Ранг матрицы a. Нахождение ранга матрицы

Главная / И. С. Тургенев

Для работы с понятием ранга матрицы нам понадобятся сведения из темы "Алгебраические дополнения и миноры. Виды миноров и алгебраических дополнений" . В первую очередь это касается термина "минор матрицы" , так как ранг матрицы станем определять именно через миноры.

Рангом матрицы называют максимальный порядок её миноров, среди которых есть хотя бы один, не равный нулю.

Эквивалентные матрицы - матрицы, ранги которых равны между собой.

Поясним подробнее. Допустим, среди миноров второго порядка есть хотя бы один, отличный от нуля. А все миноры, порядок которых выше двух, равны нулю. Вывод: ранг матрицы равен 2. Или, к примеру, среди миноров десятого порядка есть хоть один, не равный нулю. А все миноры, порядок которых выше 10, равны нулю. Вывод: ранг матрицы равен 10.

Обозначается ранг матрицы $A$ так: $\rang A$ или $r(A)$. Ранг нулевой матрицы $O$ полагают равным нулю, $\rang O=0$. Напомню, что для образования минора матрицы требуется вычёркивать строки и столбцы, - однако вычеркнуть строк и столбцов более, чем содержит сама матрица, невозможно. Например, если матрица $F$ имеет размер $5\times 4$ (т.е. содержит 5 строк и 4 столбца), то максимальный порядок её миноров равен четырём. Миноры пятого порядка образовать уже не удастся, так как для них потребуется 5 столбцов (а у нас всего 4). Это означает, что ранг матрицы $F$ не может быть больше четырёх, т.е. $\rang F≤4$.

В более общей форме вышеизложенное означает, что если матрица содержит $m$ строк и $n$ столбцов, то её ранг не может превышать наименьшего из чисел $m$ и $n$, т.е. $\rang A≤\min(m,n)$.

В принципе, из самого определения ранга следует метод его нахождения. Процесс нахождения ранга матрицы по определению можно схематически представить так:

Поясню эту схему более подробно. Начнём рассуждать с самого начала, т.е. с миноров первого порядка некоторой матрицы $A$.

  1. Если все миноры первого порядка (т.е. элементы матрицы $A$) равны нулю, то $\rang A=0$. Если среди миноров первого порядка есть хотя бы один, не равный нулю, то $\rang A≥ 1$. Переходим к проверке миноров второго порядка.
  2. Если все миноры второго порядка равны нулю, то $\rang A=1$. Если среди миноров второго порядка есть хотя бы один, не равный нулю, то $\rang A≥ 2$. Переходим к проверке миноров третьего порядка.
  3. Если все миноры третьего порядка равны нулю, то $\rang A=2$. Если среди миноров третьего порядка есть хотя бы один, не равный нулю, то $\rang A≥ 3$. Переходим к проверке миноров четвёртого порядка.
  4. Если все миноры четвёртого порядка равны нулю, то $\rang A=3$. Если среди миноров четвёртого порядка есть хотя бы один, не равный нулю, то $\rang A≥ 4$. Переходим к проверке миноров пятого порядка и так далее.

Что ждёт нас в конце этой процедуры? Возможно, что среди миноров k-го порядка найдётся хоть один, отличный от нуля, а все миноры (k+1)-го порядка будут равны нулю. Это значит, что k - максимальный порядок миноров, среди которых есть хотя бы один, не равный нулю, т.е. ранг будет равен k. Может быть иная ситуация: среди миноров k-го порядка будет хоть один не равный нулю, а миноры (k+1)-го порядка образовать уже не удастся. В этом случае ранг матрицы также равен k. Короче говоря, порядок последнего составленного ненулевого минора и будет равен рангу матрицы .

Перейдём к примерам, в которых процесс нахождения ранга матрицы по определению будет проиллюстрирован наглядно. Ещё раз подчеркну, что в примерах данной темы мы станем находить ранг матриц, используя лишь определение ранга. Иные методы (вычисление ранга матрицы методом окаймляющих миноров , вычисление ранга матрицы методом элементарных преобразований) рассмотрены в следующих темах.

Кстати, вовсе не обязательно начинать процедуру нахождения ранга с миноров самого малого порядка, как это сделано в примерах №1 и №2. Можно сразу перейти к минорам более высоких порядков (см. пример №3).

Пример №1

Найти ранг матрицы $A=\left(\begin{array}{ccccc} 5 & 0 & -3 & 0 & 2 \\ 7 & 0 & -4 & 0 & 3 \\ 2 & 0 & -1 & 0 & 1 \end{array} \right)$.

Данная матрица имеет размер $3\times 5$, т.е. содержит три строки и пять столбцов. Из чисел 3 и 5 минимальным является 3, посему ранг матрицы $A$ не больше 3, т.е. $\rang A≤ 3$. И это неравенство очевидно, так как миноры четвёртого порядка образовать мы уже не сможем, - для них нужно 4 строки, а у нас всего 3. Перейдём непосредственно к процессу нахождения ранга заданной матрицы.

Среди миноров первого порядка (т.е среди элементов матрицы $A$) есть ненулевые. Например, 5, -3, 2, 7. Вообще, нас не интересует общее количество ненулевых элементов. Есть хотя бы один не равный нулю элемент - и этого достаточно. Так как среди миноров первого порядка есть хотя бы один, отличный от нуля, то делаем вывод, что $\rang A≥ 1$ и переходим к проверке миноров второго порядка.

Начнём исследовать миноры второго порядка. Например, на пересечении строк №1, №2 и столбцов №1, №4 расположены элементы такого минора: $\left|\begin{array}{cc} 5 & 0 \\ 7 & 0 \end{array} \right|$. У этого определителя все элементы второго столбца равны нулю, поэтому и сам определитель равен нулю, т.е. $\left|\begin{array}{cc} 5 & 0 \\ 7 & 0 \end{array} \right|=0$ (см. свойство №3 в теме свойства определителей). Или же можно банально вычислить сей определитель, используя формулу №1 из раздела по вычислению определителей второго и третьего порядков :

$$ \left|\begin{array}{cc} 5 & 0 \\ 7 & 0 \end{array} \right|=5\cdot 0-0\cdot 7=0. $$

Первый проверенный нами минор второго порядка оказался равен нулю. О чём это говорит? О том, что нужно дальше проверять миноры второго порядка. Либо они все окажутся нулевыми (и тогда ранг будет равен 1), либо среди них найдётся хотя бы один минор, отличный от нуля. Попробуем осуществить более удачный выбор, записав минор второго порядка, элементы которого расположены на пересечении строк №1, №2 и столбцов №1 и №5: $\left|\begin{array}{cc} 5 & 2 \\ 7 & 3 \end{array} \right|$. Найдём значение этого минора второго порядка:

$$ \left|\begin{array}{cc} 5 & 2 \\ 7 & 3 \end{array} \right|=5\cdot 3-2\cdot 7=1. $$

Данный минор не равен нулю. Вывод: среди миноров второго порядка есть хотя бы один, отличный от нуля. Следовательно $\rang A≥ 2$. Нужно переходить к исследованию миноров третьего порядка.

Если для формирования миноров третьего порядка мы станем выбирать столбец №2 или столбец №4, то такие миноры будут равными нулю (ибо они будут содержать нулевой столбец). Остаётся проверить лишь один минор третьего порядка, элементы которого расположены на пересечении столбцов №1, №3, №5 и строк №1, №2, №3. Запишем этот минор и найдём его значение:

$$ \left|\begin{array}{ccc} 5 & -3 & 2 \\ 7 & -4 & 3 \\ 2 & -1 & 1 \end{array} \right|=-20-18-14+16+21+15=0. $$

Итак, все миноры третьего порядка равны нулю. Последний составленный нами ненулевой минор был второго порядка. Вывод: максимальный порядок миноров, среди которых есть хотя бы один, отличный от нуля, равен 2. Следовательно, $\rang A=2$.

Ответ : $\rang A=2$.

Пример №2

Найти ранг матрицы $A=\left(\begin{array} {cccc} -1 & 3 & 2 & -3\\ 4 & -2 & 5 & 1\\ -5 & 0 & -4 & 0\\ 9 & 7 & 8 & -7 \end{array} \right)$.

Имеем квадратную матрицу четвёртого порядка. Сразу отметим, что ранг данной матрицы не превышает 4, т.е. $\rang A≤ 4$. Приступим к нахождению ранга матрицы.

Среди миноров первого порядка (т.е среди элементов матрицы $A$) есть хотя бы один, не равный нулю, поэтому $\rang A≥ 1$. Переходим к проверке миноров второго порядка. Например, на пересечении строк №2, №3 и столбцов №1 и №2 получим такой минор второго порядка: $\left| \begin{array} {cc} 4 & -2 \\ -5 & 0 \end{array} \right|$. Вычислим его:

$$ \left| \begin{array} {cc} 4 & -2 \\ -5 & 0 \end{array} \right|=0-10=-10. $$

Среди миноров второго порядка есть хотя бы один, не равный нулю, поэтому $\rang A≥ 2$.

Перейдём к минорам третьего порядка. Найдём, к примеру, минор, элементы которого расположены на пересечении строк №1, №3, №4 и столбцов №1, №2, №4:

$$ \left | \begin{array} {cccc} -1 & 3 & -3\\ -5 & 0 & 0\\ 9 & 7 & -7 \end{array} \right|=105-105=0. $$

Так как данный минор третьего порядка оказался равным нулю, то нужно исследовать иной минор третьего порядка. Либо все они окажутся равными нулю (тогда ранг будет равен 2), либо среди них найдётся хоть один, не равный нулю (тогда станем исследовать миноры четвёртого порядка). Рассмотрим минор третьего порядка, элементы которого расположены на пересечении строк №2, №3, №4 и столбцов №2, №3, №4:

$$ \left| \begin{array} {ccc} -2 & 5 & 1\\ 0 & -4 & 0\\ 7 & 8 & -7 \end{array} \right|=-28. $$

Среди миноров третьего порядка есть хотя бы один, отличный от нуля, поэтому $\rang A≥ 3$. Переходим к проверке миноров четвёртого порядка.

Любой минор четвёртого порядка располагается на пересечении четырёх строк и четырёх столбцов матрицы $A$. Иными словами, минор четвёртого порядка - это определитель матрицы $A$, так как данная матрица как раз и содержит 4 строки и 4 столбца. Определитель этой матрицы был вычислен в примере №2 темы "Понижение порядка определителя. Разложение определителя по строке (столбцу)" , поэтому просто возьмём готовый результат:

$$ \left| \begin{array} {cccc} -1 & 3 & 2 & -3\\ 4 & -2 & 5 & 1\\ -5 & 0 & -4 & 0\\ 9 & 7 & 8 & -7 \end{array} \right|=86. $$

Итак, минор четвертого порядка не равен нулю. Миноров пятого порядка образовать мы уже не можем. Вывод: наивысший порядок миноров, среди которых есть хотя бы один отличный от нуля, равен 4. Итог: $\rang A=4$.

Ответ : $\rang A=4$.

Пример №3

Найти ранг матрицы $A=\left(\begin{array} {cccc} -1 & 0 & 2 & -3\\ 4 & -2 & 5 & 1\\ 7 & -4 & 0 & -5 \end{array} \right)$.

Сразу отметим, что данная матрица содержит 3 строки и 4 столбца, поэтому $\rang A≤ 3$. В предыдущих примерах мы начинали процесс нахождения ранга с рассмотрения миноров наименьшего (первого) порядка. Здесь же попробуем сразу проверить миноры максимально возможного порядка. Для матрицы $A$ такими являются миноры третьего порядка. Рассмотрим минор третьего порядка, элементы которого лежат на пересечении строк №1, №2, №3 и столбцов №2, №3, №4:

$$ \left| \begin{array} {ccc} 0 & 2 & -3\\ -2 & 5 & 1\\ -4 & 0 & -5 \end{array} \right|=-8-60-20=-88. $$

Итак, наивысший порядок миноров, среди которых есть хоть один, не равный нулю, равен 3. Поэтому ранг матрицы равен 3, т.е. $\rang A=3$.

Ответ : $\rang A=3$.

Вообще, нахождение ранга матрицы по определению - в общем случае задача довольно-таки трудоёмкая. Например у матрицы сравнительно небольшого размера $5\times 4$ имеется 60 миноров второго порядка. И если даже 59 из них будут равны нулю, то 60й минор может оказаться ненулевым. Тогда придётся исследовать миноры третьего порядка, которых у данной матрицы 40 штук. Обычно стараются использовать менее громоздкие способы, такие как метод окаймляющих миноров или метод эквивалентных преобразований .

§3. Ранг матрицы

Определение ранга матрицы

Линейно зависимые строки

Элементарные преобразования матриц

Эквивалентные матрицы

Алгоритм нахождения ранга матрицы с помощью элементарных преобразований

§4. Определители первого, второго и третьего порядка

Определитель первого порядка

Определитель второго порядка

Определитель третьего порядка

Правило Саррюса

§5. Вычисление определителей больших порядков

Алгебраическое дополнение

Теорема Лапласа

Определитель треугольной матрицы

Приложение. Понятие определителя п -го порядка в общем виде.


§ 3. Ранг матрицы

Каждую матрицу характеризует некоторое число, имеющее важное значение при решении систем линейных уравнений. Это число называется рангом матрицы .

Ранг матрицы равен числу ее линейно независимых строк (столбцов), чрез которые линейно выражаются все остальные ее строки (столбцы).

Строки (столбцы) матрицы называются линейно зависимыми , если их соответствующие элементы пропорциональны.

Иначе говоря, элементы одной из линейно зависимых строк равны элементам другой, умноженным на одно и то же число. Например, строки 1 и 2 матрицы А линейно зависимы, если , где (λ – некоторое число).

Пример . Найти ранг матрицы

Решение .

Вторая строка получается из первой, если ее элементы умножить на –3, третья получается из первой, если ее элементы умножить на 0, а четвертая строка не может быть выражена через первую. Получается, матрица имеет две линейно независимые строки, т.к. первая и четвертая строки не пропорциональны, следовательно, ранг матрицы равен 2.

Ранг матрицы А обозначается rang A или r (A ).

Из определения ранга матрицы следует:

1. Ранг матрицы не превосходит наименьшего из ее размеров, т.е. для матрицы А m × n .

2. Ранг матрицы равен нулю, только если это нулевая матрица.

В общем случае определение ранга матрицы достаточно трудоемко. Для облегчения этой задачи используют преобразования, сохраняющие ранг матрицы, которые называются элементарными преобразованиями :

1) отбрасывание нулевой строки (столбца);

2) умножение всех элементов строки (столбца) на число, отличное от нуля;

3) изменение порядка строк (столбцов);

4) прибавление к элементам одной строки (столбца) соответствующих элементов другой строки (столбца), умноженных на любое число;

5) транспонирование матрицы.

Две матрицы называются эквивалентными , если одна получается из другой с помощью конечного числа элементарных преобразований.

Эквивалентность матриц обозначается знаком « ~ » (эквивалентно).

С помощью элементарных преобразований любую матрицу можно привести к треугольному виду, тогда вычисление ее ранга не представляет труда.

Процесс вычисления ранга матрицы с помощью элементарных преобразований рассмотрим на примере.

Пример . Найти ранг матрицы

А =

Решение .

Наша задача – привести матрицу к треугольному виду, т.е. с помощью элементарных преобразований добиться того, чтобы ниже главной диагонали в матрице были только нули.

1. Рассмотрим первую строку. Если элемент а 11 = 0, то при перестановке строк или столбцов добиваемся того, чтобы а 11 ¹ 0. В нашем примере поменяем местами, например, первую и вторую строки матрицы:

А =

Теперь элемент а 11 ¹ 0. Умножая первую строку на подходящие числа и складывая с другими строками, добьемся того, чтобы все элементы первого столбца (кроме а 11) равнялись нулю.

2. Рассмотрим теперь вторую строку. Если элемент а 22 = 0, то при перестановке строк или столбцов добиваемся того, чтобы а 22 ¹ 0. Если элемент а 22 ¹ 0 (а у нас а 22 = –1 ¹ 0), то, умножая вторую строку на подходящие числа и складывая с другими строками, добьемся того, чтобы все элементы второго столбца (кроме а 22) равнялись нулю.

3. Если в процессе преобразований получаются строки (столбцы), целиком состоящие из нулей, то отбрасываем их. В нашем примере отбросим строки 3-ю и 4-ю:

Последняя матрица имеет ступенчатый вид и содержит две строки. Они линейно независимы, следовательно, ранг матрицы равен 2.

§ 4. Определители первого, второго и третьего порядка

Среди всего многообразия матриц отдельно выделяют квадратные. Этот тип матриц хорош тем, что:

1. Единичные матрицы – квадратные.

2. Можно умножать и складывать любые квадратные матрицы одного порядка, при этом получается матрица того же порядка.

3. Квадратные матрицы можно возводить в степень.

Кроме того, только для квадратных матриц может быть вычислен определитель.

Определитель матрицы – это особое число, вычисляемое по некоторому правилу. Определитель матрицы А обозначается:

Или прямыми скобками: ,

Или заглавной греческой буквой «дельта»: Δ(A ),

Или символом «детерминант»: det (A ).

Определителем матрицы первого порядка А = (а 11) или определителем первого порядка , называется число, равное элементу матрицы:

Δ 1 = = а 11

Определителем матрицы второго порядка или определителем второго порядка

Пример :

Определителем матрицы третьего порядка или определителем третьего порядка , называется число, которое вычисляется по формуле:

Определитель третьего порядка можно вычислить, пользуясь правилом Саррюса .

Правило Саррюса . К определителю третьего порядка справа подписывают два первых столбца и со знаком плюс (+) берут сумму произведений трех элементов, расположенных на главной диагонали определителя и на «прямых», параллельных главной диагонали, со знаком минус (–) берут сумму произведений элементов, расположенных на второй диагонали и на «прямых», параллельных ей.

Пример :

Легко заметить, что число слагаемых в определителе увеличивается с увеличением его порядка. Вообще в определителе п -го порядка число слагаемых равно 1·2·3·…·п = п !.

Проверим: для Δ 1 число слагаемых равно 1! = 1,

для Δ 2 число слагаемых равно 2! = 1·2 = 2,

для Δ 3 число слагаемых равно 3! = 1·2·3 = 6.

Отсюда следует, что для определителя 4-го порядка число слагаемых равно 4! = 1·2·3·4 = 24, а значит вычисление такого определителя достаточно трудоемко, не говоря уже об определителях более высокого порядка. Учитывая это, вычисление определителей больших порядков стараются свести к вычислению определителей второго или третьего порядков.

§ 5. Вычисление определителей больших порядков

Введем ряд понятий.

Пусть дана квадратная матрица А n -го порядка:

А=

Минором M ij элемента a ij называется определитель (п – 1)-го порядка, полученной из матрицы А вычеркиванием i -oй строки и j -го столбца.

Например, минором элемента а 12 матрицы третьего порядка будет:

Алгебраическим дополнением А ij элемента a ij называется его минор, взятый со знаком (−1) i + j :

А ij = (−1) i + j M ij

Иначе говоря, А ij = M ij , если i +j четное число,

А ij = −M ij , если i +j нечетное число.

Пример . Найти алгебраические дополнения элементов второй строки матрицы

Решение .

С помощью алгебраических дополнений можно высчитывать определители больших порядков, на основании теоремы Лапласа.

Теорема Лапласа. Определитель квадратной матрицы равен сумме произведений элементов любой его строки (столбца) на их алгебраические дополнения:

разложение по i-ой строке;

( – разложение по j-му столбцу).

Пример . Вычислить определитель матрицы разложением по первой строке.

Решение .

Таким образом, определитель любого порядка можно свести к вычислению нескольких определителей меньшего порядка. Очевидно, что для разложения удобно выбирать строку или столбец, содержащую как можно больше нулей.

Рассмотрим еще один пример.

Пример . Вычислить определитель треугольной матрицы

Решение .

Получили, что определитель треугольной матрицы равен произведению элементов ее главной диагонали .

Этот важный вывод позволяет легко вычислить определитель любой треугольной матрицы. Это тем более полезно, что при необходимости всякий определитель можно свести к треугольному виду. При этом используются некоторые свойства определителей.


Приложение

Понятие определителя п -го порядка в общем виде.

Вообще можно дать строгое определение для определителя матрицы п -го порядка, но для этого необходимо ввести ряд понятий.

Перестановкой чисел 1, 2, ..., n называется любое расположение этих чисел в определенном порядке. В элементарной алгебре доказывается, что число всех перестановок, которые можно образовать из n чисел, равно 12...n = n !. Например, из трех чисел 1, 2, 3 можно образовать 3! = 6 перестановок: 123, 132, 312, 321, 231, 213.

Говорят, что в данной перестановке числа i и j составляют инверсию (беспорядок), если i > j , но i стоит в этой перестановке раньше j , то есть если большее число стоит левее меньшего.

Перестановка называется четной (или нечетной ), если в ней соответственно четно (нечетно) общее число инверсий.

Операция, посредством которой от одной перестановки переходят к другой, составленной из тех же n чисел, называется подстановкой n -ой степени .

Подстановка, переводящая одну перестановку в другую, записывается двумя строками в общих скобках, причем числа, занимающие одинаковые места в рассматриваемых перестановках, называются соответствующими и пишутся одно под другим. Например, символ

обозначает подстановку, в которой 3 переходит в 4, 1 – в 2, 2 – в 1, 4 – в 3. Подстановка называется четной (или нечетной), если общее число инверсий в обеих строках подстановки четно (нечетно). Всякая подстановка n -ой степени может быть записана в виде

т.е. с натуральным расположением чисел в верхней строке.

Пусть нам дана квадратная матрица порядка n

Рассмотрим все возможные произведения по n элементов этой матрицы, взятых по одному и только по одному из каждой строки и каждого столбца, т.е. произведений вида:

,

где индексы q 1 , q 2 ,..., q n составляют некоторую перестановку из чисел
1, 2,..., n . Число таких произведений равно числу различных перестановок из n символов, т.е. равно n !. Знак произведения , равен (–1)q , где q –число инверсий в перестановке вторых индексов элементов.

Определителем n -го порядка называется алгебраическая сумма всех возможных произведений по n элементов матрицы, взятых по одному и только по одному из каждой строки и каждого столбца, т.е. произведений вида: . При этом знак произведения равен (–1) q , где q – число инверсий в перестановке вторых индексов элементов.


Линейная алгебра

В данной статье пойдет речь о таком понятии, как ранг матрицы и необходимых дополнительных понятиях. Мы приведем примеры и доказательства нахождения ранга матрицы, а также расскажем, что такое минор матрицы, и почему он так важен.

Минор матрицы

Чтобы понять, что такое ранг матрицы, необходимо разобраться с таким понятием, как минор матрицы.

Определение 1

Минор k -ого порядка матрицы - определитель квадратной матрицы порядка k×k, которая составлена из элементов матрицы А, находящихся в заранее выбранных k-строках и k-столбцах, при этом сохраняется положение элементов матрицы А.

Проще говоря, если в матрице А вычеркнуть (p-k) строк и (n-k) столбцов, а из тех элементов, которые остались, составить матрицу, сохраняя расположение элементов матрицы А, то определитель полученной матрицы и есть минор порядка k матрицы А.

Из примера следует, что миноры первого порядка матрицы А и есть сами элементы матрицы.

Можно привести несколько примеров миноров 2-ого порядка. Выберем две строки и два столбца. Например, 1-ая и 2 –ая строка, 3-ий и 4-ый столбец.

При таком выборе элементов минором второго порядка будет - 1 3 0 2 = (- 1) × 2 - 3 × 0 = - 2

Другим минором 2-го порядка матрицы А является 0 0 1 1 = 0

Предоставим иллюстрации построения миноров второго порядка матрицы А:

Минор 3-го порядка получается, если вычеркнуть третий столбец матрицы А:

0 0 3 1 1 2 - 1 - 4 0 = 0 × 1 × 0 + 0 × 2 × (- 1) + 3 × 1 × (- 4) - 3 × 1 × (- 1) - 0 × 1 × 0 - 0 × 2 × (- 4) = - 9

Иллюстрация, как получается минор 3-го порядка матрицы А:

Для данной матрицы миноров выше 3-го порядка не существует, потому что

k ≤ m i n (p , n) = m i n (3 , 4) = 3

Сколько существует миноров k-ого порядка для матрицы А порядка p×n?

Число миноров вычисляют по следующей формуле:

C p k × C n k , г д е С p k = p ! k ! (p - k) ! и C n k = n ! k ! (n - k) ! - число сочетаний из p по k, из n по k соответственно.

После того, как мы определились, что такое миноры матрицы А, можно переходить к определению ранга матрицы А.

Ранг матрицы: методы нахождения

Определение 2

Ранг матрицы - наивысший порядок матрицы, отличный от нуля.

Обозначение 1

Rank (A), Rg (A), Rang (A).

Из определения ранга матрицы и минора матрицы становиться понятно, что ранг нулевой матрицы равен нулю, а ранг ненулевой матрицы отличен от нуля.

Нахождение ранга матрицы по определению

Определение 3

Метод перебора миноров - метод, основанный на определении ранга матрицы.

Алгоритм действий способом перебора миноров :

Необходимо найти ранг матрицы А порядка p × n . При наличии хотя бы одного элемента, отличного от нуля, то ранг матрицы как минимум равен единице (т.к. есть минор 1-го порядка, который не равен нулю ).

Далее следует перебор миноров 2-го порядка. Если все миноры 2-го порядка равны нулю, то ранг равен единице. При существовании хотя бы одного не равного нулю минора 2-го порядка, необходимо перейти к перебору миноров 3-го порядка, а ранг матрицы, в таком случае, будет равен минимум двум.

Аналогичным образом поступим с рангом 3-го порядка: если все миноры матрицы равняются нулю, то ранг будет равен двум. При наличии хотя бы одного ненулевого минора 3-го порядка, то ранг матрицы равен минимум трем. И так далее, по аналогии.

Пример 2

Найти ранг матрицы:

А = - 1 1 - 1 - 2 0 2 2 6 0 - 4 4 3 11 1 - 7

Поскольку матрица ненулевая, то ее ранг минимум равен единице.

Минор 2-го порядка - 1 1 2 2 = (- 1) × 2 - 1 × 2 = 4 отличен от нуля. Отсюда следует, что ранг матрицы А не меньше двух.

Перебираем миноры 3-го порядка: С 3 3 × С 5 3 = 1 5 ! 3 ! (5 - 3) ! = 10 штук.

1 1 - 1 2 2 6 4 3 11 = (- 1) × 2 × 11 + 1 × 6 × 4 + (- 1) × 2 × 3 - (- 1) × 2 × 4 - 1 × 2 × 11 - (- 1) × 6 × 3 = 0

1 - 1 - 2 2 6 0 4 11 1 = (- 1) × 6 × 1 + (- 1) × 0 × 4 + (- 2) × 2 × 11 - (- 2) × 6 × 4 - (- 1) × 2 × 1 - (- 1) × 0 × 11 = 0

1 1 - 2 2 2 0 4 3 1 = (- 1) × 2 × 1 + 1 × 0 × 4 + (- 2) × 2 × 3 - (- 2) × 2 × 4 - 1 × 2 × 1 - (- 1) × 0 × 3 = 0

1 - 1 0 2 6 - 4 4 11 - 7 = (- 1) × 6 × (- 7) + (- 1) × (- 4) × 4 + 0 × 2 × 11 - 0 × 6 × 4 - (- 1) × 2 × (- 7) - (- 1) × (- 4) × 11 = 0

1 - 1 0 2 6 - 4 3 11 - 7 = 1 × 6 × (- 7) + (- 1) × (- 4) × 3 + 0 × 2 × 11 - 0 × 6 × 3 - (- 1) × 2 × (- 7) - 1 × (- 4) × 11 = 0

1 - 2 0 2 0 - 4 3 1 - 7 = 1 × 0 × (- 7) + (- 2) × (- 4) × 3 + 0 × 2 × 1 - 0 × 0 × 3 - (- 2) × 2 × (- 7) - 1 × (- 4) × 1 = 0

1 - 2 0 6 0 - 4 11 1 - 7 = (- 1) × 0 × (- 7) + (- 2) × (- 4) × 11 + 0 × 6 × 1 - 0 × 0 × 11 - (- 2) × 6 × (- 7) - (- 1) × (- 4) × 1 = 0

Миноры 3-го порядка равны нулю, поэтому ранг матрицы равен двум.

Ответ : Rank (A) = 2.

Нахождение ранга матрицы методом окаймляющих миноров

Определение 3

Метод окаймляющих миноров - метод, который позволяет получить результат при меньшей вычислительной работе.

Окаймляющий минор - минор M o k (k + 1) -го порядка матрицы А, который окаймляет минор M порядка k матрицы А, если матрица, которая соответствует минору M o k , «содержит» матрицу, которая соответствует минору М.

Проще говоря, матрица, которая соответствует окаймляемому минору М, получается из матрицы, соответствующей окаймляющему минору M o k , вычеркиванием элементов одной строки и одного столбца.

Пример 3

Найти ранг матрицы:

А = 1 2 0 - 1 3 - 2 0 3 7 1 3 4 - 2 1 1 0 0 3 6 5

Для нахождения ранга берем минор 2-го порядка М = 2 - 1 4 1

Записываем все окаймляющие миноры:

1 2 - 1 - 2 0 7 3 4 1 , 2 0 - 1 0 3 7 4 - 2 1 , 2 - 1 3 0 7 1 4 1 1 , 1 2 - 1 3 4 1 0 0 6 , 2 0 - 1 4 - 2 1 0 3 6 , 2 - 1 3 4 1 1 0 6 5 .

Чтобы обосновать метод окаймляющих миноров, приведем теорему, формулировка которой не требует доказательной базы.

Теорема 1

Если все миноры, окаймляющие минор k-ого порядка матрицы А порядка p на n, равны нулю, то все миноры порядка (k+1) матрицы А равна нулю.

Алгоритм действий :

Чтобы найти ранг матрицы, необязательно перебирать все миноры, достаточно посмотреть на окаймляющие.

Если окаймляющие миноры равняются нулю, то ранг матрицы нулевой. Если существует хотя бы один минор, который не равен нулю, то рассматриваем окаймляющие миноры.

Если все они равны нулю, то Rank(A) равняется двум. При наличии хотя бы одного ненулевого окаймляющего минора, то приступаем к рассматриванию его окаймляющих миноров. И так далее, аналогичным образом.

Пример 4

Найти ранг матрицы методом окаймляющих миноров

А = 2 1 0 - 1 3 4 2 1 0 - 1 2 1 1 1 - 4 0 0 2 4 - 14

Как решить?

Поскольку элемент а 11 матрицы А не равен нулю, то возьмем минор 1-го порядка. Начнем искать окаймляющий минор, отличный от нуля:

2 1 4 2 = 2 × 2 - 1 × 4 = 0 2 0 4 1 = 2 × 1 - 0 × 4 = 2

Мы нашли окаймляющий минор 2-го порядка не равный нулю 2 0 4 1 .

Осуществим перебор окаймляющих миноров - (их (4 - 2) × (5 - 2) =6 штук).

2 1 0 4 2 1 2 1 1 = 0 ; 2 0 - 1 4 1 0 2 1 1 = 0 ; 2 0 3 4 1 - 1 2 1 - 4 = 0 ; 2 1 0 4 2 1 0 0 2 = 0 ; 2 0 - 1 4 1 0 0 2 4 = 0 ; 2 0 3 4 1 - 1 0 2 - 14 = 0

Ответ : Rank(A) = 2.

Нахождение ранга матрицы методом Гаусса (с помощью элементарных преобразований)

Вспомним, что представляют собой элементарные преобразования.

Элементарные преобразования :

  • путем перестановки строк (столбцов) матрицы;
  • путем умножение всех элементов любой строки (столбца) матрицы на произвольное ненулевое число k;

путем прибавления к элементам какой-либо строки (столбца) элементов, которые соответствуют другой стоки (столбца) матрицы, которые умножены на произвольное число k.

Определение 5

Нахождение ранга матрицы методом Гаусса - метод, который основывается на теории эквивалентности матриц: если матрица В получена из матрицы А при помощи конечного числа элементарных преобразований, то Rank(A) = Rank(B).

Справедливость данного утверждения следует из определения матрицы:

  • в случае перестановки строк или столбцов матрицы ее определитель меняет знак. Если он равен нулю, то и при перестановке строк или столбцов остается равным нулю;
  • в случае умножения всех элементов какой-либо строки (столбца) матрицы на произвольное число k, которое не равняется нулю, определитель полученной матрицы равен определителю исходной матрицы, которая умножена на k;

в случае прибавления к элементам некоторой строки или столбца матрицы соответствующих элементов другой строки или столбца, которые умножены на число k, не изменяет ее определителя.

Суть метода элементарных преобразований : привести матрицу,чей ранг необходимо найти, к трапециевидной при помощи элементарных преобразований.

Для чего?

Ранг матриц такого вида достаточно просто найти. Он равен количеству строк, в которых есть хотя бы один ненулевой элемент. А поскольку ранг при проведении элементарных преобразований не изменяется, то это и будет ранг матрицы.

Проиллюстрируем этот процесс:

  • для прямоугольных матриц А порядка p на n, число строк которых больше числа столбцов:

А ~ 1 b 12 b 13 ⋯ b 1 n - 1 b 1 n 0 1 b 23 ⋯ b 2 n - 2 b 2 n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 b n - 1 n 0 0 0 ⋯ 0 1 0 0 0 ⋯ 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 0 0 , R a n k (A) = n

А ~ 1 b 12 b 13 ⋯ b 1 k b 1 k + 1 ⋯ b 1 n 0 1 b 23 ⋯ b 2 k b 2 k + 1 ⋯ b 2 n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 b k k + 1 ⋯ b k n 0 0 0 ⋯ 0 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 0 0 ⋯ 0 , R a n k (A) = k

  • для прямоугольных матриц А порядка p на n, число строк которых меньше числа столбцов:

А ~ 1 b 12 b 13 ⋯ b 1 p b 1 p + 1 ⋯ b 1 n 0 1 b 23 ⋯ b 2 p b 2 p + 1 ⋯ b 2 n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 b p p + 1 ⋯ b p n , R a n k (A) = p

А ~ 1 b 12 b 13 ⋯ b 1 k b 1 k + 1 ⋯ b 1 n 0 1 b 23 ⋯ b 2 k b 2 k + 1 ⋯ b 2 n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 b k k + 1 ⋯ b k n 0 0 0 ⋯ 0 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 0 0 ⋯ 0

  • для квадратных матриц А порядка n на n:

А ~ 1 b 12 b 13 ⋯ b 1 n - 1 b 1 n 0 1 b 23 ⋯ b 2 n - 1 b 2 n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 b n - 1 n 0 0 0 ⋯ 0 1 , R a n k (A) = n

A ~ 1 b 12 b 13 ⋯ b 1 k b 1 k + 1 ⋯ b 1 n 0 1 b 23 ⋯ b 2 k b 2 k + 1 ⋯ b 2 n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 b k k + 1 ⋯ b k n 0 0 0 ⋯ 0 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 0 0 ⋯ 0 , R a n k (A) = k , k < n

Пример 5

Найти ранг матрицы А при помощи элементарных преобразований:

А = 2 1 - 2 6 3 0 0 - 1 1 - 1 2 - 7 5 - 2 4 - 15 7 2 - 4 11

Как решить?

Поскольку элемент а 11 отличен от нуля, то необходимо умножить элементы первой строки матрицы А на 1 а 11 = 1 2:

А = 2 1 - 2 6 3 0 0 - 1 1 - 1 2 - 7 5 - 2 4 - 15 7 2 - 4 11 ~

Прибавляем к элементам 2-ой строки соответствующие элементы 1-ой строки, которые умножены на (-3). К элементам 3-ей строки прибавляем элементы 1-ой строки, которые умножены на (-1):

~ А (1) = 1 1 2 - 1 3 3 0 0 - 1 1 - 1 2 - 7 5 - 2 4 - 15 7 2 - 4 11 ~ А (2) = = 1 1 2 - 1 3 3 + 1 (- 3) 0 + 1 2 (- 3) 0 + (- 1) (- 3) - 1 + 3 (- 3) 1 + 1 (- 3) - 1 + 1 2 (- 3) 2 + (- 1) (- 1) - 7 + 3 (- 1) 5 + 1 (- 5) - 2 + 1 2 (- 5) 4 + (- 1) (- 5) - 15 + 3 (- 5) 7 + 1 (- 7) 2 + 1 2 (- 7) - 4 + (- 1) (- 7) 11 + 3 (- 7) =

1 1 2 - 1 3 0 - 3 2 3 - 10 0 - 3 2 3 - 10 0 - 9 2 9 - 30 0 - 3 2 3 - 10

Элемент а 22 (2) отличен от нуля, поэтому мы умножаем элементы 2-ой строки матрицы А на А (2) н а 1 а 22 (2) = - 2 3:

А (3) = 1 1 2 - 1 3 0 1 - 2 20 3 0 - 3 2 3 - 10 0 - 9 2 9 - 30 0 - 3 2 3 - 10 ~ А (4) = 1 1 2 - 1 3 0 1 - 2 20 3 0 - 3 2 + 1 3 2 3 + (- 2) 3 2 - 10 + 20 3 × 3 2 0 - 9 2 + 1 9 2 9 + (- 2) 9 2 - 30 + 20 3 × 9 2 0 - 3 2 + 1 3 2 3 + (- 2) 3 2 - 10 + 20 3 × 3 2 = = 1 1 2 - 1 3 0 1 - 2 20 3 0 0 0 0 0 0 0 0 0 0 0 0

  • К элементам 3-ей строки полученной матрицы прибавляем соответствующие элементы 2-ой строки,которые умножены на 3 2 ;
  • к элементам 4-ой строки - элементы 2-ой строки, которые умножены на 9 2 ;
  • к элементам 5-ой строки - элементы 2-ой строки, которые умножены на 3 2 .

Все элементы строк равны нулю. Таким образом, при помощи элементарных преобразований,мы привели матрицу к трапецеидальному виду, откуда видно, что R a n k (A (4)) = 2 . Отсюда следует, что ранг исходной матрицы также равен двум.

Замечание

Если проводить элементарные преобразования, то не допускаются приближенные значения!

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Ранее для квадратной матрицы -го порядка было введено понятие минора
элемента. Напомним, что так был назван определитель порядка
, полученный из определителя
вычеркиванием-й строки и-го столбца.

Введем теперь общее понятие минора. Рассмотрим некоторую, не обязательно квадратную матрицу . Выберем какие-нибудьномеров строк
иномеров столбцов
.

Определение . Минором порядка матрицы (соответствующим выбранным строкам и столбцам) называется определитель порядка, образованный элементами, стоящими на пересечении выбранных строк и столбцов, т.е. число

.

Каждая матрица имеет столько миноров данного порядка , сколькими способами можно выбрать номера строк
и столбцов
.

Определение . В матрице размеров
минор порядканазываетсябазисным , если он отличен от нуля, а все миноры порядка
равны нулю или миноров порядка
у матрицывообще нет.

Ясно, что в матрице может быть несколько разных базисных миноров, но все базисные миноры имеют один и тот же порядок. Действительно, если все миноры порядка
равны нулю, то равны нулю и все миноры порядка
, а, следовательно, и всех бόльших порядков.

Определение . Рангом матрицы называется порядок базисного минора, или, иначе, самый большой порядок, для которого существуют отличные от нуля миноры. Если все элементы матрицы равны нулю, то ранг такой матрицы, по определению, считают нулем.

Ранг матрицы будем обозначать символом
. Из определения ранга следует, что для матрицыразмеров
справедливо соотношение.

Два способа вычисления ранга матрицы

а) Метод окаймляющих миноров

Пусть в матрице найден минор
-го порядка, отличный от нуля. Рассмотрим лишь те миноры
-го порядка, которые содержат в себе (окаймляют) минор
: если все они равны нулю, то ранг матрицы равен. В противном случае среди окаймляющих миноров найдется ненулевой минор
-го порядка, и вся процедура повторяется.

Пример 9 . Найти ранг матрицы методом окаймляющих миноров.

Выберем минор второго порядка
. Существует только один минор третьего порядка, окаймляющий выбранный минор
. Вычислим его.

Значит, минор
базисный, а ранг матрицы равен его порядку, т.е.

Ясно, что перебирать таким способом миноры в поисках базисного – задача, связанная с большими вычислениями, если размеры матрицы не очень малы. Существует, однако, более простой способ нахождения ранга матрицы – при помощи элементарных преобразований.

б) Метод элементарных преобразований

Определение . Элементарными преобразованиями матрицы называют следующие преобразования:

    умножение строки на число, отличное от нуля;

    прибавление к одной строке другой строки;

    перестановку строк;

    такие же преобразования столбцов.

Преобразования 1 и 2 выполняются поэлементно.

Комбинируя преобразования первого и второго вида, мы можем к любой строке прибавить линейную комбинацию остальных строк.

Теорема . Элементарные преобразования не меняют ранга матрицы.

(Без доказательства)

Идея практического метода вычисления ранга матрицы

заключается в том, что с помощью элементарных преобразований данную матрицу приводят к виду

, (5)

в котором «диагональные» элементы
отличны от нуля, а элементы, расположенные ниже «диагональных», равны нулю. Условимся называть матрицутакого вида треугольной (иначе, ее называют диагональной, трапециевидной или лестничной). После приведения матрицык треугольному виду можно сразу записать, что
.

В самом деле,
(т.к. элементарные преобразования не меняют ранга). Но у матрицысуществует отличный от нуля минор порядка:

,

а любой минор порядка
содержит нулевую строку и поэтому равен нулю.

Сформулируем теперь практическое правило вычисления ранга матрицы с помощью элементарных преобразований: для нахождения ранга матрицыследует с помощью элементарных преобразований привести ее к треугольному виду. Тогда ранг матрицыбудет равен числу ненулевых строк в полученной матрице.

Пример 10. Найти ранг матрицы методом элементарных преобразований

Решение.

Поменяем местами первую и вторую строку (т.к. первый элемент второй строки −1 и с ней будет удобно выполнять преобразования). В результате получим матрицу, эквивалентную данной.


Обозначим -тую строку матрицы –. Нам необходимо привести исходную матрицу к треугольному виду. Первую строку будем считать ведущей, она будет участвовать во всех преобразованиях, но сама остается без изменений.

На первом этапе выполним преобразования, позволяющие получить в первом столбце нули, кроме первого элемента. Для этого из второй строки вычтем первую, умноженную на 2
, к третьей строке прибавим первую
, а из третьей вычтем первую, умноженную на 3
Получаем матрицу, ранг которой совпадает с рангом данной матрицы. Обозначим ее той же буквой:

.

Так как нам необходимо привести матрицу к виду (5), вычтем из четвертой строки вторую. При этом имеем:

.

Получена матрица треугольного вида, и можно сделать вывод, что
, т. е. числу ненулевых строк. Коротко решение задачи можно записать следующим образом:


В каждой матрице можно связать два ранга: строчный ранг (ранг системы строк) и столбцовый ранг (ранг системы столбцов).

Теорема

Строчный ранг матрицы равен её столбцовому рангу.

Ранг матрицы

Определение

Рангом матрицы $A$ называется ранг её системы строк или столбцов.

Обозначается $\operatorname{rang} A$

На практике для нахождения ранга матрицы используют следующее утверждение: ранг матрицы равен количеству ненулевых строк после приведения матрицы к ступенчатому виду.

Элементарные преобразования над строками (столбцами) матрицы не меняют её ранга.

Ранг ступенчатой матрицы равен количеству её ненулевых строк.

Пример

Задание. Найти ранг матрицы $ A=\left(\begin{array}{cccc}{0} & {4} & {10} & {1} \\ {4} & {8} & {18} & {7} \\ {10} & {18} & {40} & {17} \\ {1} & {7} & {17} & {3}\end{array}\right) $

Решение. С помощью элементарных преобразований над ее строками приведем матрицу $A$ к ступенчатому виду. Для этого вначале от третьей строки отнимем две вторых:

$$ A \sim \left(\begin{array}{cccc}{0} & {4} & {10} & {1} \\ {4} & {8} & {18} & {7} \\ {2} & {2} & {4} & {3} \\ {1} & {7} & {17} & {3}\end{array}\right) $$

От второй строки отнимаем четвертую строку, умноженную на 4; от третьей - две четвертых:

$$ A \sim \left(\begin{array}{rrrr}{0} & {4} & {10} & {1} \\ {0} & {-20} & {-50} & {-5} \\ {0} & {-12} & {-30} & {-3} \\ {1} & {7} & {17} & {3}\end{array}\right) $$

Ко второй строке прибавим пять первых, к третьей - три третьих:

$$ A \sim \left(\begin{array}{cccc}{0} & {4} & {10} & {1} \\ {0} & {0} & {0} & {0} \\ {0} & {0} & {0} & {0} \\ {1} & {7} & {17} & {3}\end{array}\right) $$

Меняем местами первую и вторую строчки:

$$ A \sim \left(\begin{array}{cccc}{0} & {0} & {0} & {0} \\ {0} & {4} & {10} & {1} \\ {0} & {0} & {0} & {0} \\ {1} & {7} & {17} & {3}\end{array}\right) $$

$$ A \sim \left(\begin{array}{cccc}{1} & {7} & {17} & {3} \\ {0} & {4} & {10} & {1} \\ {0} & {0} & {0} & {0} \\ {0} & {0} & {0} & {0}\end{array}\right) \Rightarrow \operatorname{rang} A=2 $$

Ответ. $ \operatorname{rang} A=2 $

Метод окаймления миноров

На этой теореме базируется еще один метод нахождения ранга матрицы - метод окаймления миноров . Суть этого метода заключается в нахождении миноров, начиная с низших порядков и двигаясь к более высоким. Если минор $n$-го порядка не равен нулю, а все миноры $n+1$-го равны нулю, то ранг матрицы будет равен $n$ .

Пример

Задание. Найти ранг матрицы $ A=\left(\begin{array}{rrrr}{1} & {2} & {-1} & {-2} \\ {2} & {4} & {3} & {0} \\ {-1} & {-2} & {6} & {6}\end{array}\right) $ , используя метод окаймления миноров.

Решение. Минорами минимального порядка являются миноры первого порядка, которые равны элементам матрицы $A$ . Рассмотрим, например, минор $ M_{1}=1 \neq 0 $ . расположенный в первой строке и первом столбце. Окаймляем его с помощью второй строки и второго столбца, получаем минор $ M_{2}^{1}=\left| \begin{array}{ll}{1} & {2} \\ {2} & {4}\end{array}\right|=0 $ ; рассмотрим еще один минор второго порядка, для этого минор $M_1$ окаймляем при помощи второй строки и третьего столбца, тогда имеем минор $ M_{2}^{2}=\left| \begin{array}{rr}{1} & {-1} \\ {2} & {3}\end{array}\right|=5 \neq 0 $ , то есть ранг матрицы не меньше двух. Далее рассматриваем миноры третьего порядка, которые окаймляют минор $ M_{2}^{2} $ . Таких миноров два: комбинация третьей строки со вторым столбцом или с четвертым столбцом. Вычисляем эти миноры.



© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний