Вращательное движение твердого тела. Вращательное движение твердого тела: уравнение, формулы Уравнение движения тела вокруг неподвижной оси

Главная / И. С. Тургенев

Рис. 6.4

Такое движение тела, при котором какие- нибудь две его точки и В на рис. 6.4) остаются неподвижными, называют вращением вокруг неподвижной оси.

Можно показать, что в этом случае неподвижной остаётся любая точка тела, лежащая на прямой, соединяющей точки Aw В.

Ось, проходящую через эти точки, называют осью вращения тела; её положительное направление выбирается произвольно (рис. 6.4).

Любая точка М тела, не лежащая на оси вращения, описывает окружность, центр которой расположен на оси вращения (рис. 6.4).

Положение тела с неподвижной осью вращения z (рис. 6.5) можно описать при помощи всего лишь одного скалярного параметра - угла поворота (р . Это угол между двумя плоскостями проведенными через ось вращения: неподвижной плоскостью N и подвижной - Р, жестко связанной с телом (рис. 6.5). За положительное примем направление отсчета угла противоположное движению часовой стрелки, если смотреть с конца оси z. (указано дуговой стрелкой на рис. 6.5). Единица измерения угла в системе СИ - 1 радиан « 57,3°. Функциональная зависимость угла поворота от времени

полностью определяет вращательное движение тела вокруг неподвижной оси. Поэтому равенство (6.3) называют уравнением вращения твердого тела вокруг неподвижной оси.

Быстроту вращения тела характеризует угловая скорость со тела, которая определяется как производная угла поворота по времени

и имеет размерность рад/с (или с"").

Второй кинематической характеристикой вращательного движения является угловое ускорение - производная угловой скорости тела:

Размерность углового ускорения - рад/с 2 (или с ~ 2).

Замечание. Символами со и? в этой лекции обозначаются алгебраические значения угловой скорости и углового ускорения. Их знаки указывают направление вращения и его характер (ускоренное или замедленное). Например, если со = ф > 0 , то угол со временем увеличивается и, следовательно, тело вращается в направлении отсчета (р.

Скорость и ускорение каждой точки вращающегося тела нетрудно связать с его угловой скоростью и угловым ускорением. Рассмотрим движение произвольной точки М тела (рис. 6.6).

Поскольку её траектория - окружность, то дуговая координата.9 точки М после поворота тела на угол будет

где h - расстояние от точки М до оси вращения (рис. 6.6).

Дифференцируя по времени обе части этого равенства, получим с учетом (5.14) и (6.4):

где г г - проекция скорости точки на касательную г, направленную в сторону отсчета дуги.v и угла

Величина нормального ускорения точки М согласно (5.20) и (6.6) будет

а проекция её касательного ускорения на касательную г согласно (5.19) и (6.5)

Модуль полного ускорения точки М

Направления векторов v, а, а„ , а, для случая, когда ф> 0 и ф > 0, показаны на рис. 6.7.

Пример 1. Механизм передачи состоит из колес / и 2, которые связаны в точке К так, что при их вращении взаимное проскальзывание отсутствует. Уравнение вращения колеса 1:

положительное направление отсчета угла указано дуговой стрелкой на рис. 6.8.

Известны размеры механизма: Г = 4 см, R 2 = 6 см, г 2 = 2 см.

Найти скорость и ускорение точки М колеса 2 для момента времени /| = 2 с.

Решение. При движении механизма колеса 1 и 2 вращаются вокруг неподвижных осей, проходящих через точки 0 и 0 2 перпендикулярно плоскости рис. 6.8. Находим угловую скорость и угловое ускорение колеса I в момент времени / = 2 с, используя данные выше определения (6.4) и (6.5) этих величин:

Их отрицательные знаки указывают на то, что в момент времени t - 2 с колесо / вращается по ходу часовой стрелки (противоположно направлению отсчета угла ) и это вращение ускоренное. Благодаря отсутствию взаимного проскальзывания колес I и 2 векторы скоростей их точек в месте соприкосновения К должны быть равными. Выразим модуль этой скорости через угловые скорости колес, используя (6.6):

Из последнего равенства выражаем модуль угловой скорости колеса 2 и находим его значение для указанного момента времени 6 = 2 с:

Направление скорости к (рис. 6.9) указывает, что колесо 2 вращается против хода часовой стрелки и, следовательно, оь > 0. Из (6.10) и последнего неравенства видно, что угловые скорости колес отличаются на постоянный отрицательный множитель (- г1г 2): со 2 = г { /г 2). Но тогда и производные этих скоростей - угловые ускорения колес должны отличаются на такой же множитель: е 2 =? ] (-г ] /г 1)=-2- (-4/2) = 4с~ 2 .

Находим величины скорости и ускорения точки М ступенчатого колеса 2 при помощи формул (6.6) - (6.9):

Направления векторов v и, а, а д/ показаны на рис. 6.9.

В природе и технике мы часто сталкиваемся с проявлением вращательного движения твердых тел, например, валов и шестерен. Как в физике описывают этот тип движения, какие формулы и уравнения для этого применяются, эти и другие вопросы освещаются в данной статье.

Что такое вращение?

Каждый из нас интуитивно представляет, о каком движении пойдет речь. Вращение - это процесс, при котором тело или материальная точка движется по круговой траектории вокруг некоторой оси. С геометрической точки зрения твердого тела - это прямая, расстояние до которой в процессе перемещения остается неизменным. Это расстояние называют радиусом вращения. Далее будем обозначать его буквой r. Если ось вращения проходит через центр масс тела, то ее называют собственной осью. Примером вращения вокруг собственной оси является соответствующее движение планет Солнечной системы.

Чтобы вращение происходило, должно существовать центростремительное ускорение, которое возникает за счет центростремительной силы. Эта сила направлена от центра масс тела к оси вращения. Природа центростремительной силы может быть самой разной. Так, в космическом масштабе ее роль выполняет гравитация, если тело закреплено нитью, то сила натяжения последней будет центростремительной. Когда тело вращается вокруг собственной оси, роль центростремительной силы играет внутреннее электрохимическое взаимодействие между составляющими тело элементами (молекулами, атомами).

Необходимо понимать, что без присутствия центростремительной силы тело будет двигаться прямолинейно.

Описывающие вращение физические величины

Во-первых, это динамические характеристики. К ним относятся:

  • момент импульса L;
  • момент инерции I;
  • момент силы M.

Во-вторых, это кинематические характеристики. Перечислим их:

  • угол поворота θ;
  • скорость угловая ω;
  • ускорение угловое α.

Кратко опишем каждую из названных величин.

Момент импульса определяется по формуле:

Где p - линейный импульс, m - масса материальной точки, v - ее линейная скорость.

Момент инерции материальной точки рассчитывается с помощью выражения:

Для любого тела сложной формы величина I рассчитывается, как интегральная сумма моментов инерции материальных точек.

Момент силы M вычисляется так:

Здесь F - внешняя сила, d - расстояние от точки ее приложения до оси вращения.

Физический смысл всех величин, в названии которых присутствует слово "момент", аналогично смыслу соответствующих линейных величин. Например, момент силы показывает возможность приложенной силы сообщить системе вращающихся тел.

Кинематические характеристики математически определяются следующими формулами:

Как видно из этих выражений, угловые характеристики аналогичны по своему смыслу линейным (скорости v и ускорению a), только они применимы для круговой траектории.

Динамика вращения

В физике изучение вращательного движения твердого тела осуществляется с помощью двух разделов механики: динамики и кинематики. Начнем с динамики.

Динамика изучает внешние силы, действующие на систему вращающихся тел. Сразу запишем уравнение вращательного движения твердого тела, а затем, разберем его составные части. Итак, это уравнение имеет вид:

Который действует на систему, обладающую моментом инерции I, вызывает появление углового ускорения α. Чем меньше величина I, тем легче с помощью определенного момента M раскрутить систему до больших скоростей за малые промежутки времени. Например, металлический стержень легче вращать вдоль его оси, чем перпендикулярно ей. Однако, тот же стержень легче вращать вокруг оси, перпендикулярной ему, и проходящей через центр масс, чем через его конец.

Закон сохранения величины L

Выше была введена эта величина, она называется моментом импульса. Уравнение вращательного движения твердого тела, представленное в предыдущем пункте, часто записывают в иной форме:

Если момент внешних сил M действует на систему в течение времени dt, то он вызывает изменение момента импульса системы на величину dL. Соответственно, если момент сил равен нулю, тогда L = const. Это и есть закон сохранения величины L. Для нее, используя связь между линейной и угловой скоростью, можно записать:

L = m*v*r = m*ω*r 2 = I*ω.

Таким образом, при отсутствии момента сил произведение угловой скорости и момента инерции является постоянной величиной. Этот физический закон используют фигуристы в своих выступлениях или искусственные спутники, которые необходимо повернуть вокруг собственной оси в открытом космосе.

Центростремительное ускорение

Выше, при изучении вращательного движения твердого тела, уже была описана эта величина. Также была отмечена природа центростремительных сил. Здесь лишь дополним эту информацию и приведем соответствующие формулы для расчета этого ускорения. Обозначим его a c .

Поскольку центростремительная сила направлена перпендикулярно оси и проходит через нее, то момента она не создает. То есть эта сила не оказывает совершенно никакого влияния на кинематические характеристики вращения. Тем не менее, она создает центростремительное ускорение. Приведем две формулы для его определения:

Таким образом, чем больше угловая скорость и радиус, тем большую силу следует приложить, чтобы удержать тело на круговой траектории. Ярким примером этого физического процесса является занос автомобиля во время поворота. Занос возникает, если центростремительная сила, роль которой играет сила трения, становится меньше, чем центробежная сила (инерционная характеристика).

Три основные кинематические характеристики были перечислены выше в статье. твердого тела формулами следующими описывается:

θ = ω*t => ω = const., α = 0;

θ = ω 0 *t + α*t 2 /2 => ω = ω 0 + α*t, α = const.

В первой строке приведены формулы для равномерного вращения, которое предполагает отсутствие внешнего момента сил, действующего на систему. Во второй строке записаны формулы для равноускоренного движения по окружности.

Отметим, что вращение может происходить не только с положительным ускорением, но и с отрицательным. В этом случае в формулах второй строки следует перед вторым слагаемым поставить знак минус.

Пример решения задачи

На металлический вал в течение 10 секунд действовал момент силы 1000 Н*м. Зная, что момент инерции вала равен 50 кг*м 2 , необходимо определить угловую скорость, которую придал валу упомянутый момент силы.

Применяя основное уравнение вращения, вычислим ускорение вала:

Поскольку это угловое ускорение действовало на вал в течение времени t = 10 секунд, то для вычисления угловой скорости применяем формулу равноускоренного движения:

ω = ω 0 + α*t = M/I*t.

Здесь ω 0 = 0 (вал не вращался до действия момента сил M).

Подставляем в равенство численные значения величин, получаем:

ω = 1000/50*10 = 200 рад/с.

Чтобы это число перевести в привычные обороты в секунду, необходимо его поделить на 2*pi. Выполнив это действие, получаем, что вал будет вращаться с частотой 31,8 об./с.

Вращательным называют такое движение, при котором две точки, связанные с телом, следовательно, и прямая, проходящая через эти точки, остаются неподвижными во время движения (рис. 2.16). Неподвижную прямую А В называют осью вращения.

Рис. 2.1В. К определению вращательного движения тела

Положение тела при вращательном движении определяет угол поворота ф, рад (см. рис. 2.16). При движении угол поворота меняется со временем, т.е. закон вращательного движения тела определяется как закон изменения во времени величины двугранного угла Ф = ф(/) между неподвижной полуплоскостью К () , проходящей через ось вращения, и подвижной п 1 полуплоскостью, связанной с телом и также проходящей через ось вращения.

Траектории всех точек тела при вращательном движении представляют собой концентрические окружности, расположенные в параллельных плоскостях с центрами на оси вращения.

Кинематические характеристики вращательного движения тела. Аналогично тому, как были введены кинематические характеристики для точки вводят кинематическое понятие, характеризующее быстроту изменения функции ф(с), которая определяет положение тела при вращательном движении, т.е. угловую скорость со = ф = с/ф/с//, размерность угловой скорости [со] = рад/с.

В технических расчетах часто используют выражение угловой скорости другой размерностью - через число оборотов в минуту: [я] = об/мин, а связь между п и со можно представить в виде: со = 27ш/60 = 7ш/30.

В общем случае угловая скорость изменяется во времени. Мерой быстроты изменения угловой скорости является угловое ускорение е = с/со/с//= со = ф, размерность углового ускорения [е] = рад/с 2 .

Введенные угловые кинематические характеристики полностью определяются заданием одной функции - угла поворота от времени.

Кинематические характеристики точек тела при вращательном движении. Рассмотрим точку М тела, находящуюся на расстоянии р от оси вращения. Эта точка движется по окружности радиуса р (рис. 2.17).


Рис. 2.17.

точек тела при его вращении

Длина дуги M Q M окружности радиуса р определяется как s = ptp, где ф - угол поворота, рад. В случае, если закон движения тела задан как ф = ф(г), то закон движения точки М по траектории определяет формула S = рф(7).

Пользуясь выражениями кинематических характеристик при естественном способе задания движения точки, получим кинематические характеристики для точек, вращающегося тела: скорость по формуле (2.6)

V = 5 = рф = рсо; (2.22)

касательное ускорение согласно выражению (2.12)

я т = К = сор = ер; (2.23)

нормальное ускорение по формуле (2.13)

а„ = И 2 /р = со 2 р 2 /р = огр; (2.24)

полное ускорение с использованием выражения (2.15)

а = -]а + а] = рх/е 2 + со 4 . (2.25)

За характеристику направления полного ускорения принимают р - угол отклонения вектора полного ускорения от радиуса окружности, описываемой точкой (рис. 2.18).

Из рис. 2.18 получаем

tgjLi = aja n =ре/рсо 2 =г/(о 2 . (2.26)

Рис. 2.18.

Отметим, что все кинематические характеристики точек вращающегося тела пропорциональны расстояниям до оси вращения. Ве-

личины их определяют через производные одной и той же функции - угла поворота.

Векторные выражения для угловых и линейных кинематических характеристик. Для аналитического описания угловых кинематических характеристик вращающегося тела вместе с осью вращения вводят понятие вектора угла поворота (рис. 2.19): ф = ф(/)А:, где к - еди

ничный вектор оси вращения

1; к =соп51 .

Направлен вектор ф по этой оси так, чтобы с «конца» его видеть

поворот, происходящим против хода часовой стрелки.

Рис. 2.19.

характеристик в векторной форме

Если известен вектор ф(/), то все остальные угловые характеристики вращательного движения можно представить в векторной форме:

  • вектор угловой скорости со = ф = ф к. Направление вектора угловой скорости определяет знак производной угла поворота;
  • вектор углового ускорения є = со = ф к. Направление этого вектора определяет знак производной угловой скорости.

Введенные векторы со и є позволяют получить векторные выражения для кинематических характеристик точек (см. рис. 2.19).

Заметим, что модуль вектора скорости точки совпадает с модулем векторного произведения вектора угловой скорости и радиуса-вектора: |сох г = согвіпа = сор. Учитывая направления векторов со и г и правило направления векторного произведения, можно записать выражение для вектора скорости:

V = со хг.

Аналогично легко показать, что

  • ? X Ґ
  • - егБіпа = єр = а т и

Сосор = со р = я.

(роме этого векторы этих кинематических характеристик совпадают по направлению с соответствующими векторными произведениями.

Следовательно, векторы касательного и нормального ускорений можно представить в виде векторных произведений:

  • (2.28)
  • (2.29)

а х = г х г

а = со х V.

Вращательное движение твердого тела. Вращательным называется движение твердого тела, при котором остаются неподвижными все его точки, лежащие на некоторой прямой, называемой осью вращения.

При вращательном движении все остальные точки тела движутся в плоскостях, перпендикулярных оси вращения, и описывают окружности, центры которых лежат на этой осп.

Для определения положения вращающегося тела проведем через ось г две полуплоскости: полуплоскость I - неподвижную и полуплоскость II - связанную с твердым телом и вращающуюся вместе с ним (рис. 2.4). Тогда положение тела в любой момент времени будет однозначно определяться углом j между этими полуплоскостями, взятым с соответствующим знаком, который называется углом поворота тела.

При вращении тела угол поворота j изменяется в зависимости от времени, т. е. является функцией времени t:

Это уравнение называется уравнением вращательного движения твердого тела.

Основными кинематическими характеристи­ками вращательного движения твердого тела явля­ются его угловая скорость w угловое ускорение e.

Если за время Dt = t1 + t тело совершает пово­рот на Dj = j1 –j,то средняя угловая скорость тела за этот промежуток времени будет равна

(1.16)

Для определения значения угловой скорости тела в данный момент времени t найдем предел отношения приращения угла поворота Dj к промежутку времени Dt при стремлении последнего к нулю:

(2.17)

Таким образом, угловая скорость тела в данный момент времени численно равна первой производной от угла поворота по времени. Знак угловой скорости w совпадает со знаком угла поворота тела j: w> 0 при j> 0, и наоборот, если j< 0. то и w < 0. Размерность угловой скорости обычно 1/с, так радиан величина безразмерная.

Угловую скорость можно изобразить в виде вектора w, численная величина которого равна dj/dt который направлен вдоль оси вращения тела в ту строну, откуда вращение видно происходящим против часовой стрелки.

Изменение угловой скорости тела с течением времени характеризует угловое ускорение e. По аналогии с нахождением среднего значения угловой скорости найдем выражение для определения значения среднего ускорения:

(2.18)

Тогда ускорение твердого тела в данный момент времени определится из выражения

(2.19)

т. е. угловое ускорение тела в данный момент времени равно первой произ­водной от угловой скорости или второй производной от угла поворота тела по времени. Размерность углового ускорения 1/с 2 .

Угловое ускорение твердого тела так же, как и угловая скорость, может быть представлено как вектор. Вектор углового ускорения совпадает по на­правлению с вектором угловой скорости при ускоренном движении твердого юла и направлен в противоположную сторону при замедленном движении.

Установив характеристики движения твердого тела в целом, перейдем к изучению движения отдельных его точек. Рассмотрим некоторую точку М твердого тела, находящуюся на расстоянии h от оси вращения г (рис. 2.3).

При вращении тела точка М будет описывать окружное п. радиусом h с центром на оси вращения и лежащую в плоскости, перпендикулярной этой оси. Если за время dtпроисходит элементарный попорот тела па угол dj, то точка М при этом совершает вдоль своей траектории элементарное перемещение dS = h*dj,. Тогда скорость точки М определился из выражения

(2.20)

Скорость называют линейной или окружной скоростью точки М.

Таким образом, линейная скорость точки вращающегося твердого тела численно равна произведению угловой скорости тела на расстояние от этой точки до оси вращения. Так как для всех точек тела угловая скорость w; имеет одинаковое значение, то из формулы для линейной скорости следует, что ли­нейные скорости точек вращающегося тела пропорциональны их расстояниям от оси вращения. Линейная скорость точки твердого тела является вектором п направлена по касательной к окружности, описываемой точкой М.

Бели расстояние от оси вращения твердого пела до некоторой точки М рассматривать как радиус-вектор h точки М, то вектор линейной скорости точки v можно представить как векторное произведение вектора угловой скорости w радиус-вектор h:

V = w * h (2/21)

Действительно, результатом векторного произведения (2.21) является вектор, равный по модулю произведению w*h и направленный (рис. 2.5) перпендикулярно плоскости, в которой лежат два сомножителя, в ту сторону, откуда ближайшее совмещение первого сомножителя со вторым наблюдается происходящим против часовой стрелки, т. е. по касательной к траектории движения точки M.

Таким образом вектор, являющийся результатом векторного произведе­ния (2.21), по модулю и по направлению соответствует вектору линейной скорости точки M.

Рис. 2.5

Для нахождения выражения для ускорения а точки М выполним дифференцирование по времени выражения (2.21) для скорости точки

(2.22)

Учитывая, что dj/dt=e, a dh/dt = v, выражение (2.22) запишем в виде

где а г и аnсоответственно касательная и нормальная составляющие полного ускорения точки тела при вращательном движении, определяемые из выражений

Касательная составляющая полного ускорения точки тела (касательное ускорение) atхарактеризует изменение вектора скорости по модулю и направ­лена по касательной к траектории движения точки тела в направлении вектора скорости при ускоренном движении либо в противоположном направлении при замедленном движении. Модуль вектора касательного ускорения точки тела при вращательном движении твердого тела определяется выражением

(2,25)

Нормальная составляющая полного ускорения (нормальное ускорение) а„ возникает вследствие изменения направления вектора скорости точки при крашении твердого тела. Как следует из выражения (2.24) для нормального ускорения, это ускорение направлено по радиусу hк центру окружности, по которой перемещается точка. Модуль вектора нормального ускорения точки при вращательном движении твердого тела определяется с учетом (2.20) вы­ражением

Вращением твёрдого тела вокруг неподвижной оси называется такое его движение, при котором две точки тела остаются неподвижными в течение всего времени движения. При этом также остаются неподвижными все точки тела, расположенные на прямой, проходящей через его неподвижные точки. Эта прямая называется осью вращения тела .

Пусть точки A и B неподвижны. Вдоль оси вращения направим ось . Через ось вращения проведём неподвижную плоскость и подвижную , скреплённую с вращающимся телом (при ).

Положение плоскости и самого тела определяется двугранным углом между плоскостями и . Обозначим его . Угол называется углом поворота тела .

Положение тела относительно выбранной системы отсчета однозначно определяется в любой момент времени, если задано уравнение , где - любая дважды дифференцируемая функция времени. Это уравнение называется уравнением вращения твёрдого тела вокруг неподвижной оси .

У тела, совершающего вращение вокруг неподвижной оси, одна степень свободы, так как его положение определяется заданием только одного параметра - угла .

Угол считается положительным, если он откладывается против часовой стрелки, и отрицательным - в противоположном направлении. Траектории точек тела при его вращении вокруг неподвижной оси являются окружностями, расположенными в плоскостях перпендикулярных оси вращения.

Для характеристики вращательного движения твердого тела вокруг неподвижной оси введём понятия угловой скорости и углового ускорения.

Алгебраической угловой скоростью тела в какой-либо момент времени называется первая производная по времени от угла поворота в этот момент, то есть .

Угловая скорость является положительной величиной при вращении тела против часовой стрелки, так как угол поворота возрастает с течением времени, и отрицательной - при вращении тела по часовой стрелке, потому что угол поворота при этом убывает.

Размерность угловой скорости по определению:

В технике угловая скорость - это частота вращения, выраженная в оборотах в минуту. За одну минуту тело повернётся на угол , где n - число оборотов в минуту. Разделив этот угол на число секунд в минуте, получим

Алгебраическим угловым ускорением тела называется первая производная по времени от угловой скорости, то есть вторая производная от угла поворота т.е.

Размерность углового ускорения по определению:

Введем понятия векторов угловой скорости и углового ускорения тела.

И , где - единичный вектор оси вращения. Векторы и можно изображать в любых точках оси вращения, они являются скользящими векторами.

Алгебраическая угловая скорость это проекция вектора угловой скорости на ось вращения. Алгебраическое угловое ускорение это проекция вектора углового ускорения скорости на ось вращения.


Если при , то алгебраическая угловая скорость возрастает с течением времени и, следовательно, тело вращается ускоренно в рассматриваемый момент времени в положительную сторону. Направление векторов и совпадают, оба они направлены в положительную сторону оси вращения .

При и тело вращается ускоренно в отрицательную сторону. Направление векторов и совпадают, оба они направлены в отрицательную сторону оси вращения .



© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний