным и удобным частным случаем аффинной системы координат, как все догадываются, является прямоугольная система координат пространства :

Точка пространства, которая называется началом координат , и ортонормированный базис задают декартову прямоугольную систему координат пространства . Знакомая картинка:

Перед тем, как перейти к практическим заданиям, вновь систематизируем информацию:

Для трёх векторов пространства эквивалентны следующие утверждения :
1) векторы линейно независимы;
2) векторы образуют базис;
3) векторы не компланарны;
4) векторы нельзя линейно выразить друг через друга;
5) определитель, составленный из координат данных векторов, отличен от нуля.

Противоположные высказывания, думаю, понятны.

Линейная зависимость / независимость векторов пространства традиционно проверяется с помощью определителя (пункт 5). Оставшиеся практические задания будут носить ярко выраженный алгебраический характер. Пора повесить на гвоздь геометрическую клюшку и орудовать бейсбольной битой линейной алгебры:

Три вектора пространства компланарны тогда и только тогда, когда определитель, составленный из координат данных векторов, равен нулю :.

Обращаю внимание на небольшой технический нюанс: координаты векторов можно записывать не только в столбцы, но и в строки (значение определителя от этого не изменится – см. свойства определителей). Но гораздо лучше в столбцы, поскольку это выгоднее для решения некоторых практических задач.

Тем читателям, которые немножко позабыли методы расчета определителей, а может и вообще слабо в них ориентируются, рекомендую один из моих самых старых уроков: Как вычислить определитель?

Пример 6

Проверить, образуют ли базис трёхмерного пространства следующие векторы:

Решение : Фактически всё решение сводится к вычислению определителя.

а) Вычислим определитель, составленный из координат векторов (определитель раскрыт по первой строке):

, значит, векторы линейно независимы (не компланарны) и образуют базис трёхмерного пространства.

Ответ : данные векторы образуют базис

б) Это пункт для самостоятельного решения. Полное решение и ответ в конце урока.

Встречаются и творческие задачи:

Пример 7

При каком значении параметра векторы будут компланарны?

Решение : Векторы компланарны тогда и только тогда, когда определитель, составленный из координат данных векторов равен нулю:

По существу, требуется решить уравнение с определителем. Налетаем на нули как коршуны на тушканчиков – определитель выгоднее всего раскрыть по второй строке и сразу же избавиться от минусов:

Проводим дальнейшие упрощения и сводим дело к простейшему линейному уравнению:

Ответ : при

Здесь легко выполнить проверку, для этого нужно подставить полученное значение в исходный определитель и убедиться, что , раскрыв его заново.

В заключение рассмотрим ещё одну типовую задачу, которая носит больше алгебраический характер и традиционно включается в курс линейной алгебры. Она настолько распространена, что заслуживает отдельного топика:

Доказать, что 3 вектора образуют базис трёхмерного пространства
и найти координаты 4-го вектора в данном базисе

Пример 8

Даны векторы . Показать, что векторы образуют базис трехмерного пространства и найти координаты вектора в этом базисе.

Решение : Сначала разбираемся с условием. По условию даны четыре вектора, и, как видите, у них уже есть координаты в некотором базисе. Какой это базис – нас не интересует. А интересует следующая вещь: три вектора вполне могут образовывать новый базис . И первый этап полностью совпадает с решением Примера 6, необходимо проверить, действительно ли векторы линейно независимы:

Вычислим определитель, составленный из координат векторов :

, значит, векторы линейно независимы и образуют базис трехмерного пространства.

! Важно : координаты векторов обязательно записываем в столбцы определителя, а не в строки. Иначе будет путаница в дальнейшем алгоритме решения.

Лекция 6.

Векторы …, называются линейно зависимыми, если существуют числа , , … , среди которых по крайней мере одно, не равное нулю, такие, что

Сумма произведений чисел на векторы , т.е. вектор

называется линейной комбинацией векторов .

Если вектор представлен в виде линейной комбинации векторов , то говорят также, что вектор разложен по векторам .

Данное выше определение линейной зависимости векторов , эквивалентно такому: векторы линейно зависимы, если один из них можно представить в виде линейной комбинации остальных (или разложить по остальным).

Теорема 1. Для того чтобы два вектора и были линейно зависимы, необходимо и достаточно, чтобы они были коллинеарны.

Доказательство необходимости. Дано: векторы и линейно зависимы. Требуется доказать, что они коллинеарны. Так как векторы и линейно зависимы, то существуют числа и , не равные нулю одновременно, и такие, что

Пусть, например, ; тогда

отсюда следует, что векторы и коллинеарны.

Дано: векторы и коллинеарны. Требуется доказать, что они линейно зависимы.

Если , то имеет место равенство , а это означает, что векторы и линейно зависимы .

Если же , то полагая , находим , или ; значит векторы и линейно зависимы.

Три вектора называются компланарными, если, будучи отложены от одной точки, оказываются лежащими в одной плоскости.

Теорема 2. Для того, чтобы три вектора , , были линейно зависимы, необходимо и достаточно, чтобы они были компланарны.

Дано: векторы , , линейно зависимы. Требуются доказать, что они компланарны.

Так как векторы , , линейно зависимы, то существуют числа , , , среди которых есть хотя бы одно ; такие, что

Пусть, например, ; тогда

Векторы и коллинеарны соответственно векторам и ; поэтому сумма таких векторов, т.е. вектор будет компланарен с векторами и .

Доказательство достаточности. Дано: векторы , , компланарны. Требуется доказать, что эти векторы линейно зависимы.

Если векторы и коллинеарны, то они линейно зависимы (теорема 1 настоящего параграфа), т.е. найдутся числа и , из которых по крайней мере одно не равно нулю и такие, что , но тогда и , т.е. векторы , , линейно зависимы.

Пусть векторы и неколлинеарны. Отложим векторы , и от одной и той же точки О :

Так как векторы , , компланарны, то точки О , лежат в одной плоскости. Спроектируем точку на прямую параллельно прямой ; пусть Р – эта проекция. Тогда и так как

то, полагая

то есть векторы , , - линейно зависимы.

Теорема 3. Всякие четыре вектора , , , в пространстве линейно зависимы.



Доказательство. Предложим, то векторы , , некомпланарны. Отложим все векторы , , , от одной и той же точки О :

Пусть Р – проекция точки на плоскость параллельно прямой , а - проекция точки Р на прямую параллельно прямой . Тогда .

Векторы соответственно коллинеарны векторам , и . Полагая ; ; получим ; ;

и, следовательно:

т.е. векторы , , , линейно зависимы.

Теорема 4. Для того, чтобы два ненулевых вектора и были коллинеарны, необходимо и достаточно, чтобы их координаты были пропорциональны.

Докажем теорему для случая, когда векторы заданы своими координатами относительно общей декартовой системы координат в пространстве.

Доказательство необходимости. Дано: векторы ; и коллинеарны. Требуется доказать, что их координаты пропорциональны.

Так как , то полагая , получим , т.е.

Доказательство достаточности. Дано: координаты векторов

пропорциональны. Требуется доказать, что эти векторы коллинеарны.

Пусть ; то есть , или , и, значит, векторы и коллинеарны.

Теорема 5. Для того, чтобы два вектора и , заданные своими координатами относительно общей декартовой системы координат на плоскости

или относительно общей декартовой системы координат в пространстве

были коллинеарны, необходимо и достаточно, чтобы

(в случае плоскости),

(в случае пространства).

Докажем теорему для случая, когда векторы и заданы своими координатами относительно общей декартовой системы координат в пространстве.

Доказательство необходимости. Дано: векторы и коллинеарны. Требуется доказать, что выполнены соотношения

Если векторы и ненулевые и коллинеарны, то их координаты пропорциональны, а потому эти равенства выполнены (определитель, в котором две строки пропорциональны, равен нулю). Если или (или ==0), то это равенство очевидно.

Доказательство достаточности. Дано, что эти соотношения выполнены. Требуется доказать, что векторы и коллинеарны.

Если (т.е. =0), то векторы и коллинеарны (т.к. нулевой вектор коллинеарен любому вектору). Пусть хотя бы одно из чисел не равно нулю, например . Положим ; тогда и из соотношения или (раскрывая определитель) , находим, , заданные своими координатами относительно общей декартовой системы координат в пространстве, принадлежат одной прямой тогда и только тогда, когда выполнены соотношения

Следствие 3. Точки , , , , заданные своими координатами относительно общей декартовой системы координат в пространстве, принадлежат одной плоскости тогда и только тогда, когда векторы ; ; компланарны, т.е. тогда и только тогда, когда .



© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний