Силы трения качения при реверсивном движении. Трение, его виды

Главная / Л. Н. Толстой

Тре́ние каче́ния - сопротивление движению, возникающее при перекатывании тел друг по другу т.е. сопротивление качению одного тела (катка) по поверхности другого. Причина трения качения - деформация катка и опорной поверхности, а также силы адгезии . Контактное напряжение в пятне приводит к упругому и/или пластическому деформированию тел, что влечёт микропроскальзывание поверхностей, пластическое течение в пятне контакта и вязкоупругий гистерезис. Как и адгезивное взаимодействие, все эти процессы термодинамически необратимы и ведут к потере энергии, т.е. вызывают сопротивление качению . При этом обычно предполагается, что катящееся тело (колесо) не осуществляет тяговую или тормозную функцию (например, колесо локомотива, разгоняющего состав или заторможенное колесо вагона), так как при этом возникают дополнительные потери на трение в пятне контакта, вызванные не только нормальным контактным напряжением, а ещё и касательным, т.е. под трением качения понимается чистое трение качения .

Проявляется, например, между элементами подшипников качения , между автомобильной шиной колеса автомобиля и дорожным полотном. В большинстве случаев величина трения качения гораздо меньше величины трения скольжения при прочих равных условиях, и потому качение является распространенным видом движения в технике. Трение качения возникает на границе двух тел, и поэтому оно классифицируется как вид внешнего трения.

Трение качения играет огромную роль в современной технике. Оно возникает при вращении колёс и других вращающихся деталей, которые есть почти во всех станках и транспортных машинах. Замена трения скольжения на трение качения путём изобретения колеса было величайшим событием в истории цивилизации .

Цель работы :познакомиться с явлением трения качения, определить коэффициент трения качения четырехколесной тележки..

Оборудование : тележка как модель вагона, горизонтальная рельсовая колея с набором фотоэлементов, секундомер, набор грузов.

ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ

Сила трения качения – это касательная к поверхности контакта сила сопротивления движению, возникающая при качении цилиндрических тел.

При качении колеса по рельсу происходит деформация как колеса, так и рельса. Вследствие неидеальной упругости материала в зоне контакта происходят процессы пластической деформации микробугорков, поверхностных слоев колеса и рельса. Из-за остаточной деформации уровень рельса за колесом оказывается ниже, чем перед колесом и колесо при движении постоянно закатывается на бугорок. В наружной части зоны контакта происходит частичное проскальзывание колеса по рельсу. Во всех этих процессах совершается работа силой трения качения. Работа этой силы приводит к рассеянию механической энергии, переходу ее в теплоту, поэтому сила трения качения является диссипативной силой.

В центральной части зоны контакта возникает еще одна касательная сила – это сила трения покоя или сила сцепления материала колеса и рельса. Для ведущего колеса локомотива сила сцепления является силой тяги, а при торможении колодочным тормозом – силой торможения. Так как в центре зоны контакта перемещения колеса относительно рельса отсутствует, то работа силой сцепления не совершается.

Распределение давления на колесо со стороны рельса оказывается несимметричным. Спереди давление больше, а сзади меньше (рис.1). Поэтому точка приложения равнодействующей силы на колесо смещена вперед на некоторое небольшое расстояние b относительно оси. Представим силу воздействия рельса на колесо в виде двух составляющих. Одна направлена по касательной к зоне контакта, она является силой сцепления F сцепл . Другая составляющая Q направлена по нормали к поверхности контакта и проходит через ось колеса.

Разложим, в свою очередь, силу нормального давления Q на две составляющие: силу N , которая перпендикулярна рельсу и компенсирует силу тяжести, и силу F кач , которая направлена вдоль рельса против движения. Эта сила препятствует движению колеса и является силой трения качения. Сила давления Q вращающего момента сил не создает. Поэтому моменты составляющих ее сил относительно оси колеса должны компенсировать друг друга: . Откуда . Сила трения качения пропорциональна силе N , действующей на колесо перпендикулярно рельсу:

. (1)

Здесь коэффициент трения качения. Он зависит от упругости материала рельса и колеса, состояния поверхности, размеров колеса. Как видно, чем больше колесо, тем сила трения качения меньше. Если бы за колесом форма рельса восстанавливалась, то эпюра давления была бы симметрична, и трение качения отсутствовало. При качении стального колеса по стальному рельсу коэффициент трения качения достаточно мал: 0,003–0,005, в сотни раз меньше коэффициента трения скольжения. Поэтому катить легче, чем тащить.

Экспериментальное определение коэффициента трения качения производится на лабораторной установке. Пусть тележка, являющаяся моделью вагона, катится по горизонтальным рельсам. На нее со стороны рельсов действуют горизонтальные силы трения качения и сцепления (рис. 2). Запишем уравнение второго закона Ньютона для замедленного движения тележки массой m в проекции на направление ускорения:

. (2)

Поскольку масса колес составляет значительную часть от массы тележки, то нельзя не учесть вращательного движения колес. Представим качение колес как сумму двух движений: поступательного движения вместе с тележкой и вращательного движения относительно осей колесных пар. Поступательное движение колес объединим с поступательным движением тележки с их общей массой m в уравнении (1). Вращательное движение колес происходит под действием только момента сил сцепления F сц R . Уравнение основного закона динамики вращательного движения (произведение момента инерции всех колес на угловое ускорение равно моменту силы) имеет вид

. (3)

При отсутствии проскальзывания колеса относительно рельса скорость точки контакта равна нулю. Значит, скорости поступательного и вращательного движений равны и противоположны: . Если это равенство продифференцировать, то получим соотношение между поступательным ускорением тележки и угловым ускорениями колеса: . Тогда уравнение (3) примет вид . Сложим это уравнение с уравнением (2) для исключения неизвестной силы сцепления. В результате получим

. (4)

Полученное уравнение совпадает с уравнением второго закона Ньютона для поступательного движения тележки с эффективной массой: , в которой уже учтен вклад инертности вращения колес в инертность тележки. В технической литературе уравнение вращательного движения колес (3) не применяют, а учитывают вращение колес введением эффективной массы. Например, для груженого вагона коэффициент инертности γ равен 1,05, а для порожнего вагона влияние инертности колес больше: γ = 1,10.

Подставив силу трения качения в уравнение (4), получим для коэффициента трения качения расчетную формулу

. (5)



Для определения коэффициента трения качения по формуле (5) следует экспериментально измерить ускорение тележки. Для этого толкнем тележку с некоторой скоростью V 0 по горизонтальным рельсам. Уравнение кинематики равнозамедленного движения имеет вид .

Путь S и время движения t можно измерить, но неизвестна начальная скорость движения V 0 . Однако установка (рис. 3) имеет семь секундомеров, измеряющих время движения от стартового фотоэлемента до следующих семи фотоэлементов. Это позволяет либо составить систему семи уравнений и исключить из них начальную скорость, либо решить эти уравнения графически. Для графического решения перепишем уравнение равнозамедленного движения, поделив его на время: .

Средняя скорость движения до каждого фотоэлемента линейно зависит от времени движения до фотоэлементов. Поэтому график зависимости <V> (t ) является прямой линией с угловым коэффициентом, равным половине ускорения (рис.4)

. (6)

Момент инерции четырех колес тележки, которые имеют форму цилиндров радиуса R при общей их массе m кол, можно определить по формуле . Тогда поправка на инертность вращения колес примет вид .

ВЫПОЛНЕНИЕ РАБОТЫ

1. Определить взвешиванием массу тележки вместе с некоторым грузом. Измерить радиус колес по поверхности катания. Записать результаты измерений в табл. 1.

Таблица 1 Таблица 2

S, м t, с , м/с
0,070
0,140
0,210
0,280
0,350
0,420
0,490

2. Проверить горизонтальность рельсов. Поставить тележку у начала рельсов так, чтобы стержень тележки был перед отверстиями стартового фотоэлемента. Включить блок питания в сеть 220 В.

3. Толкнуть тележку вдоль рельсов так, чтобы она доехала до ловушки и упала в нее. Каждый секундомер покажет время движения тележки от стартового фотоэлемента до его фотоэлемента. Повторить опыт несколько раз. Записать показания семи секундомеров в одном из опытов в табл. 2.

4. Произвести расчеты. Определить среднюю скорость движения тележки на пути от старта до каждого фотоэлемента

5. Построить график зависимости средней скорости движения до каждого фотоэлемента от времени движения. Размер графика не менее половины страницы. На осях координат указать равномерный масштаб. Около точек провести прямую линию.

6. Определить среднее значение ускорения. Для этого на экспериментальной линии как на гипотенузе построить прямоугольный треугольник. По формуле (6) найти среднее значение ускорения.

7. Рассчитать поправку на инертность вращения колес, считая их однородными дисками . Определить по формуле (5) среднее значение коэффициента трения качения <μ>.

8. Оценить погрешность измерения графическим способом

. (7)

Записать результат μ = <μ>± δμ, Р = 90%.

Сделать выводы.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Объяснить причину возникновения силы трения качения. Какие факторы влияют на величину силы трения качения?

2. Записать закон для силы трения качения. От чего зависит коэффициент трения качения?

3. Записать уравнения динамики поступательного движения тележки по горизонтальным рельсам и вращательного движения колес. Получить уравнение движения тележки с эффективной массой.

4. Вывести формулу для определения коэффициента трения качения.

5. Объяснить суть графического метода определения ускорения тележки при качении по рельсам. Вывести формулу ускорения.

6. Объяснить влияние вращения колес на инертность тележки.


Работа 17-б


Похожая информация.


Трением называется сопротивление, возникающее при перемещении одного тела по поверхности другого.

В зависимости от характера этого перемещения (от того, скользит ли тело или катится) различают два рода трения: трение скольжения, или трение первого рода, и трение качения, или трение второго рода.

Примерами трения скольжения могут служить: трение полозьев саней о снег, пилы о дерево, подошвы обуви о землю, втулки колеса об ось и т. д. Примерами трения качения служат: трение при перекатывании колес автомобиля по земле или вагона по рельсам, трение при перекатывании круглых бревен, трение в шариковых и роликовых подшипниках и т. д.

Трение является одним из самых распространенных явлений природы и играет очень большую роль в технике. Однако вследствие крайней сложности этого физико-механического явления и трудности оценки многочисленных факторов, на него влияющих, точных общих законов трения до сих пор не существует. На практике в тех случаях, когда не требуется большой точности, все еще продолжают пользоваться эмпирическими законами, установленными в конце XVIII века (1781г.) французским ученым Кулоном, хотя они и представляют собой лишь грубое приближение к действительности. В случаях же, требующих большей точности, приходится определять величину силы трения из опыта для каждой данной пары трущихся поверхностей и конкретных условий трения. Трением качения называется сопротивление перекатыванию одного тела по поверхности другого. Сопротивление это возникает главным образом оттого, что как само катящееся тело, так и тело, по которому оно катится, не являются абсолютно твердыми и потому всегда несколько деформируются в месте их соприкосновения. Если лежащий на горизонтальной плоскости цилиндрический каток находится только под действием нормального усилия G (рисунок 1.2), то деформации катка и опорной плоскости будут симметричными относительно линии действия силы G. Приводя реакции плоскости, распределенные по малой площадке соприкосновения катка с плоскостью, к одной равнодействующей, мы будем всегда получать ее равной по модулю и противоположной по направлению силе G.

Рисунок 1.2

Основной характеристикой трения качения является коэффициент пропорциональности k, называемый коэффициентом трения качения.

Коэффициент трения качения зависит от упругих свойств материалов трущихся тел и состояния их поверхностей. Для данной пары трущихся тел он является величиной постоянной.

Трение при качении в большинстве случаев значительно (во много раз) меньше, чем трение скольжения, поэтому на практике всегда и стремятся заменить там, где это возможно, скольжение качением. Так, когда нужно передвинуть какой-нибудь тяжелый предмет, под него часто подкладывают катки, по которым его и катят, вместо того чтобы просто тащить по земле или полу, т. е. заставлять его скользить.

На принципе замены трения скольжения трением качения основано и устройство широко применяемых в настоящее время роликовых и шариковых подшипников. Преимущество этих подшипников перед подшипниками скольжения, помимо значительно меньших потерь на трение, заключается еще и в том, что их сопротивление при пуске почти равно сопротивлению при установившемся движении (так как трение качения почти не зависит от скорости).

Силы трения возникают при непосредственном контакте поверхностей двух твердых тел. Различают силы трения — покоя, скольжения и качения. Когда тело не скользит по поверхности другого тела, а катится, то в этом случае сопротивление оказывает сила трения качения. Трение качения в десятки раз меньше трения скольжения. Разберемся с механизмом возникновения этой силы.

Катить легче, чем тащить

В повседневной жизни мы пользуемся преимуществами качения практически ежедневно:

  • Тяжелые, крупногабаритные предметы можно легко переместить, подложив под них круглые катки или трубы. Например, чтобы передвигать по асфальту чугунную болванку массой в 1 тонну, нужно приложить силу в 200 кгс — на такое способны только могучие силачи. А на тележке катить эту же болванку сможет даже ребенок, ведь для этого нужна сила не более 10 кгс;
  • Все транспортные средства, перемещающиеся по поверхности земли, используют колеса;
  • Для облегчения подъема тяжелых предметов на высоту с давних времен применяется блок, имеющий форму колеса;
  • Роликовые и шариковые подшипники качения применяются во всех устройствах, когда требуется добиться минимального трения во вращающихся деталях.

Конечно, изобретение колеса — это одно из самых выдающихся достижений человеческой цивилизации.

Рис. 1. Примеры силы трения качения.

Итак, сила трения качения — это сила, возникающая при качении тела по поверхности без проскальзывания. Существенным моментом в этом определении является исключение проскальзывания, потому что при проскальзывании трение возрастает в десятки раз!

Почему возникает сила трения качения

Круглый предмет (диск, шар, цилиндр) при качении слегка вдавливается в поверхность, образуя “ямку и бугорок”. Получается так, катящееся тело собственным весом создает себе препятствие (бугорок), и преодолевает его как бы вкатываясь все время в гору. При этом само тело тоже немного деформируется.

Вторая причина - сила сцепления (адгезия), возникающая между поверхностями в момент контакта. Адгезия возникает в результате межмолекулярного взаимодействия.

Рис. 2. Возникновение силы трения качения.

Чем тверже поверхность, по которой катится тело, тем меньше будет “ямка” (вдавливание) и, значит, меньше сила трения качения. Сопротивление качению меньше, чем трение скольжения, потому что площадь контакта обычно очень мала, и поэтому нормальная сила, придавливающая тело к поверхности, тоже мала и недостаточна, чтобы предотвратить движение тела.

Для железнодорожного транспорта, где колеса и рельсы стальные, трение при качении во много раз меньше, чем у грузовых автомобильных шин. Если бы само тело и поверхность были абсолютно твердыми, то сила трения была бы рана нулю.

От чего зависит и чему равна сила трения качения

Если круглое тело, например, колесо радиусом R катится по поверхности, то для формулы силы трения качения F t справедливо следующее выражение:

$ F_t = N * {μ\over R} $ (1),

N — прижимающая сила, Н;

μ — коэффициент трения качения, м/Н.

Из формулы следует, что F t растет с ростом массы тела и уменьшается с увеличением радиуса колеса R . Это и понятно: чем больше колесо, тем меньшее значение имеют для него неровности поверхности (бугорки), по которой оно катится.

Коэффициент трения качения μ имеет размерность $[м/Н]$ в отличии от коэффициента трения скольжения k , который безразмерен.

Рис. 3. Формула для силы трения качения.

Подшипники

Для снижения трения скольжения сначала была изобретена смазка, которая позволила добиться уменьшения трения в 8-10 раз. И только в конце ХIХ века возникла идея заменить в подшипнике трение скольжения трением качения. Эту замену осуществляют шариковые и роликовые подшипники. При вращении колеса или вала двигателя шарики (или ролики) катятся по втулке (обойме для шариков), а вал или ось колеса — по шарикам. Таким способом удалось снизить трение в десятки раз.

Что мы узнали?

Итак, мы узнали что представляет собой сила трения качения. Рассмотрели два основных механизма, вызывающих эту силу. Согласно формуле (1) сила трения качения растет с ростом веса тела и уменьшается с увеличением радиуса колеса. Роликовые и шариковые подшипники качения находят свое применение в большинстве устройств, имеющих вращающиеся детали.

Тест по теме

Оценка доклада

Средняя оценка: 4.2 . Всего получено оценок: 285.

Трение (фрикционное взаимодействие) – процесс взаимодействия тел при их относительном движении (смещении) либо при движении тела в газообразной или жидкой среде.

Изучением процессов трения занимается раздел физики, который называется трибология (механика фрикционного взаимодействия).

Трение принято разделять на:

  • сухое , когда взаимодействующие твёрдые тела не разделены никакими дополнительными слоями / смазками (в том числе и твёрдыми смазочными материалами) – очень редко встречающийся на практике случай; характерная отличительная черта сухого трения – наличие значительной силы трения покоя;
  • граничное , когда в области контакта могут содержаться слои и участки различной природы (окисные плёнки, жидкость и так далее) – наиболее распространённый случай при трении скольжения;
  • жидкостное (вязкое), возникающее при взаимодействии тел, разделённых слоем твёрдого тела (порошком графита), жидкости или газа (смазки) различной толщины – как правило, встречается при трении качения, когда твёрдые тела погружены в жидкость, величина вязкого трения характеризуется вязкостью среды;
  • смешанное , когда область контакта содержит участки сухого и жидкостного трения;
  • эластогидродинамическое (вязкоупругое), когда решающее значение имеет внутреннее трение в смазывающем материале. Возникает при увеличении относительных скоростей перемещения.

Сила трения – это сила, возникающая в месте соприкосновения тел и препятствующая их относительному движению.

Причины возникновения силы трения:

  • шероховатость соприкасающихся поверхностей;
  • взаимное притяжение молекул этих поверхностей.

Трение скольжения – сила, возникающая при поступательном перемещении одного из контактирующих / взаимодействующих тел относительно другого и действующая на это тело в направлении, противоположном направлению скольжения.

Трение качения – момент сил, возникающий при качении одного из двух контактирующих / взаимодействующих тел относительно другого.

Трение покоя – сила, возникающая между двумя контактирующими телами и препятствующая возникновению относительного движения. Эту силу необходимо преодолеть для того, чтобы привести два контактирующих тела в движение друг относительно друга.

Сила трения прямо пропорциональна силе нормальной реакции, то есть зависит от того, насколько сильно тела прижаты друг к другу и от их материала, поэтому основной характеристикой трения является коэффициент трения , который определяется материалами, из которых изготовлены поверхности взаимодействующих тел.

Износ – изменение размеров, формы, массы или состояния поверхности изделия вследствие разрушения (изнашивания) поверхностного слоя при трении.

Работа любой машины неизбежно сопровождается трением при относительном движении её частей, поэтому полностью устранить износ невозможно. Величина износа при непосредственном контакте поверхностей прямо пропорциональна работе сил трения.

Абразивный износ частично вызывается действием пыли и грязи, поэтому очень важно содержать оборудование в чистоте, особенно её трущиеся части.

Для борьбы с износом и трением заменяют одни металлы другими, более устойчивыми, применяют термическую и химическую обработку трущихся поверхностей, точную механическую обработку, а также заменяют металлы различными заменителями, изменяют конструкцию, улучшают смазку (изменяют вид, вводят присадки) и т.д.

В машинах стремятся не допускать непосредственного трения скольжения твёрдых поверхностей, для чего или разделяют их слоем смазки (жидкостное трение), или же вводят между ними добавочные элементы качения (шариковые и роликовые подшипники).

Основное правило конструирования трущихся деталей машин состоит в том, что более дорогой и трудно заменяемый элемент трущейся пары (вал) изготовляют из более твёрдого и более износоустойчивого материала (твёрдая сталь), а более простые, дешёвые и легко заменяемые части (вкладыши подшипников) изготовляют из сравнительно мягкого материала с небольшим коэффициентом трения (бронза, баббит).

Большинство деталей машин выходят из строя именно вследствие износа, поэтому уменьшение трения и износа даже на 5-10% даёт огромную экономию, что имеет исключительное значение.

Перечень ссылок

  1. Трение // Википедия. – http://ru.wikipedia.org/wiki/Трение .
  2. Износ (техника) // Википедия. – http://ru.wikipedia.org/wiki/Износ_(техника) .
  3. Трение в машинах, трение и износ в машиностроении // Проект-Технарь. Прогрессивные авто-технологии. – http://www.studiplom.ru/Technology/Trenie.html .

Вопросы для контроля

  1. Что такое трение?
  2. Какие существуют разновидности трения?
  3. Что приводит к возникновению силы трения?
  4. Как классифицируют трение в зависимости от действующих сил?
  5. Что такое износ и как с ним борются?
<


© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний