Вращательное движение твердого тела вокруг неподвижной оси. Вращательное движение твердого тела Вращательное движение вокруг оси

Главная / Фридрих Шиллер

Кинематика твердого тела

В отличие от кинематики точки в кинематике твердых тел решаются две основные задачи:

Задание движения и определение кинематических характеристик тела в целом;

Определение кинематических характеристик точек тела.

Способы задания и определения кинематических характеристик зависят от типов движения тел.

В настоящем пособии рассматриваются три типа движения: поступательное, вращательное вокруг неподвижной оси и плоско-параллельное движение твердого тела

Поступательное движение твердого тела

Поступательным называют движение, при котором прямая, проведенная через две точки тела, остается параллельной ее первоначальному положению (рис.2.8).

Доказана теорема: при поступательном движении все точки тела движутся по одинаковым траекториям и имеют в каждой момент времени одинаковые по модулю и направлению скорости и ускорения (рис.2.8).

Вывод: Поступательное движение твердого тела определяется движением любой его точки, в связи с чем, задание и изучение его движения сводится к кинематике точки.

Рис. 2.8 Рис. 2.9

Вращательное движение твердого тела вокруг неподвижной оси.

Вращательным вокруг неподвижной оси называют движение твердого тела, при котором две точки, принадлежащие телу, остаются неподвижными в течение всего времени движения.

Положение тела определяется углом поворота (рис.2.9). Единица измерения угла - радиан. (Радиан - центральный угол окружности, длина дуги которого равна радиусу, полный угол окружности содержит 2 радиана.)

Закон вращательного движения тела вокруг неподвижной оси = (t). Угловую скорость и угловое ускорение тела определим методом дифференцирования

Угловая скорость, рад/с; (2.10)

Угловое ускорение, рад/с 2 (2.11)

При вращательном движении тела вокруг неподвижной оси его точки, не лежащие на оси вращения, движутся по окружностям с центром на оси вращения.

Если рассечь тело плоскостью перпендикулярной оси, выбрать на оси вращения точку С и произвольную точка М, то точка М будет описывать вокруг точки С окружность радиуса R (рис. 2.9). За время dt происходит элементарный поворот на угол, при этом точка М совершит перемещение вдоль траектории на расстояние.Определим модуль линейной скорости:

Ускорение точки М при известной траектории определяется по его составляющим, см.(2.8)

Подставляя в формулы выражение (2.12) получим:

где: - тангенциальное ускорение,

Нормальное ускорение.

Плоско - параллельное движение твердого тела

Плоскопараллельным называется движение твердого тела, при котором все его точки перемещаются в плоскостях, параллельных одной неподвижной плоскости (рис.2.10). Для изучения движения тела достаточно изучить движение одного сечения S этого тела плоскостью, параллельной неподвижной плоскости. Движение сечения S в своей плоскости можно рассматривать как сложное, состоящее из двух элементарных движений: а) поступательного и вращательного; б) вращательного относительно подвижного (мгновенного) центра.

В первом варианте движение сечения может быть задано уравнениями движения одной его точки (полюса) и вращением сечения вокруг полюса (рис.2.11). В качестве полюса может быть принята любая точка сечения.

Рис. 2.10 Рис. 2.11

Уравнения движения запишутся в виде:

Х А = Х А (t)

Y А = Y А (t) (2.14)

А = А (t)

Кинематические характеристики полюса определяют из уравнений его движения.

Скорость любой точки плоской фигуры, движущейся в своей плоскости слагается из скорости полюса (произвольно выбранной в сечении точки А ) и скорости вращательного движения вокруг полюса (вращение точки В вокруг точки А ).

Ускорение точки движущейся плоской фигуры складывается из ускорения полюса относительно неподвижной системы отсчета и ускорения за счет вращательного движения вокруг полюса.

Во втором варианте движение сечения рассматривается как вращательное вокруг подвижного (мгновенного) центра P (рис.1.12). В этом случае скорость любой точки В сечения будет определяться по формуле для вращательного движения

Угловая скорость вокруг мгновенного центра Р может быть определена если известна скорость какой либо точки сечения, например точки А.

Рис.2.12

Положение мгновенного центра вращения может быть определено на основании следующих свойств:

Вектор скорости точки перпендикулярен радиусу;

Модуль скорости точки пропорционален расстоянию от точки до центра вращения (V= R ) ;

Скорость в центре вращения равна нулю.

Рассмотрим некоторые случаи определения положения мгновенного центра.

1. Известны направления скоростей двух точек плоской фигуры (рис.2.13). Проведем линии радиусов. Мгновенный центр вращения Р находится на пересечении перпендикуляров, проведенных к векторам скоростей.

2. Скорости точек А и В известны, причем вектора и параллельны друг другу, а линия АВ перпендикулярна (рис. 2. 14). В этом случае мгновенный центр вращения лежит на линии АВ . Для его нахождения проведем линию пропорциональности скоростей на основании зависимости V= R .

3. Тело катится без скольжения по неподвижной поверхности другого тела (рис.2.15). Точка касания тел в данный момент имеет нулевую скорость в то время, как скорости других точек тела не равны нулю. Точка касания Р будет мгновенным центром вращения.

Рис. 2.13 Рис. 2.14 Рис. 2.15

Кроме рассмотренных вариантов скорость точки сечения может быть определена на основании теоремы о проекциях скоростей двух точек твердого тела.

Теорема: проекции скоростей двух точек твердого тела на прямую, проведенную через эти точки, равны между собой и одинаково направлены .

Доказательство: расстояние АВ изменяться не может, следовательно,

V А cos не может быть больше или меньше V В cos (рис.2.16).

Рис. 2.16

Вывод: V А cos =V В cos. (2.19)

Сложное движение точки

В предыдущих параграфах рассматривалось движение точки относительно неподвижной системы отсчета, так называемое абсолютное движение. В практике встречаются задачи, в которых известно движение точки относительно системы координат, которая движется относительно неподвижной системы. При этом требуется определить кинематические характеристики точки относительно неподвижной системы.

Принято называть: движение точки относительно подвижной системы - относительным , движение точки вместе с подвижной системой - переносным , движение точки относительно неподвижной системы - абсолютным . Соответственно называют скорости и ускорения:

Относительные;- переносные; -абсолютные.

Согласно теореме о сложении скоростей абсолютная скорость точки равна векторной сумме относительной и переносной скоростей (рис.).

Абсолютное значение скорости определяется по теореме косинусов

Рис.2.17

Ускорение по правилу параллелограмма определяется только при поступательном переносном движении

При непоступательном переносном движении появляется третья составляющая ускорения, называемое поворотным или кориолисовым.

Кориолисово ускорение численно равно

где - угол между векторами и

Направление вектора кориолисова ускорения удобно определять по правилу Н.Е. Жуковского: вектор спроектировать на плоскость, перпендикулярную оси переносного вращения, проекцию повернуть на 90 градусов в сторону переносного вращения. Полученное направление будет соответствовать направлению кориолисова ускорения.

Вопросы для самоконтроля по разделу

1. В чем состоят основные задачи кинематики? Назовите кинематические характеристики.

2. Назовите способы задания движения точки и определение кинематических характеристик.

3. Дайте определение поступательного, вращательного вокруг неподвижной оси, плоскопараллельного движения тела.

4. Как задается движение твердого тела при поступательном, вращательном вокруг неподвижной оси и плоскопараллельном движении тела и как определяется скорость и ускорение точки при этих движениях тела?

Вращением твёрдого тела вокруг неподвижной оси называется такое его движение, при котором две точки тела остаются неподвижными в течение всего времени движения. При этом также остаются неподвижными все точки тела, расположенные на прямой, проходящей через его неподвижные точки. Эта прямая называется осью вращения тела .

Пусть точки A и B неподвижны. Вдоль оси вращения направим ось . Через ось вращения проведём неподвижную плоскость и подвижную , скреплённую с вращающимся телом (при ).

Положение плоскости и самого тела определяется двугранным углом между плоскостями и . Обозначим его . Угол называется углом поворота тела .

Положение тела относительно выбранной системы отсчета однозначно определяется в любой момент времени, если задано уравнение , где - любая дважды дифференцируемая функция времени. Это уравнение называется уравнением вращения твёрдого тела вокруг неподвижной оси .

У тела, совершающего вращение вокруг неподвижной оси, одна степень свободы, так как его положение определяется заданием только одного параметра - угла .

Угол считается положительным, если он откладывается против часовой стрелки, и отрицательным - в противоположном направлении. Траектории точек тела при его вращении вокруг неподвижной оси являются окружностями, расположенными в плоскостях перпендикулярных оси вращения.

Для характеристики вращательного движения твердого тела вокруг неподвижной оси введём понятия угловой скорости и углового ускорения.

Алгебраической угловой скоростью тела в какой-либо момент времени называется первая производная по времени от угла поворота в этот момент, то есть .

Угловая скорость является положительной величиной при вращении тела против часовой стрелки, так как угол поворота возрастает с течением времени, и отрицательной - при вращении тела по часовой стрелке, потому что угол поворота при этом убывает.

Размерность угловой скорости по определению:

В технике угловая скорость - это частота вращения, выраженная в оборотах в минуту. За одну минуту тело повернётся на угол , где n - число оборотов в минуту. Разделив этот угол на число секунд в минуте, получим

Алгебраическим угловым ускорением тела называется первая производная по времени от угловой скорости, то есть вторая производная от угла поворота т.е.

Размерность углового ускорения по определению:

Введем понятия векторов угловой скорости и углового ускорения тела.

И , где - единичный вектор оси вращения. Векторы и можно изображать в любых точках оси вращения, они являются скользящими векторами.

Алгебраическая угловая скорость это проекция вектора угловой скорости на ось вращения. Алгебраическое угловое ускорение это проекция вектора углового ускорения скорости на ось вращения.


Если при , то алгебраическая угловая скорость возрастает с течением времени и, следовательно, тело вращается ускоренно в рассматриваемый момент времени в положительную сторону. Направление векторов и совпадают, оба они направлены в положительную сторону оси вращения .

При и тело вращается ускоренно в отрицательную сторону. Направление векторов и совпадают, оба они направлены в отрицательную сторону оси вращения .

Движение твердого тела называется вращательным, если во время движения все точки тела, расположенные на некоторой прямой, называемой осью вращения, остаются неподвижными (рис. 2.15).

Положение тела при вращательном движении принято определять углом поворота тела , который измеряется как двугранный угол между неподвижной и подвижной плоскостями, проходящими через ось вращения. Причем, подвижная плоскость связана с вращающимся телом.

Введем в рассмотрение подвижную и неподвижную системы координат, начало которых разместим в произвольной точке О оси вращения. Ось Oz, общую для подвижной и неподвижной систем координат, направим по оси вращения, ось Ох неподвижной системы координат направим перпендикулярно оси Oz таким образом, чтобы она лежала в неподвижной плоскости, ось Ох 1 подвижной системы координат направим перпендикулярно оси Oz таким образом, чтобы она лежала в подвижной плоскости (рис. 2.15).

Если рассматривать сечение тела плоскостью, перпендикулярной оси вращения, то угол поворота φ можно определять как угол между неподвижной осью Ох и подвижной осью Ох 1 , неизменно связанной с вращающимся телом (рис. 2.16).

Принято направление отсчета угла поворота тела φ против хода часовой стрелки считать положительным, если смотреть с положительного направления оси Oz.

Равенство φ = φ(t) , описывающее изменение угла φ во времени, называется законом или уравнением вращательного движения твердого тела.

Быстрота и направление изменения угла поворота твердого тела характеризуются угловой скоростью. Абсолютное значение угловой скорости принято обозначать буквой греческого алфавита ω (омега). Алгебраическое значение угловой скорости принято обозначать . Алгебраическое значение угловой скорости равно первой производной по времени от угла поворота:

. (2.33)

Единицы измерения угловой скорости равны единицам измерения угла, деленным на единицу измерения времени, например, град/мин, рад/ч. В системе СИ единица измерения угловой скорости рад/с, но чаще наименование этой единицы измерения записывается в виде 1/с.

Если > 0, то тело вращается против хода часовой стрелки, если смотреть с конца оси координат, совмещенной с осью вращения.

Если < 0, то тело вращается по ходу часовой стрелки, если смотреть с конца оси координат, совмещенной с осью вращения.

Быстрота и направление изменения угловой скорости характеризуются угловым ускорением. Абсолютную величину углового ускорения принято обозначать буквой греческого алфавита e (эпсилон). Алгебраическую величину углового ускорения принято обозначать . Алгебраическая величина углового ускорения равна первой производной по времени от алгебраического значения угловой скорости или второй производной от угла поворота:


Единицы измерения углового ускорения равны единицам измерения угла, деленным на единицу измерения времени в квадрате. Например, град/с 2 , рад/ч 2 . В системе СИ единицей измерения углового ускорения является рад/с 2 , но чаще наименование этой единицы измерения записывается в виде 1/с 2 .

Если алгебраические значения угловой скорости и углового ускорения имеют один знак, то угловая скорость с течением времени увеличивается по модулю, а если разный, то уменьшается.

Если угловая скорость постоянна (ω = const), то принято говорить, что вращение тела равномерное. В этом случае:

φ = · t + φ 0 , (2.35)

где φ 0 - начальный угол поворота.

Если постоянно угловое ускорение (e = const), то принято говорить, что вращение тела равноускоренное (равнозамедленное). В этом случае:

где 0 - начальная угловая скорость.

В остальных случаях для определения зависимости φ от и необходимо интегрировать выражения (2.33), (2.34) при заданных начальных условиях.

На рисунках направление вращения тела иногда показывают изогнутой стрелкой (рис. 2.17).

Часто в механике угловая скорость и угловое ускорение рассматриваются как векторные величины и . Оба эти вектора направляются по оси вращения тела. Причем вектор направляют в одну сторону с ортом, определяющим направление оси координат, совпадающей с осью вращения, если >0, и в противоположную, если
Аналогично выбирают направление вектора (рис. 2.18).

При вращательном движении тела каждая из его точек (кроме точек, расположенных на оси вращения) перемещается по траектории, представляющей собой окружность с радиусом, равным кратчайшему расстоянию от точки до оси вращения (рис. 2.19).

Поскольку для окружности касательная в любой ее точке составляет угол 90° с радиусом, то вектор скорости точки тела, совершающего вращательное движение, будет направлен перпендикулярно радиусу и лежать в плоскости окружности, являющейся траекторией движения точки. Касательная составляющая ускорения будет лежать на одной прямой со скоростью, а нормальная будет направлена по радиусу к центру окружности. Поэтому иногда касательную и нормальную составляющие ускорения при вращательном движении называют соответственно вращательной и центростремительной (осестремительной) составляющими (рис. 2.19)

Алгебраическая величина скорости точки определяется выражением:

, (2.37)

где R = OM - кратчайшее расстояние от точки до оси вращения.

Алгебраическая величина касательной составляющей ускорения определяется выражением:

. (2.38)

Модуль нормальной составляющей ускорения определяется выражением:

. (2.39)

Вектор ускорения точки при вращательном движении определяется по правилу параллелограмма как геометрическая сумма касательной и нормальной составляющих. Соответственно модуль ускорения может быть определен по теореме Пифагора :

Если угловая скорость и угловое ускорение определены как векторные величины , , то векторы скорости, касательной и нормальной составляющих ускорения могут быть определены по формулам:

где - радиус-вектор, проведенный в точку М из произвольной точки оси вращения (рис. 2.20).

Решение задач на вращательное движение одного тела обычно не вызывает никаких трудностей. Используя формулы (2.33)-(2.40), можно легко определить любой неизвестный параметр.

Определенные сложности возникают при решении задач, связанных с исследованием механизмов, состоящих из нескольких взаимосвязанных тел, совершающих как вращательное, так и поступательное движение.

Общий подход к решению подобных задач заключается в том, что движение от одного тела к другому передается через одну точку - точку касания (контакта). Причем у соприкасающихся тел равны скорости и касательные составляющие ускорений в точке контакта. Нормальные составляющие ускорения у соприкасающихся тел в точке контакта различны, они зависят от траектории движения точек тел.

При решении задач такого типа удобно в зависимости от конкретных обстоятельств использовать как формулы, приведенные в разделе 2.3, так и формулы для определения скорости и ускорения точки при задании ее движения естественным (2.7), (2.14) (2.16) или координатным (2.3), (2.4), (2.10), (2.11) способами. При этом если движение тела, к которому принадлежит точка, вращательное, траектория движения точки будет представлять собой окружность. Если движение тела прямолинейное поступательное, то траектория движения точки будет представлять собой прямую линию.

Пример 2.4. Тело вращается вокруг неподвижной оси. Угол поворота тела изменяется по закону φ = π · t 3 рад. Для точки, находящейся на расстоянии OM = R = 0,5 м от оси вращения, определить скорость, касательную, нормальную составляющие ускорения и ускорение в момент времени t 1 = 0,5 с. Показать направление этих векторов на чертеже.

Рассмотрим сечение тела плоскостью, проходящей через точку О перпендикулярно оси вращения (рис. 2.21). На этом рисунке точка О - точка пересечения оси вращения и секущей плоскости, точки М о и M 1 - соответственно начальное и текущее положение точки М. Через точки О и М о проведем неподвижную ось Ох , а через точки О и М 1 - подвижную ось Ох 1 . Угол между этими осями будет равен

Закон изменения угловой скорости тела найдем, продифференцировав закон изменения угла поворота:

В момент t 1 угловая скорость будет равна

Закон изменения углового ускорения тела найдем, продифференцировав закон изменения угловой скорости:

В момент t 1 угловое ускорение будет равно:

1/с 2 ,

Алгебраические величины векторов скорости, касательной составляющей ускорения, модуля нормальной составляющей ускорения и модуля ускорения найдем по формулам (2.37), (2.38), (2.39), (2.40):

М/с 2 ;

м/с 2 .

Так как угол φ 1 >0, то откладывать его от оси Ох будем против хода часовой стрелки. А так как > 0, то векторы будут направлены перпендикулярно радиусу OM 1 таким образом, чтобы мы видели их вращающимися против хода часовой стрелки. Вектор будет направлен по радиусу OM 1 к оси вращения. Вектор построим по правилу параллелограмма на векторах τ и .

Пример 2.5. По заданному уравнению прямолинейного поступательного движения груза 1 х = 0,6t 2 - 0,18 (м) определить скорость, а также касательную, нормальную составляющую ускорения и ускорение точки М механизма в момент времени t 1 , когда путь, пройденный грузом 1, равен s = 0,2 м. При решении задачи будем считать, что проскальзывание в точке контакта тел 2 и 3 отсутствует, R 2 = 1,0 м, r 2 = 0,6 м, R 3 = 0,5 м (рис. 2.22).

Закон прямолинейного поступательного движения груза 1 задан в координатной форме. Определим момент времени t 1 , для которого путь, пройденный грузом 1, будет равен s

s = x(t l)-x(0) ,

откуда получим:

0,2 = 0,18 + 0,6t 1 2 - 0,18.

Следовательно,

Продифференцировав по времени уравнение движения, найдем проекции скорости и ускорения груза 1 на ось Ох:

м/с 2 ;

В момент t = t 1 проекция скорости груза 1 будет равна:

то есть будет больше нуля, как и проекция ускорения груза 1. Следовательно, груз 1 будет в момент t 1 двигаться вниз равноускоренно, соответственно, тело 2 будет вращаться равноускоренно в направлении против хода часовой стрелки, а тело 3 - по ходу часовой стрелки.

Тело 2 приводится во вращение телом 1 через нить, намотанную на малый барабан. Поэтому модули скоростей точек тела 1, нити и поверхности малого барабана тела 2 равны, также равны будут и модули ускорений точек тела 1, нити и касательной составляющей ускорения точек поверхности малого барабана тела 2. Следовательно, модуль угловой скорости тела 2 можно определить как

Модуль углового ускорения тела 2 будет равен:

1/с 2 .

Определим модули скорости и касательной составляющей ускорения для точки К тела 2 - точки контакта тел 2 и 3:

м/с, м/с 2

Так как тела 2 и 3 вращаются без взаимного проскальзывания, модули скорости и касательной составляющей ускорения точки К - точки контакта у этих тел будут равны.

направим перпендикулярно радиусу в сторону вращения тела, так как тело 3 вращается равноускоренно

Абсолютно твердое тело – тело взаимное расположение частей которого во время движения не меняется.

Поступательное движение твёрдого тела - это такое его движение, при котором любая прямая, жёстко связанная с телом, перемещается, оставаясь параллельной своему первоначальному направлению.

При поступательном движении твёрдого тела все его точки движутся одинаково за малое время dt, радиус-вектор этих точек изменяется на одну и ту же величину. Соответственно в каждый момент времени скорости всех его точек одинаковы и равны. Поэтому кинематика рассматриваемого поступательного движения твёрдого тела сводится к изучению движения любого из его точек. Обычно рассматривают движение центра инерции твёрдого тела, свободно двигающегося в пространстве.

Вращательное движение твёрдого тела - это такое движение, при котором все его точки движущиеся по окружностям, центры которых находятся вне пределов тела. Прямая называется осью вращения тела.

Угловая скорость – векторная величина, характеризующая быстроту вращения тела; отношение угла поворота ко времени, за которое этот поворот произошёл; вектор, определяемый первой производной угла поворота тела по времени. Вектор угловой скорости направлен вдоль оси вращения по правилу правого винта. ω=φ/t=2π/T=2πn, где T – период вращения, n – частота вращения. ω=lim Δt → 0 Δφ/Δt=dφ/dt.

Угловое ускорение – вектор, определяемый первой производной угловой скорости по времени. При вращении тела вокруг неподвижной оси вектор углового ускорения направлен вдоль оси вращения в сторону вектора элементарного приращения угловой скорости. Вторая производная угла поворота по времени. При вращении тела вокруг неподвижной оси вектор углового ускорения направлен вдоль оси вращения в сторону вектора элементарного приращения угловой скорости. При ускоренном движении вектор ε сонаправлен вектору φ, при замедленном – противонаправлен ему. ε=dω/dt.

Если dω/dt> 0, то εω

Если dω/dt< 0, то ε ↓ω

4. Принцип инерции (первый закон Ньютона). Инерциальные системы отсчета. Принцип относительности.

Первый закон Ньютона (закон инерции) : всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит её изменить это состояние

Стремление тела сохранять состояние покоя или равномерного прямолинейного движения называется инертностью . Поэтому первый закон Ньютона называют законом инерции.



Первый закон Ньютона утверждает существование инерциальных систем отсчёта.

Инерциальная система отсчёта – это система отсчёта, относительно которой свободная материальная точка неподверженная воздействию других тел, движется равномерно прямолинейно; это такая система, которая либо покоится, либо движется равномерно и прямолинейно относительно какой-то другой инерциальной системы.

Принцип относительности - фундаментальный физический закон, согласно которому любой процесс протекает одинаково в изолированной материальной системе, находящейся в состоянии покоя, и в такой же системе в состоянии равномерного прямолинейного движения. Состояния движения или покоя определяются по отношению к произвольно выбранной инерциальной системе отсчета. Принцип относительности лежит в основе специальной теории относительности Эйнштейна.

5. Преобразования Галилея.

Принцип относительности (Галилея) : никакие опыты (механические, электрические, оптические), проведённые внутри данной инерциальной системы отсчёта, не дают возможности обнаружить, покоится ли эта система или движется равномерно и прямолинейно; все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчёта к другой.

Рассмотрим две системы отсчета: инерциальную систему К (с координатами x,y,z), которую условно будем считать неподвижной и систему К’ (с координатами x’,y’,z’), движущуюся относительно К равномерно и прямолинейно со скоростью U (U = const). Найдем связь между координатами произвольной точки А в обеих системах. r = r’+r0=r’+Ut. (1.)



Уравнение (1.) можно записать в проекциях на оси координат:

y=y’+Uyt; (2.)

z=z’+Uzt; Уравнение (1.) и (2.) носят название преобразований координат Галилея.

Связь между потенциальной энергией и силой

Каждой точке потенциального поля соответствует, с одной стороны, некоторое значение вектора силы , действующей на тело, и, с другой стороны, некоторое значение потенциальной энергии . Следовательно, между силой и потенциальной энергией должна существовать определенная связь.

Для установления этой связи вычислим элементарную работу , совершаемую силами поля при малом перемещении тела, происходящем вдоль произвольно выбранного направления в пространстве, которое обозначим буквой . Эта работа равна

где - проекция силы на направление .

Поскольку в данном случае работа совершается за счет запаса потенциальной энергии , она равна убыли потенциальной энергии на отрезке оси :

Из двух последних выражений получаем

Эта формула определяет проекции вектора силы на координатные оси. Если известны эти проекции, оказывается определенным и сам вектор силы:

в математике вектор ,

где а - скалярная функция х, у, z, называется градиентом этого скаляра обозначается символом . Следовательно сила равна градиенту потенциальной энергии, взятого с обратным знаком

Угол поворота, угловая скорость и угловое ускорение

Вращением твердого тела вокруг неподвижной оси называ­ется такое его движение, при котором две точки тела остаются неподвижными в течение всего времени движения. При этом также остаются неподвижными все точки тела, расположенные на прямой, проходящей через его неподвижные точки. Эта прямая называется осью вращения тела.

Если А и В - неподвижные точки тела (рис. 15), то осью вращения является ось Oz, которая может иметь в пространстве любое направление, не обязательно вертикальное. Одно на­правление оси Oz принимается за положительное.

Через ось вращения проведем неподвижную плоскость П о и подвижную П, скрепленную с вращающимся телом. Пусть в начальный момент времени обе плоскости совпадают. Тогда в момент времени t положение подвижной плоскости и самого вращающегося тела можно определить двугран­ным углом между плоскостями и соответствующим линейным углом φ между прямыми, расположенными в этих плоскостях и перпендикулярными оси вращения. Угол φ называется углом поворота тела.

Положение тела относительно выбранной системы отсчета полностью определяется в любой

момент времени, если задано уравнение φ = f(t) (5)

где f(t) - любая, дважды дифференцируемая функция времени. Это уравнение называют уравнением вращения твердого тела вокруг неподвижной оси.

У тела, совершающего вращение вокруг неподвижной оси, одна степень свободы, так как его положение определяется заданием только одного параметра - угла φ .

Угол φ считается положительным, если он откладывается против часовой стрелки, и отрицательным - в противополож­ном направлении, если смотреть с положительного направления оси Oz. Траектории точек тела при его вращении вокруг неподвижной оси являются окружностями, расположенными в плоскостях, перпендикулярных оси вращения.

Для характеристики вращательного движения твердого тела вокруг неподвижной оси введем понятия угловой скорости и углового ускорения. Алгебраической угловой скоростью тела в какой-либо момент времени называют первую производную по времени от угла поворота в этот момент, т. е. dφ/dt = φ. Она является величиной положительной при вращении тела против часовой стрелки, так как угол поворота возрастает с течением времени, и отрицательной - при вращении тела по часовой стрелке, потому что угол поворота при этом убывает.

Модуль угловой скорости обозначают ω. Тогда ω= ׀dφ/dt ׀= ׀φ ׀ (6)

Размерность угловой скорости устанавливаем в соответствии с (6)

[ω] = угол/время = рад/с = с -1 .

Втехнике угловая скорость - это частота вращения, выражен­ная в оборотах в минуту. За 1 мин тело повернется на угол 2πп, если п - число оборотов в минуту. Разделив этот угол на число секунд в минуте, получим: (7)

Алгебраическим угловым ускорением тела называют первую производную по времени от алгебраической скорости, т.е. вторую производную от угла поворота d 2 φ/dt 2 = ω . Модуль углового ускорения обозначим ε , тогда ε=|φ| (8)

Размерность углового ускорения получаем из (8):

[ε ] = угловая скорость/время = рад/с 2 = с -2

Если φ’’>0 при φ’>0 , то алгебраическая угловая скорость возрастает с течением времени и, следовательно, тело вращается ускоренно в рассматриваемый момент времени в положительную сторону (против часовой стрелки). При φ’’<0 и φ’<0 тело вращается ускоренно в отрицательную сторону. Если φ’’<0 при φ’>0 , то имеем замедленное вращение в положительную сторону. При φ’’>0 и φ’<0 , т.е. замедленное вращении совершается в отрицательную сторону. Угловую скорость и угловое ускорение на рисунках изображают дуговыми стрелками вокруг оси вращения. Дуговая стрелка для угловой скорости указывает направление вращения тел;

Для ускоренного вращения дуговые стрелки для угловой скорости и углового ускорения имеют одинаковые направления для замедленного - их направления противоположны.

Частные случаи вращения твердого тела

Вращение называют равномерным, если ω=const, φ= φ’t

Вращение будет равнопеременным, если ε=const. φ’= φ’ 0 + φ’’t и

В общем случае, если φ’’ не постоянно,

Скорости и ускорения точек тела

Известно уравнение вращения твердого тела вокруг непо­движной оси φ= f(t) (рис.16). Расстояние s точки М в по­движной плоскости П по дуге окружности (траектории точки), отсчитываемое от точки М о, расположенной в неподвижной плоскости, выражается через угол φ зависимостью s=hφ , где h -радиус окружности, по которой перемещается точка. Он является кратчайшим расстоянием от точки М до оси враще­ния. Его иногда называют радиусом вращения точки. У каждой точки тела радиус вращения остается неизменным при враще­нии тела вокруг неподвижной оси.

Алгебраическую скорость точки М определяем по формуле v τ =s’=hφ Модуль скорости точки: v=hω (9)

Скорости точек тела при вращении вокруг неподвижной оси пропорциональ­ны их кратчайшим расстояниям до этой оси. Коэффициентом пропорци­ональности является угловая ско­рость. Скорости точек направлены по касательным к траекториям и, сле­довательно, перпендикулярны радиу­сам вращения. Скорости точек тела, расположен­ных на отрезке прямой ОМ, в соот­ветствии с (9) распределены по линей­ному закону. Они взаимно параллельны, и их концы располагаются на одной прямой, проходящей через ось вращения. Ускорение точки разлагаем на ка­сательную и нормальную составля­ющие, т. е. a=a τ +a nτ Касательное и нормальное ускорения вычисляются по формулам (10)

так как для окружности радиус кривизны р=h (рис. 17). Таким образом,

Касательные, нормальные и полные ускорения точек, как и скорости, распределены тоже по линейному закону. Они линейно зависят от расстояний точек до оси вращения. Нормальное ускорение направлено по радиусу окружности к оси вращения. Направление касательного ускорения зависит от знака алгебраического углового ускорения. При φ’>0 и φ’’>0 или φ’<0 и φ’<0 имеем ускоренное вращение тела и направле­ния векторов a τ и v совпадают. Если φ’ и φ’" имеют разные знаки (замедленное вращение), то a τ и v направлены проти­воположно друг другу.

Обозначив α угол между полным ускорением точки и ее радиусом вращения, имеем

tgα = | a τ |/a n = ε/ω 2 (11)

так как нормальное ускорение а п всегда положительно. Угол а для всех точек тела один и тот же. Откладывать его следует от ускорения к радиусу вращения в направлении дуговой стрелки углового ускорения независимо от направления вращения твердого тела.

Векторы угловой скорости и углового ускорения

Введем понятия векторов угловой скорости и углового ускорения тела. Если К - единичный вектор оси вращения, направленный в ее положительную сторону, то векторы угловой скорости ώ и углового ускорения ε определяют выражениями (12)

Так как k -постоянный по мо­дулю и направлению вектор, то из (12) следует, что

ε=dώ/dt (13)

При φ’>0 и φ’’>0 направления векторов ώ и ε совпадают. Они оба направлены в положительную сторону оси вращения Oz (Рис. 18.а)Если φ’>0 и φ’’<0 , то они направлены в противополож­ные стороны (рис.18.б). Вектор углового ускорения совпадает по направлению с вектором угловой скорости при ускоренном вращении и противоположен ему при замедленном. Векторы ώ и ε можно изображать в любых точках оси вращения. Они являются векторами скользящими. Это их свойство следует из векторных формул для скоростей и ускоре­ний точек тела.

Сложное движение точки

Основные понятия

Для изучения некоторых, более сложных видов движений твердого тела целесообразно рассмотреть простейшее сложное движение точки. Во многих задачах движение точки приходится рассматривать относительно двух (и более) систем отсчета, движущихся друг относительно друга. Так, движение космичес­кого корабля, движущегося к Луне, требуется рассматривать одновременно и относительно Земли и относительно Луны, которая движется относительно Земли. Любое движение точки можно считать сложным, состоящим из нескольких движений. Например, движение корабля по реке относительно Земли можно считать сложным, состоящим из движения по воде и вместе с текущей водой.

В простейшем случае сложное движение точки состоит из относительного и переносного движений. Определим эти дви­жения. Пусть имеем две системы отсчета, движущиеся друг относительно друга. Если одну из этих систем O l x 1 y 1 z 1 (рис. 19) принять за основную или неподвижную (ее движение относительно других систем отсчета не рассматривается), то вторая система отсчета Oxyz будет двигаться относительно первой. Движение точки относительно подвижной системы отсчета Oxyz называется относительным. Характеристики этого движения, такие, как траектория, скорость и ускорение, назы­ваются относительными. Их обозначают индексом r; для скорости и ускорения v r , a r . Движение точки относительно основной или неподвижной системны системы отсчета O 1 x 1 y 1 z 1 называется абсолютным (или сложным). Его также иногда называют составным движением. Траектория, скорость и ускорение этого движения называются абсолютными. Скорость и ускорение абсолютного движения обозначают буквами v, a без индексов.


Переносным движением точки называют движение, которое она совершает вместе с подвижной системой отсчета, как точка, жестко скрепленная с этой системой в рассматриваемый момент времени. Вслед­ствие относительного движения движущаяся точка в различные моменты времени совпадает с различными точками тела S, с которым скреплена подвижная система отсчета. Переносной скоростью и переносным ускорением являются скорость и уско­рение той точки тела S, с которой в данный момент совпадает движущаяся точка. Переносные скорость и ускорение обознача­ют v e , а е.

Если траектории всех точек тела S, скрепленного с подвиж­ной системой отсчета, изобразить на рисунке (рис. 20), то получим семейство линий - семейство траекторий переносного движения точки М. Вследствие относительного движения точки М в каждый момент времени она находится на одной из траекторий переносного движения. Точка М может совпадать только с одной точкой каждой из траекторий этого семейства переносных траекторий. В связи с этим иногда считают, что траекторий переносного движения нет, так как приходится считать траекториями переносного движения линии, у которых только одна точка фактически является точкой траектории.

В кинематике точки изучалось движение точки относительно какой-либо системы отсчета независимо от того, движется эта система отсчета относительно других систем или нет. Дополним это изучение рассмотрением сложного движения, в простейшем случае состоящего из относительного и перенос­ного. Одно и то же абсолютное движение, выбирая различные подвижные системы отсчета, можно считать состоящим из разных переносных и соответственно относительных движений.

Сложение скоростей

Определим скорость абсолютного движения точки, если известны скорости относительного и переносного движений этой точки. Пусть точка со­вершает только одно, относи­ тельное движение по отношению к подвижной системе отсчета Oxyz и в момент времени t за­нимает на траектории относи­ тельного движения положение М (рис 20). В момент времени t+ t вследствие относительного Движения точка окажется в по­ложении М 1 , совершив пере­мещение ММ 1 по траектории относительного движения. Пред­положим, что точка участвует Oxyz и относительной траекторией она переместится по некоторой кривой на ММ 2. Если точка участвует одновременно и в относительном и в переносном движениях, то за время А; она переместится на ММ" по траектории абсолютного движения и в момент времени t+At займет положение М". Если время At мало и в дальнейшем переходят к пределу при At, стремящемся к нулю, то малые перемещения по кривым можно заменить отрезками хорд и принять их за векторы перемещений. Складывая векторные пе­ремещения, получаем

В этом отношении отброшены малые величины более высокого порядка, стремящиеся к нулю при At, стремящемся к нулю. Переходя к пределу, имеем (14)

Следовательно, (14) примет форму (15)

Получена так называемая теорема сложения скоростей: скорость абсолютного движения точки равна векторной сумме скоростей переносного и относительного движений этой точки. Так как в общем случае скорости переносного и относительного движений не перпендикулярны, то (15’)


Похожая информация.




© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний