Закон распределения дискретной случайной величины. Примеры решения задач

Главная / Александр Островский

Глава 1. Дискретная случайная величина

§ 1.Понятия случайной величины.

Закон распределения дискретной случайной величины.

Определение : Случайной называется величина, которая в результате испытания принимает только одно значение из возможного множества своих значение, наперед неизвестное и зависящее от случайных причин.

Различают два вида случайных величин: дискретные и непрерывные.

Определение : Случайная величина Х называется дискретной (прерывной), если множество ее значений конечное или бесконечное, но счетное.

Другими словами, возможные значения дискретной случайной величину можно перенумеровать.

Описать случайную величину можно с помощью ее закона распределения.

Определение : Законом распределения дискретной случайной величины называют соответствие между возможными значениями случайной величины и их вероятностями.

Закон распределения дискретной случайной величины Х может быть задан в виде таблицы, в первой строке которой указаны в порядке возрастания все возможные значения случайной величины, а во второй строке соответствующие вероятности этих значений, т. е.

где р1+ р2+…+ рn=1

Такая таблица называется рядом распределения дискретной случайной величины.

Если множество возможных значений случайной величины бесконечно, то ряд р1+ р2+…+ рn+… сходится и его сумма равна 1.

Закон распределения дискретной случайной величины Х можно изобразить графически, для чего в прямоугольной системе координат строят ломаную, соединяющую последовательно точки с координатами (xi;pi), i=1,2,…n. Полученную линию называют многоугольником распределения (рис.1).


Органическая хиимя" href="/text/category/organicheskaya_hiimya/" rel="bookmark">органической химии соответственно равны 0,7 и 0,8. Составить закон распределения случайной величины Х - числа экзаменов, которые сдаст студент.

Решение. Рассматриваемая случайная величина X в результате экзамена может принять одно из следующих значений:x1=0, x2=1, х3=2.

Найдем вероятность этих значений.Обозначим события:

https://pandia.ru/text/78/455/images/image004_81.jpg" width="259" height="66 src=">


Итак, закон распределения случайной величины Х задается таблицей:

Контроль:0,6+0,38+0,56=1.

§ 2. Функция распределения

Полное описание случайной величины дает также функция распределения.

Определение: Функцией распределения дискретной случайной величины Х называется функция F(x), определяющая для каждого значения х вероятность того, что случайная величина Х примет значение, меньше х:

F(x)=Р(Х<х)

Геометрически функция распределения интерпретируется как вероятность того, что случайная величина Х примет значение, которое изображается на числовой прямой точкой, лежащей левее точки х.

1)0≤ F(x) ≤1;

2) F(x)- неубывающая функция на (-∞;+∞);

3) F(x)- непрерывна слева в точках х= xi (i=1,2,…n) и непрерывна во всех остальных точках;

4) F(-∞)=Р (Х<-∞)=0 как вероятность невозможного события Х<-∞,

F(+∞)=Р(Х<+∞)=1 как вероятность достоверного события Х<-∞.

Если закон распределения дискретной случайной величины Х задан в виде таблицы:

то функция распределения F(x) определяется формулой:

https://pandia.ru/text/78/455/images/image007_76.gif" height="110">

0 при х≤ x1,

р1 при x1< х≤ x2,

F(x)= р1 + р2 при x2< х≤ х3

1 при х> хn.

Её график изображен на рис.2:

§ 3. Числовые характеристики дискретной случайной величины.

К числу важных числовых характеристик относится математическое ожидание.

Определение : Математическим ожиданием М(Х) дискретной случайной величины Х называется сумма произведений всех ее значений на соответствующие им вероятности:

М(Х)= ∑ xiрi= x1р1 + x2р2+…+ xnрn

Математическое ожидание служит характеристикой среднего значения случайной величины.

Свойства математического ожидания:

1)M(C)=C, где С-постоянная величина;

2)М(С Х)=С М(Х),

3)М(Х±Y)=М(Х) ±M(Y);

4)M(X Y)=M(X) M(Y), где X, Y - независимые случайные величины;

5)M(X±C)=M(X)±C, где С-постоянная величина;

Для характеристики степени рассеивания возможных значений дискретной случайной величины вокруг ее среднего значения служит дисперсия .

Определение : Дисперсией D ( X ) случайной величины Х называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания:

Свойства дисперсии:

1)D(C)=0, где С-постоянная величина;

2)D(X)>0, где Х - случайная величина;


3)D(C X)=C2 D(X), где С-постоянная величина;

4)D(X+Y)=D(X)+D(Y), где X, Y - независимые случайные величины;

Для вычисления дисперсии часто бывает удобно пользоваться формулой:

D(X)=M(X2)-(M(X))2,

где М(Х)=∑ xi2рi= x12р1 + x22р2+…+ xn2рn

Дисперсия D(X) имеет размерность квадрата случайной величины, что не всегда удобно. Поэтому в качестве показателя рассеяния возможных значений случайной величины используют также величину √D(X).

Определение: Средним квадратическим отклонением σ(Х) случайной величины Х называется квадратный корень из дисперсии:

Задача №2. Дискретная случайная величина Х задана законом распределения:

Найти Р2, функцию распределения F(x) и построить ее график, а также M(X),D(X), σ(Х).

Решение: Так как сумма вероятностей возможных значений случайной величины Х равна 1, то

Р2=1- (0,1+0,3+0,2+0,3)=0,1

Найдем функцию распределения F(х)=P(X

Геометрически это равенство можно истолковать так: F(х) есть вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее точки х.

Если х≤-1, то F(х)=0, т. к. на (-∞;х) нет ни одного значения данной случайной величины;

Если -1<х≤0, то F(х)=Р(Х=-1)=0,1, т. к. в промежуток (-∞;х) попадает только одно значение x1=-1;

Если 0<х≤1, то F(х)=Р(Х=-1)+ Р(Х=0)=0,1+0,1=0,2, т. к. в промежуток

(-∞;х) попадают два значения x1=-1 и x2=0;

Если 1<х≤2, то F(х)=Р(Х=-1) + Р(Х=0)+ Р(Х=1)= 0,1+0,1+0,3=0,5, т. к. в промежуток (-∞;х) попадают три значения x1=-1, x2=0 и x3=1;

Если 2<х≤3, то F(х)=Р(Х=-1) + Р(Х=0)+ Р(Х=1)+ Р(Х=2)= 0,1+0,1+0,3+0,2=0,7, т. к. в промежуток (-∞;х) попадают четыре значения x1=-1, x2=0,x3=1 и х4=2;

Если х>3, то F(х)=Р(Х=-1) + Р(Х=0)+ Р(Х=1)+ Р(Х=2)+Р(Х=3)= 0,1+0,1+0,3+0,2+0,3=1, т. к. в промежуток (-∞;х) попадают четыре значения x1=-1, x2=0,x3=1,х4=2 и х5=3.

https://pandia.ru/text/78/455/images/image006_89.gif" width="14 height=2" height="2"> 0 при х≤-1,

0,1 при -1<х≤0,

0,2 при 0<х≤1,

F(x)= 0,5 при 1<х≤2,

0,7 при 2<х≤3,

1 при х>3

Изобразим функцию F(x)графически (рис.3):

https://pandia.ru/text/78/455/images/image014_24.jpg" width="158 height=29" height="29">≈1,2845.

§ 4. Биномиальный закон распределения

дискретной случайной величины, закон Пуассона.

Определение: Биномиальным называется закон распределения дискретной случайной величины Х - числа появлений события А в n независимых повторных испытаниях, в каждом из которых события А может наступить с вероятностью p или не наступить с вероятностью q=1-p. Тогда Р(Х=m)-вероятность появления события А ровно m раз в n испытаниях вычисляется по формуле Бернулли:

Р(Х=m)=Сmnpmqn-m

Математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины Х, распределенной по бинарному закону, находят, соответственно, по формулам:

https://pandia.ru/text/78/455/images/image016_31.gif" width="26"> Вероятность события А - «выпадение пятерки» в каждом испытании одна и та же и равна 1/6, т. е. Р(А)=р=1/6, тогда Р(А)=1-p=q=5/6, где

- «выпадения не пятерки».

Случайная величина Х может принимать значения: 0;1;2;3.

Вероятность каждого из возможных значений Х найдем по формуле Бернулли:

Р(Х=0)=Р3(0)=С03р0q3=1 (1/6)0 (5/6)3=125/216;

Р(Х=1)=Р3(1)=С13р1q2=3 (1/6)1 (5/6)2=75/216;

Р(Х=2)=Р3(2)=С23р2q =3 (1/6)2 (5/6)1=15/216;

Р(Х=3)=Р3(3)=С33р3q0=1 (1/6)3 (5/6)0=1/216.

Т. о. закон распределения случайной величины Х имеет вид:

Контроль: 125/216+75/216+15/216+1/216=1.

Найдем числовые характеристики случайной величины Х:

M(X)=np=3 (1/6)=1/2,

D(X)=npq=3 (1/6) (5/6)=5/12,

Задача№4. Станок-автомат штампует детали. Вероятность того, что изготовленная деталь окажется бракованной равна 0,002. Найти вероятность того, что среди 1000 отобранных деталей окажется:

а) 5 бракованных;

б) хотя бы одна бракованная.

Решение: Число n=1000 велико, вероятность изготовления бракованной детали р=0,002 мала, и рассматриваемые события (деталь окажется бракованной) независимы, поэтому имеет место формула Пуассона:

Рn(m)= e - λ λm

Найдем λ=np=1000 0,002=2.

а)Найдем вероятность того, что будет 5 бракованных деталей (m=5):

Р1000(5)= e -2 25 = 32 0,13534 = 0,0361

б)Найдем вероятность того, что будет хотя бы одна бракованная деталь.

Событие А -«хотя бы одна из отобранных деталей бракованная» является противоположным событию -«все отобранные детали не бракованные».Следовательно, Р(А)=1-Р(). Отсюда искомая вероятность равна: Р(А)=1-Р1000(0)=1- e -2 20 = 1- e-2=1-0,13534≈0,865.

Задачи для самостоятельной работы.

1.1

1.2. Дисперсная случайная величина Х задана законом распределения:

Найти р4, функцию распределения F(X) и построить ее график, а также M(X),D(X), σ(Х).

1.3. В коробке 9 фломастеров, из которых 2 фломастера уже не пишут. Наудачу берут 3 фломастера. Случайная величина Х - число пишущих фломастеров среди взятых. Составить закон распределения случайной величины.

1.4. На стеллаже библиотеки в случайном порядке расставлено 6 учебников, причем 4 из них в переплете. Библиотекарь берет наудачу 4 учебника. Случайная величина Х-число учебников в переплете среди взятых. Составить закон распределения случайной величины.

1.5. В билете две задачи. Вероятность правильного решения первой задачи равна 0,9, второй-0,7. Случайная величина Х- число правильно решенных задач в билете. Составить закон распределения, вычислить математическое ожидание и дисперсию этой случайной величины, а также найти функцию распределения F(x) и построить ее график.

1.6. Три стрелка стреляют по мишени. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,5, для второго-0,8, для третьего -0,7. Случайная величина Х - число попаданий в мишень, если стрелки делают по одному выстрелу. Найти закон распределения, M(X),D(X).

1.7. Баскетболист бросает мяч в корзину с вероятностью попадания при каждом броске 0,8. За каждое попадание он получает 10 очков, а в случае промаха очки ему не начисляют. Составить закон распределения случайной величины Х-числа очков, полученных баскетболистом за 3 броска. Найти M(X),D(X), а также вероятность того, что он получит более 10 очков.

1.8. На карточках написаны буквы, всего 5 гласных и 3 согласных. Наугад выбирают 3 карточки, причем каждый раз взятую карточку возвращают назад. Случайная величина Х-число гласных букв среди взятых. Составить закон распределения и найти M(X),D(X),σ(Х).

1.9. В среднем по 60% договоров страховая компания выплачивает страховые суммы в связи с наступлением страхового случая. Составить закон распределения случайной величины Х - числа договоров, по которым была выплачена страховая сумма среди наудачу отобранных четырех договоров. Найти числовые характеристики этой величины.

1.10. Радиостанция через определенные промежутки времени посылает позывные сигналы (не более четырех) до установления двусторонней связи. Вероятность получения ответа на позывной сигнал равна 0,3. Случайная величина Х-число посланных позывных сигналов. Составить закон распределения и найти F(x).

1.11. Имеется 3 ключа, из которых только один подходит к замку. Составить закон распределения случайной величины Х-числа попыток открывания замка, если испробованный ключ в последующих попытках не участвует. Найти M(X),D(X).

1.12. Производятся последовательные независимые испытания трех приборов на надежность. Каждый следующий прибор испытывается только в том случае, если предыдущий оказался надежным. Вероятность выдержать испытание для каждого прибора равна 0,9. Составить закон распределения случайной величины Х-числа испытанных приборов.

1.13 .Дискретная случайная величина Х имеет три возможные значения: х1=1, х2,х3, причем х1<х2<х3. Вероятность того, что Х примет значения х1 и х2, соответственно равны 0,3 и 0,2. Известно, что М(Х)=2,2, D(X)=0,76. Составить закон распределения случайной величины.

1.14. Блок электронного устройства содержит 100 одинаковых элементов. Вероятность отказа каждого элемента в течении времени Т равна 0,002. Элементы работают независимо. Найти вероятность того, что за время Т откажет не более двух элементов.

1.15. Учебник издан тиражом 50000 экземпляров. Вероятность того, что учебник сброшюрован неправильно, равна 0,0002. Найти вероятность того, что тираж содержит:

а) четыре бракованные книги,

б) менее двух бракованных книг.

1 .16. Число вызовов, поступающих на АТС каждую минуту, распределено по закону Пуассона с параметром λ=1,5. Найдите вероятность того, что за минуту поступит:

а) два вызова;

б)хотя бы один вызов.

1.17.

Найти M(Z),D(Z), если Z=3X+Y.

1.18. Даны законы распределения двух независимых случайных величин:

Найти M(Z),D(Z), если Z=X+2Y.

Ответы:

https://pandia.ru/text/78/455/images/image007_76.gif" height="110">1.1. р3=0,4; 0 при х≤-2,

0,3 при -2<х≤0,

F(x)= 0,5 при 0<х≤2,

0,9 при 2<х≤5,

1 при х>5

1.2. р4=0,1; 0 при х≤-1,

0,3 при -1<х≤0,

0,4 при 0<х≤1,

F(x)= 0,6 при 1<х≤2,

0,7 при 2<х≤3,

1 при х>3

M(Х)=1; D(Х)=2,6; σ(Х) ≈1,612.

https://pandia.ru/text/78/455/images/image025_24.gif" width="2 height=98" height="98"> 0 при х≤0,

0,03 при 0<х≤1,

F(x)= 0,37 при 1<х≤2,

1 при х>2

M(Х)=2; D(Х)=0,62

M(Х)=2,4; D(Х)=0,48, P(X>10)=0,896

1. 8 .

M(Х)=15/8; D(Х)=45/64; σ(Х) ≈

M(Х)=2,4; D(Х)=0,96

https://pandia.ru/text/78/455/images/image008_71.gif" width="14">1.11.

M(Х)=2; D(Х)=2/3

1.14. 1,22 e-0,2≈0,999

1.15. а)0,0189; б) 0,00049

1.16. а)0,0702; б)0,77687

1.17. 3,8; 14,2

1.18. 11,2; 4.

Глава 2. Непрерывная случайная величина

Определение: Непрерывной называют величину, все возможные значения которой полностью заполняют конечный или бесконечный промежуток числовой оси.

Очевидно, число возможных значений непрерывной случайной величины бесконечно.

Непрерывную случайную величину можно задавать с помощью функции распределения.

Определение: Функцией распределения непрерывной случайной величины Х называется функция F(х), определяющая для каждого значения хhttps://pandia.ru/text/78/455/images/image028_11.jpg" width="14" height="13">R

Функцию распределения иногда называют интегральной функцией распределения.

Свойства функции распределения:

1)1≤ F(x) ≤1

2)У непрерывной случайной величины функция распределения непрерывна в любой точке и дифференцируема всюду, кроме, быть может, отдельных точек.

3) Вероятность попадания случайной величины Х в один из промежутков (а;b), [а;b), [а;b], равна разности значений функции F(х) в точках а и b, т.е. Р(а<Х

4)Вероятность того, что непрерывная случайная величина Х примет одно отдельное значение равна 0.

5) F(-∞)=0, F(+∞)=1

Задание непрерывной случайной величины с помощью функции распределения не является единственным. Введем понятие плотности распределения вероятностей (плотность распределения).

Определение : Плотностью распределения вероятностей f ( x ) непрерывной случайной величины Х называется производная от ее функции распределения, т. е.:

Плотность распределения вероятностей иногда называют дифференциальной функцией распределения или дифференциальным законом распределения.

Графикплотности распределения вероятностей f(x) называется кривой распределения вероятностей .

Свойства плотности распределения вероятностей:

1)f(x) ≥0,при хhttps://pandia.ru/text/78/455/images/image029_10.jpg" width="285" height="141">.gif" width="14" height="62 src="> 0 при х≤2,

f(x)= с(х-2) при 2<х≤6,

0 при х>6.

Найти: а) значение с; б) функцию распределения F(х) и построить ее график; в) Р(3≤х<5)

Решение:

+

а) Значение с найдем из условия нормировки: ∫ f(x)dx=1.

Следовательно, -∞

https://pandia.ru/text/78/455/images/image032_23.gif" height="38 src="> -∞ 2 2 х

если 2<х≤6, то F(x)= ∫ 0dx+∫ 1/8(х-2)dx=1/8(х2/2-2х) = 1/8(х2/2-2х - (4/2-4))=

1/8(х2/2-2х+2)=1/16(х-2)2;

Gif" width="14" height="62"> 0 при х≤2,

F(х)= (х-2)2/16 при 2<х≤6,

1 при х>6.

График функции F(х) изображен на рис.3

https://pandia.ru/text/78/455/images/image034_23.gif" width="14" height="62 src="> 0 при х≤0,

F(х)= (3 arctg х)/π при 0<х≤√3,

1 при х>√3.

Найти дифференциальную функцию распределения f(х)

Решение: Т. к.f(х)= F’(x), то

https://pandia.ru/text/78/455/images/image011_36.jpg" width="118" height="24">

Все свойства математического ожидания и дисперсии, рассмотренные ранее для дисперсных случайных величин, справедливы и для непрерывных.

Задача №3. Случайная величина Х задана дифференциальной функцией f(x):

https://pandia.ru/text/78/455/images/image036_19.gif" height="38"> -∞ 2

X3/9 + х2/6 = 8/9-0+9/6-4/6=31/18,

https://pandia.ru/text/78/455/images/image032_23.gif" height="38"> +∞

D(X)= ∫ х2 f(x)dx-(М(х))2=∫ х2 х/3 dx+∫1/3х2 dx=(31/18)2=х4/12 +х3/9 -

- (31/18)2=16/12-0+27/9-8/9-(31/18)2=31/9- (31/18)2==31/9(1-31/36)=155/324,

https://pandia.ru/text/78/455/images/image032_23.gif" height="38">

P(1<х<5)= ∫ f(x)dx=∫ х/3 dx+∫ 1/3 dx+∫ 0 dx= х2/6 +1/3х =

4/6-1/6+1-2/3=5/6.

Задачи для самостоятельного решения.

2.1. Непрерывная случайная величина Х задана функцией распределения:

0 при х≤0,

F(х)= https://pandia.ru/text/78/455/images/image038_17.gif" width="14" height="86"> 0 при х≤ π/6,

F(х)= - cos 3x при π/6<х≤ π/3,

1 при х> π/3.

Найти дифференциальную функцию распределения f (x), а также

Р(2π /9<Х< π /2).

2.3.

0 при х≤2,

f(х)= с х при 2<х≤4,

0 при х>4.

2.4. Непрерывная случайная величина Х задана плотностью распределения:

0 при х≤0,

f(х)= с √х при 0<х≤1,

0 при х>1.

Найти: а) число с; б) М(Х), D(X).

2.5.

https://pandia.ru/text/78/455/images/image041_3.jpg" width="36" height="39"> при х,

0 при х .

Найти: а) F(х) и построить ее график; б) M(X),D(X), σ(Х); в) вероятность того, что в четырех независимых испытаниях величина Х примет ровно 2 раза значение, принадлежащее интервалу (1;4).

2.6. Задана плотность распределения вероятностей непрерывной случайной величины Х:

f(х)= 2(х-2) при х,

0 при х .

Найти: а) F(х) и построить ее график; б) M(X),D(X), σ (Х); в) вероятность того, что в трех независимых испытаниях величина Х примет ровно 2 раза значение, принадлежащее отрезку .

2.7. Функция f(х) задана в виде:

https://pandia.ru/text/78/455/images/image045_4.jpg" width="43" height="38 src=">.jpg" width="16" height="15">[-√3/2 ; √3/2].

2.8. Функция f(x) задана в виде:

https://pandia.ru/text/78/455/images/image046_5.jpg" width="45" height="36 src="> .jpg" width="16" height="15">[- π /4 ; π /4].

Найти: а) значение постоянной с, при которой функция будет плотностью вероятности некоторой случайной величины Х; б) функцию распределения F(x).

2.9. Случайная величина Х, сосредоточенная на интервале (3;7), задана функцией распределения F(х)= . Найти вероятность того, что

случайная величина Х примет значение: а) меньше 5, б) не меньше 7.

2.10. Случайная величина Х, сосредоточенная на интервале (-1;4),

задана функцией распределения F(х)= . Найти вероятность того, что

случайная величина Х примет значение: а) меньше 2, б) не меньше 4.

2.11.

https://pandia.ru/text/78/455/images/image049_6.jpg" width="43" height="44 src="> .jpg" width="16" height="15">.

Найти: а) число с; б) М(Х); в) вероятность Р(Х> М(Х)).

2.12. Случайная величина задана дифференциальной функцией распределения:

https://pandia.ru/text/78/455/images/image050_3.jpg" width="60" height="38 src=">.jpg" width="16 height=15" height="15">.

Найти: а) М(Х); б) вероятность Р(Х≤М(Х))

2.13. Распределение Ремя задается плотностью вероятности:

https://pandia.ru/text/78/455/images/image052_5.jpg" width="46" height="37"> при х ≥0.

Доказать, что f(x) действительно является плотностью распределения вероятностей.

2.14. Задана плотность распределения вероятностей непрерывной случайной величины Х:

https://pandia.ru/text/78/455/images/image054_3.jpg" width="174" height="136 src=">(рис.4) (рис.5)

2.16. Случайная величина Х распределена по закону «прямоугольного треугольника» в интервале (0;4) (рис.5). Найти аналитическое выражение для плотности вероятности f(x) на всей числовой оси.

Ответы

0 при х≤0,

f(х)= https://pandia.ru/text/78/455/images/image038_17.gif" width="14" height="86"> 0 при х≤ π/6,

F(х)= 3sin 3x при π/6<х≤ π/3,

0 при х> π/3. Непрерывная случайная величина Х имеет равномерный закон распределения на некотором интервале (а;b), которому принадлежат все возможные значения Х, если плотность распределения вероятностей f(x) постоянная на этом интервале и равна 0 вне его, т. е.

0 при х≤а,

f(х)= при a<х

0 при х≥b.

График функции f(x) изображен на рис. 1

https://pandia.ru/text/78/455/images/image038_17.gif" width="14" height="86"> 0 при х≤а,

F(х)= https://pandia.ru/text/78/455/images/image077_3.jpg" width="30" height="37">, D(X)=, σ(Х)=.

Задача№1. Случайная величина Х равномерно распределена на отрезке . Найти:

а) плотность распределения вероятностей f(x) и построить ее график;

б) функцию распределения F(x) и построить ее график;

в) M(X),D(X), σ(Х).

Решение: Воспользовавшись формулами, рассмотренными выше, при а=3, b=7, находим:

https://pandia.ru/text/78/455/images/image081_2.jpg" width="22" height="39"> при 3≤х≤7,

0 при х>7

Построим ее график (рис.3):

https://pandia.ru/text/78/455/images/image038_17.gif" width="14" height="86 src="> 0 при х≤3,

F(х)= https://pandia.ru/text/78/455/images/image084_3.jpg" width="203" height="119 src=">рис.4

D(X) = ==https://pandia.ru/text/78/455/images/image089_1.jpg" width="37" height="43">==https://pandia.ru/text/78/455/images/image092_10.gif" width="14" height="49 src="> 0 при х<0,

f(х)= λе-λх при х≥0.

Функция распределения случайной величины Х, распределенной по показательному закону, задается формулой:

https://pandia.ru/text/78/455/images/image094_4.jpg" width="191" height="126 src=">рис..jpg" width="22" height="30"> , D(X)=, σ (Х)=

Таким образом, математическое ожидание и среднее квадратическое отклонение показательного распределения равны между собой.

Вероятность попадания Х в интервал (a;b) вычисляется по формуле:

Р(a<Х

Задача №2. Среднее время безотказной работы прибора равно 100 ч. Полагая, что время безотказной работы прибора имеет показательный закон распределения, найти:

а) плотность распределения вероятностей;

б) функцию распределения;

в) вероятность того, что время безотказной работы прибора превысит 120 ч.

Решение: По условию математическое распределение M(X)=https://pandia.ru/text/78/455/images/image098_10.gif" height="43 src="> 0 при х<0,

а) f(х)= 0,01е -0,01х при х≥0.

б) F(x)= 0 при х<0,

1- е -0,01х при х≥0.

в) Искомую вероятность найдем, используя функцию распределения:

Р(X>120)=1-F(120)=1-(1- е -1,2)= е -1,2≈0,3.

§ 3.Нормальный закон распределения

Определение: Непрерывная случайная величина Х имеет нормальный закон распределения (закон Гаусса), если ее плотность распределения имеет вид:

,

где m=M(X), σ2=D(X), σ>0.

Кривую нормального закона распределения называют нормальной или гауссовой кривой (рис.7)

Нормальная кривая симметрична относительно прямой х=m, имеет максимум в т. х=а, равный .

Функция распределения случайной величины Х, распределенной по нормальному закону, выражается через функцию Лапласа Ф (х) по формуле:

,

где - функция Лапласа.

Замечание: Функция Ф(х) является нечетной (Ф(-х)=-Ф(х)), кроме того, при х>5 можно считать Ф(х) ≈1/2.

График функции распределения F(x) изображен на рис. 8

https://pandia.ru/text/78/455/images/image106_4.jpg" width="218" height="33">

Вероятность того, что абсолютная величина отклонения меньше положительного числа δ вычисляется по формуле:

В частности, при m=0 справедливо равенство:

«Правило трех сигм»

Если случайная величина Х имеет нормальный закон распределения с параметрами m и σ, то практически достоверно, что ее значение заключены в интервале (a-3σ; a+3σ), т. к.

https://pandia.ru/text/78/455/images/image110_2.jpg" width="157" height="57 src=">а)

б) Воспользуемся формулой:

https://pandia.ru/text/78/455/images/image112_2.jpg" width="369" height="38 src=">

По таблице значений функции Ф(х) находим Ф(1,5)=0,4332, Ф(1)=0,3413.

Итак, искомая вероятность:

P(28

Задачи для самостоятельной работы

3.1. Случайная величина Х равномерно распределена в интервале (-3;5). Найдите:

б)функции распределения F(x);

в)числовые характеристики;

г)вероятность Р(4<х<6).

3.2. Случайная величина Х равномерно распределена на отрезке . Найдите:

а) плотность распределения f(x);

б)функции распределения F(x);

в)числовые характеристики;

г)вероятность Р(3≤х≤6).

3.3. На шоссе установлен автоматический светофор, в котором 2 минуты для транспорта горит зеленый свет, 3 секунды желтый и 30 секунд красный и т. д. Машина проезжает по шоссе в случайный момент времени. Найти вероятность того, что машина проедет мимо светофора, не останавливаясь.

3.4. Поезда метрополитена идут регулярно с интервалом 2 минуты. Пассажир выходит на платформу в случайный момент времени. Какова вероятность того, что ждать поезд пассажиру придется больше 50 секунд. Найти математическое ожидание случайной величины Х - время ожидания поезда.

3.5. Найти дисперсию и среднее квадратическое отклонение показательного распределения, заданного функцией распределения:

F(x)= 0 при х<0,

1-е-8х при х≥0.

3.6. Непрерывная случайная величина Х задана плотностью распределения вероятностей:

f(x)= 0 при х<0,

0,7 е-0,7х при х≥0.

а) Назовите закон распределения рассматриваемой случайной величины.

б) Найдите функцию распределения F(X) и числовые характеристики случайной величины Х.

3.7. Случайная величина Х распределена по показательному закону, заданному плотностью распределения вероятностей:

f(x)= 0 при х<0,

0,4 е-0,4 х при х≥0.

Найти вероятность того, что в результате испытания Х примет значение из интервала (2,5;5).

3.8. Непрерывная случайная величина Х распределена по показательному закону, заданному функцией распределения:

F(x)= 0 при х<0,

1-е-0,6х при х≥0

Найти вероятность того, что в результате испытания Х примет значение из отрезка .

3.9. Математическое ожидание и среднее квадратическое отклонение нормально распределенной случайной величины соответственно равны 8 и 2. Найдите:

а) плотность распределения f(x);

б) вероятность того, что в результате испытания Х примет значение из интервала (10;14).

3.10. Случайная величина Х распределена нормально с математическим ожиданием 3,5 и дисперсией 0,04. Найдите:

а) плотность распределения f(x);

б) вероятность того, что в результате испытания Х примет значение из отрезка .

3.11. Случайная величина Х распределена нормально с M(X)=0 и D(X)=1. Какое из событий: |Х|≤0,6 или |Х|≥0,6 имеет большую вероятность?

3.12. Случайная величина Х распределена нормально с M(X)=0 и D(X)=1.Из какого интервала (-0,5;-0,1) или (1;2) при одном испытании она примет значение с большей вероятностью?

3.13. Текущая цена за одну акцию может быть смоделирована с помощью нормального закона распределения с M(X)=10ден. ед. и σ (Х)=0,3 ден. ед. Найти:

а) вероятность того, что текущая цена акции будет от 9,8 ден. ед. до 10,4 ден. ед.;

б)с помощью «правила трех сигм» найти границы, в которых будет находится текущая цена акции.

3.14. Производится взвешивание вещества без систематических ошибок. Случайные ошибки взвешивания подчинены нормальному закону со средним квадратическим отношением σ=5г. Найти вероятность того, что в четырех независимых опытах ошибка при трех взвешиваниях не произойдет по абсолютной величине 3г.

3.15. Случайная величина Х распределена нормально с M(X)=12,6. Вероятность попадания случайной величины в интервал (11,4;13,8) равна 0,6826. Найдите среднее квадратическое отклонение σ.

3.16. Случайная величина Х распределена нормально с M(X)=12 и D(X)=36.Найти интервал, в который с вероятностью 0,9973 попадет в результате испытания случайная величина Х.

3.17. Деталь, изготовленная автоматом, считается бракованной, если отклонение Х ее контролируемого параметра от номинала превышает по модулю 2 единицы измерения . Предполагается, что случайная величина Х распределена нормально с M(X)=0 и σ(Х)=0,7. Сколько процентов бракованных деталей выдает автомат?

3.18. Параметр Х детали распределен нормально с математическим ожиданием 2, равным номиналу, и средним квадратическим отклонением 0,014. Найти вероятность того, что отклонение Х от номинала по модулю не превысит 1% номинала.

Ответы

https://pandia.ru/text/78/455/images/image116_9.gif" width="14" height="110 src=">

б) 0 при х≤-3,

F(х)= left">

3.10. а)f(x)= ,

б) Р(3,1≤Х≤3,7) ≈0,8185.

3.11. |x|≥0,6.

3.12. (-0,5;-0,1).

3.13. а) Р(9,8≤Х≤10,4) ≈0,6562.

3.14. 0,111.

3.15. σ=1,2.

3.16. (-6;30).

3.17. 0,4%.

………………………………………………………

Аn - случайная величина Х приняла значение An.

Очевидно, что сумма событий A1 A2, . , An является достоверным событием, так как хотя бы одно из значений x1, x2, xn случайная величина обязательно принимает.

Поэтому P (A1 È А2 È . È Аn) = 1.

Кроме того, события А1, А2, ., An - несовместны, т. к. случайная величина при однократном осуществлении опыта может принять только одно из значений х1, х2, ., xn. По теореме сложения для несовместных событий получаем

Р(А1)+Р(А2)+ .+Р(Аn)=1,

т. е. p1+p2+ . +pn = 1, или, короче,

Следовательно, сумма всех чисел, расположенных во второй стро­ке Таблицы 1, дающей закон распределения случайной величины X, должна быть равна единице.

ПРИМЕР 1 . Пусть случайная величина Х - число очков, выпавших при подбрасывании игральной кости. Найти закон распределения (в виде таблицы).

Случайная величина Х принимает значения

x1=1, х2=2, … , x6=6

с вероятностями

р1= р2 = … = р6 =

Закон распределения задается таблицей:

Таблица 2

ПРИМЕР 2. Биноминальное распределение. Рассмотрим случайную величину Х - число появлений события А в серии из независимых опытов, в каждом из которых А насту­пает с вероятностью р.

Случайная величина Х может, очевидно, принимать одно из следующих значений:

0, 1, 2, ., k, ., n.

Вероятность события, состоящего в том, что случайная величина Х примет значение, равное k, определяется формулой Бернулли:

Рn(k)= где q=1- р.

Такое распределение случайной величины называется биномиальным распределением или распределением Бернулли. Распределение Бернулли полностью задается двумя параметрами: числом n всех опытов и вероятностью р, с которой событие происходит в каждом отдельном опыте.

Условие для биномиального распределения принимает вид:

Для доказательства справедливости этого равенства достаточно в тождестве

(q+рх)n=

положить x=1.

ПРИМЕР 3. Распределение Пуассона. Так называется распределение вероятностей вида:

Р(k)=.

Оно определяется одним единственным (положительным) параметром а. Если ξ – случайная величина, имеющая распределение Пуассона, то соответствующий параметр а - есть среднее значение этой случайной величины:

а=Мξ=, где М – математическое ожидание.

Случайная величина равна:

ПРИМЕР 4. Показательное распределение.

Если время является случайной величиной, обозначим его τ, таково, что

где 0<λ=const, t ³ 0, причем, если t=0, то P(t)=0.

Среднее значение случайной величины t есть:

Плотность распределения имеет вид:

4) Нормальное распределение

Пусть - независимые, одинаково распределенные случайные величины и пусть Если слагаемые достаточно малы, а число n достаточно велико, - если при n à ∞ математическое ожидание случайной величины Мξ и дисперсия Dξ равная Dξ=M(ξ–Мξ)2, таковы, что Мξ~а, Dξ~σ2, то

- нормальное или гауссово распределение

.

5) Геометрическое распределение. Обозначим ξ число испытаний, предшествующих наступлению первого "успеха". Если считать, что каждое испытание длится единицу времени, то можно считать ξ временем ожидания до первого "успеха". Распределение имеет вид:

Р(k)=p(1-p)k, (k=0, 1, 2) p>0

6) Гипергеометрическое распределение.

Имеется N – объектов среди которых n - "особых объектов". Среди всех объектов случайным образом выбирается k-объектов. Найти вероятность того, что среди отобранных объектов находится равно r - "особых объектов". Распределение имеет вид:

7) Распределение Паскаля.

Пусть x - общее число "неудач", предшествующих поступлению r-го "успеха". Распределение имеет вид:

Функция распределения имеет вид:

Равновероятностное распределение подразумевает, что случайная величина x может принимать любые значения на отрезке с одинаковой вероятностью. Плотность распределения при этом вычисляется как

Графики плотности распределения и функция распределения представлены ниже.

Перед тем, как объяснить понятие «белый шум», необходимо дать ряд определений.

Случайной функцией называют функцию неслучайного аргумента t, которая при каждом фиксированном значении аргумента, является случайной величиной. Например, если U – случайная величина, то функция X(t)=t2U – случайная.

Сечением случайной функции называют случайную величину, соответствующую фиксированному значению аргумента случайной функции. Таким образом, случайную функцию можно рассматривать как совокупность случайных величин {X(t)}, зависящих от параметра t.

Случайной величиной Называется величина, которая в результате испытаний, проводимых в одних и тех же условиях, принимает различные, вообще говоря, значения, зависящие от не учитываемых случайных факторов. Примеры случайных величин: число выпавших очков на игральной кости, число дефектных изделий в партии, отклонение точки падения снаряда от цели, время безотказной работы устройства и т. п. Различают дискретные и непрерывные случайные величины. Дискретной Называется случайная величина, возможные значения которой образуют счетное множество, конечное или бесконечное (т. е. такое множество, элементы которого могут быть занумерованы).

Непрерывной Называется случайная величина, возможные значения которой непрерывным образом заполняют некоторый конечный или бесконечный интервал числовой оси. Число значений непрерывной случайной величины всегда бесконечно.

Случайные величины будем обозначать заглавными буквами конца латинского алфавита: X , Y , ...; значения случайной величины – строчными буквами: Х, у, ... . Таким образом, X Обозначает всю совокупность возможных значений случайной величины, а Х – Некоторое ее конкретное значение.

Законом распределения дискретной случайной величины называется задаваемое в любой форме соответствие между возможными значениями случайной величины и их вероятностями.

Пусть возможными значениями случайной величины X Являются . В результате испытания случайная величина примет одно из этих значений, т. е. Произойдет одно событие из полной группы попарно несовместных событий.

Пусть также известны вероятности этих событий:

Закон распределения случайной величины X Может быть записан в виде таблицы, которую называют Рядом распределения Дискретной случайной величины:

Для ряда распределения имеет место равенство (условие нормировки).

Пример 3.1. Найти закон распределения дискретной случайной величины X – числа появлений «орла» при двух бросаниях монеты.

Функция распределения является универсальной формой задания закона распределения как дискретных, так и непрерывных случайных величин.

Функцией распределения случайной величины X Называется функция F (X ), Определенная на всей числовой оси следующим образом:

F (X )= Р (Х < х ),

Т. е. F (X ) есть вероятность того, что случайная величина X Примет значение меньшее, чем X .

Функцию распределения можно представить графически. Для дискретной случайной величины график имеет ступенчатый вид. Построим, например, график функции распределения случайной величины, заданной следующим рядом (рис. 3.1):

Рис. 3.1. График функции распределения дискретной случайной величины

Скачки функции происходят в точках, соответствующих возможным значениям случайной величины, и равны вероятностям этих значений. В точках разрыва функция F (X ) непрерывна слева.

График функции распределения непрерывной случайной величины представляет собой непрерывную кривую.

X

Рис. 3.2. График функции распределения непрерывной случайной величины

Функция распределения обладает следующими очевидными свойствами:

1) , 2) , 3) ,

4) при .

Будем называть событие, состоящее в том, что случайная величина X Принимает значение Х, Принадлежащее некоторому полузамкнутому интервалу A £ х < B , Попаданием случайной величины на интервал [A , B ).

Теорема 3.1 . Вероятность попадания случайной величины на интервал [A , B ) равна приращению функции распределения на этом интервале:

Если уменьшать интервал [A , B ), Полагая, что , то в пределе формула (3.1) вместо вероятности попадания на интервал дает вероятность попадания в точку, т. е. вероятность того, что случайная величина примет значение A :

Если функция распределения имеет разрыв в точке A , То предел (3.2) равен значению скачка функции F (X ) в точке Х =A , Т. е. вероятности того, что случайная величина примет значение A (рис. 3.3, А ). Если же случайная величина непрерывна, т. е. непрерывна функция F (X ), то предел (3.2) равен нулю (рис. 3.3, Б )

Таким образом, вероятность любого конкретного значения непрерывной случайной величины равна нулю. Однако это не означает невозможности события Х= A , А лишь говорит о том, что относительная частота этого события будет стремиться к нулю при неограниченном увеличении числа испытаний.

А )
Б )

Рис. 3.3. Скачок функции распределения

Для непрерывных случайных величин наряду с функцией распределения используется еще одна форма задания закона распределения – плотность распределения.

Если – вероятность попадания на интервал , то отношение характеризует плотность, с которой вероятность распределена в окрестности точки X . Предел этого отношения при ,т. е. производная , называется Плотностью распределения (плотностью распределения вероятностей, плотностью вероятности) случайной величины X . Условимся плотность распределения обозначить

.

Таким образом, плотность распределения характеризует вероятность попадания случайной величины в окрестность точки Х.

График плотности распределения называют Кривой рас Пределения (Рис. 3.4).

Рис. 3.4. Вид плотности распределения

Исходя из определения и свойств функции распределения F (X ), нетрудно установить следующие свойства плотности распределения F (X ):

1) F (X )³0

2)

3)

4)

Для непрерывной случайной величины в силу того, что вероятность попадания в точку равна нулю, имеют место следующие равенства:

Пример 3.2. Случайная величина X Задана плотностью распределения

Требуется:

А) найти значение коэффициента А;

Б) найти функцию распределения;

В) найти вероятность попадания случайной величины на интервал (0, ).

Функция распределения или плотность распределения полностью описывают случайную величину. Часто, однако, при решении практических нет необходимости в полном знании закона распределения, достаточно знать лишь некоторые его характерные черты. Для этого в теории вероятностей используются числовые характеристики случайной величины, выражающие различные свойства закона распределения. Основными числовыми характеристиками являются Математическое Ожидание, дисперсия и среднее квадратическое отклонение .

Математическое ожидание Характеризует положение случайной величины на числовой оси. Это некоторое среднее значение случайной величины, около которого группируются все ее возможные значения.

Математическое ожидание случайной величины X Обозначают символами М (Х ) или Т . Математическим ожиданием дискретной случайной величины называется сумма парных произведений всех возможных значений случайной величины на вероятности этих значений:

Математическое ожидание непрерывной случайной величины определяется с помощью несобственного интеграла:

Исходя из определений, нетрудно убедиться в справедливости следующих свойств математического ожидания:

1. (математическое ожидание неслучайной величины С Равно самой неслучайной величине).

2. Если ³0, то ³0.

4. Если и Независимы , то .

Пример 3.3. Найти математическое ожидание дискретной случайной величины, заданной рядом распределения:

Решение .

=0×0.2 + 1×0.4 + 2×0.3 + 3×0.1=1.3.

Пример 3.4. Найти математическое ожидание случайной величины, заданной плотностью распределения:

.

Решение .

Дисперсия и среднее квадратическое отклонение Являются характеристиками рассеивания случайной величины, они характеризуют разброс ее возможных значений относительно математического ожидания.

Дисперсией D (X ) Случайной величины X Называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания Для дискретной случайной величины дисперсия выражается суммой:

(3.3)

А для непрерывной – интегралом

(3.4)

Дисперсия имеет размерность квадрата случайной величины. Характеристикой рассеивания, Совпадающей по размерно Сти со случайной величиной , служит среднее квадратическое отклонение.

Свойства дисперсии:

1) – постоянные. В частности,

3)

В частности,

Заметим, что вычисление дисперсии по формуле (3.5) часто оказывается более удобным, чем по формуле (3.3) или (3.4).

Величина называется Ковариацией случайных величин .

Если , то величина

Называется Коэффициентом корреляции случайных величин .

Можно показать, что если , то величины линейно зависимы: где

Отметим, что если независимы, то

Пример 3.5. Найти дисперсию случайной величины, заданной рядом распределения из примера 1.

Решение . Чтобы вычислить дисперсию, необходимо знать математическое ожидание. Для данной случайной величины выше было найдено: M =1.3. Вычисляем дисперсию по формуле (3.5):

Пример 3.6. Случайная величина задана плотностью распределения

Найти дисперсию и среднее квадратическое отклонение.

Решение . Находим сначала математическое ожидание:

(как интеграл от нечетной функции по симметричному промежутку).

Теперь вычисляем дисперсию и среднее квадратическое отклонение:

1. Биномиальное распределение . Случайная величина , равная числу «УСПЕХОВ» в схеме Бернулли, имеет биномиальное распределение: , .

Математическое ожидание случайной величины, распределённой по биноминальному закону, равно

.

Дисперсия этого распределения равна .

2. Распределение Пуассона ,

Математическое ожидание и дисперсия случайной величины с распределением Пуассона , .

Распределение Пуассона часто используется, когда мы имеем дело с числом событий, появляющихся в промежутке времени или пространства, например: число машин, прибывших на автомойку в течении часа, число остановок станков в неделю, число дорожных происшествий и т. д.

Случайная величина имеет Геометрическое распределение с параметром , если принимает значения с вероятностями . Случайная величина с таким распределением имеет смысл Номера первого успешного испытания в схеме Бернулли с вероятностью успеха . Таблица распределения имеет вид:

3. Нормальное распределение . Нормальный закон распределения вероятностей занимает особое место среди других законов распределения. В теории вероятности доказывается, что плотность вероятности суммы независимых или Слабо зависимых , равномерно малых (т. е. играющих примерно одинаковую роль) слагаемых при неограниченном увеличении их числа как угодно близко приближается к нормальному закону распределению независимо от того, какие законы распределения имеют эти слагаемые (центральная предельная теорема А. М. Ляпунова).


Плотностью распределения вероятностей Х называют функцию f(x) – первую производную от функции распределения F(x) :

Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима.

Плотность распределения вероятностей f(x) – называют дифференциальной функцией распределения:

Свойство 1. Плотность распределения - величина неотрицательная:

Свойство 2. Несобственный интеграл от плотности распределения в пределах от до равен единице:

Пример 1.25. Дана функция распределения непрерывной случайной величины Х:

f(x) .

Решение: Плотность распределения равна первой производной от функции распределения:

1. Дана функция распределения непрерывной случайной величины Х:

Найти плотность распределения.

2. Задана функция распределения непрерывной случайной величины Х:

Найти плотность распределения f(x).

1.3. Числовые характеристики непрерывной случайной

величины

Математическое ожидание непрерывной случайной величины Х , возможные значения которой принадлежат всей оси Ох , определяется равенством:

Предполагается, что интеграл сходится абсолютно.

a,b ), то:

f(x) – плотность распределения случайной величины.

Дисперсия непрерывной случайной величины Х , возможные значения которой принадлежат всей оси, определяется равенством:

Частный случай. Если значения случайной величины принадлежат интервалу (a,b ), то:

Вероятность того, что Х примет значения, принадлежащие интервалу (a,b ), определяется равенством:

.

Пример 1.26. Непрерывная случайная величина Х

Найти математическое ожидание, дисперсию и вероятность попадание случайной величины Х в интервале (0;0,7).

Решение: Случайная величина распределена на интервале (0,1). Определим плотность распределения непрерывной случайной величины Х :

а) Математическое ожидание :

б) Дисперсия

в)

Задания для самостоятельной работы:

1. Случайная величина Х задана функцией распределения:

M(x) ;

б) дисперсию D(x) ;

Х в интервал (2,3).

2. Случайная величина Х

Найти: а) математическое ожидание M(x) ;

б) дисперсию D(x) ;

в) определить вероятность попадания случайной величины Х в интервал (1;1,5).

3. Случайная величина Х задана интегральной функцией распределения:

Найти: а) математическое ожидание M(x) ;

б) дисперсию D(x) ;

в) определить вероятность попадания случайной величины Х в интервал .

1.4. Законы распределения непрерывной случайной величины

1.4.1. Равномерное распределение

Непрерывная случайная величина Х имеет равномерное распределение на отрезке [a,b ], если на этом отрезке плотность распределения вероятности случайной величины постоянна, а вне его равна нулю, т.е.:

Рис. 4.

; ; .

Пример 1.27. Автобус некоторого маршрута движется равномерно с интервалом 5 минут. Найти вероятность того, что равномерно распределенная случайная величина Х – время ожидания автобуса составит менее 3 минут.

Решение: Случайная величина Х – равномерно распределена на интервале .

Плотность вероятности: .

Для того чтобы время ожидания не превысило 3 минут, пассажир должен появиться на остановке в интервале от 2 до 5 минут после ухода предыдущего автобуса, т.е. случайная величина Х должна попасть в интервал (2;5). Т.о. искомая вероятность:

Задания для самостоятельной работы:

1. а) найти математическое ожидание случайной величины Х распределенной равномерно в интервале (2;8);

б) найти дисперсию и среднее квадратическое отклонение случайной величины Х, распределенной равномерно в интервале (2;8).

2. Минутная стрелка электрических часов перемещается скачком в конце каждом минуты. Найти вероятность того, что в данное мгновение часы покажут время, которое отличается от истинного не более чем на 20 секунд.

1.4.2. Показательное (экспоненциальное) распределение

Непрерывная случайная величина Х распределена по показательному закону, если ее плотность вероятности имеет вид:

где – параметр показательного распределения.

Таким образом

Рис. 5.

Числовые характеристики:

Пример 1.28. Случайная величина Х – время работы электролампочки - имеет показательное распределение. Определить вероятность того, что время работы лампочки будет не меньше 600 часов, если среднее время работы - 400 часов.

Решение: По условию задачи математическое ожидание случайной величины Х равно 400 часам, следовательно:

;

Искомая вероятность , где

Окончательно:


Задания для самостоятельной работы:

1. Написать плотность и функцию распределения показательного закона, если параметр .

2. Случайная величина Х

Найти математическое ожидание и дисперсию величины Х .

3. Случайная величина Х задана функцией распределения вероятностей:

Найти математическое ожидание и среднее квадратическое отклонение случайной величины.

1.4.3. Нормальное распределение

Нормальным называют распределение вероятностей непрерывной случайной величины Х , плотность которого имеет вид:

где а – математическое ожидание, – среднее квадратическое отклонение Х .

Вероятность того, что Х примет значение, принадлежащее интервалу :

, где

– функция Лапласа.

Распределение, у которого ; , т.е. с плотностью вероятности называется стандартным.

Рис. 6.

Вероятность того, что абсолютная величина отклонена меньше положительного числа :

.

В частности, при а= 0 справедливо равенство:

Пример 1.29. Случайная величина Х распределена нормально. Среднее квадратическое отклонение . Найти вероятность того, что отклонение случайной величины от ее математического ожидания по абсолютной величине будет меньше 0,3.

Решение: .


Задания для самостоятельной работы:

1. Написать плотность вероятности нормального распределения случайной величины Х , зная, что M(x)= 3, D(x)= 16.

2. Математическое ожидание и среднее квадратическое отклонение нормально распределенной случайной величины Х соответственно равны 20 и 5. Найти вероятность того, что в результате испытания Х примет значение, заключенное в интервале (15;20).

3. Случайные ошибки измерения подчинены нормальному закону со средним квадратическим отклонением мм и математическим ожиданием а= 0. Найти вероятность того, что из 3 независимых измерений ошибка хотя бы одного не превзойдет по абсолютной величине 4 мм.

4. Производится взвешивание некоторого вещества без систематических ошибок. Случайные ошибки взвешивания подчинены нормальному закону со средним квадратическим отклонением г. Найти вероятность того, что взвешивание будет произведено с ошибкой, не превосходящей по абсолютной величине 10 г.

Понятия математического ожидания М (Х ) и дисперсии D (X ), введенные ранее для дискретной случайной величины, можно распространить на непрерывные случайные величины.

· Математическое ожидание М (Х ) непрерывной случайной величины Х определяется равенством:

при условии, что этот интеграл сходится.

· Дисперсия D (X ) непрерывной случайной величины Х определяется равенством:

· Среднее квадратическое отклонение σ(Х ) непрерывной случайной величины определяется равенством:

Все свойства математического ожидания и дисперсии, рассмотренные ранее для дискретных случайных величин, справедливы и для непрерывных.

Задача 5.3. Случайная величина Х задана дифференциальной функцией f (x ):

Найти M (X ), D (X ), σ(Х ), а также P (1 < х < 5).

Решение:

M (X )= =

+ = 8/9 0+9/6 4/6=31/18,

D (X )=

= = /

P 1 =

Задачи

5.1. Х

f (x ), а также

Р (‒1/2 < Х < 1/2).

5.2. Непрерывная случайная величина Х задана функцией распределения:

Найти дифференциальную функцию распределения f (x ), а также

Р (2π /9 < Х < π /2).

5.3. Непрерывная случайная величина Х

Найти: а) число с ; б) М (Х ), D (X ).

5.4. Непрерывная случайная величина Х задана плотностью распределения:

Найти: а) число с ; б) М (Х ), D (X ).

5.5. Х :

Найти: а) F (х ) и построить ее график; б) M (X ), D (X ), σ(Х ); в) вероятность того, что в четырех независимых испытаниях величина Х примет ровно 2 раза значение, принадлежащее интервалу (1;4).

5.6. Задана плотность распределения вероятностей непрерывной случайной величины Х :

Найти: а) F (х ) и построить ее график; б) M (X ), D (X ), σ(Х ); в) вероятность того, что в трех независимых испытаниях величина Х примет ровно 2 раза значение, принадлежащее отрезку .

5.7. Функция f (х ) задана в виде:

с Х ; б) функцию распределения F (x ).

5.8. Функция f (x ) задана в виде:

Найти: а) значение постоянной с , при которой функция будет плотностью вероятности некоторой случайной величины Х ; б) функцию распределения F (x ).

5.9. Случайная величина Х , сосредоточенная на интервале (3;7), задана функцией распределения F (х )= Х примет значение: а) меньше 5, б) не меньше 7.

5.10. Случайная величина Х , сосредоточенная на интервале (-1;4), задана функцией распределения F (х )= . Найти вероятность того, что случайная величина Х примет значение: а) меньше 2, б) меньше 4.


5.11.

Найти: а) число с ; б) М (Х ); в) вероятность Р (Х > М (Х )).

5.12. Случайная величина задана дифференциальной функцией распределения:

Найти: а) М (Х ); б) вероятность Р (Х ≤ М (Х )).

5.13. Распределение Ремя задается плотностью вероятности:

Доказать, что f (x ) действительно является плотностью распределения вероятностей.

5.14. Задана плотность распределения вероятностей непрерывной случайной величины Х :

Найти число с .

5.15. Случайная величина Х распределена по закону Симпсона (равнобедренного треугольника) на отрезке [-2;2] (рис. 5.4). Найти аналитическое выражение для плотности вероятности f (x ) на всей числовой оси.

Рис. 5.4 Рис. 5.5

5.16. Случайная величина Х распределена по закону "прямоугольного треугольника" в интервале (0;4) (рис. 5.5). Найти аналитическое выражение для плотности вероятности f (x ) на всей числовой оси.

Ответы

P (-1/2<X <1/2)=2/3.

P (2π /9<Х < π /2)=1/2.

5.3. а) с =1/6, б) М (Х )=3 , в) D (X )=26/81.

5.4. а) с =3/2, б) М (Х )=3/5, в) D (X )=12/175.

б) M (X )= 3 , D (X )= 2/9, σ(Х )= /3.

б) M (X )=2 , D (X )= 3 , σ(Х )= 1,893.

5.7. а) с = ; б)

5.8. а) с =1/2; б)

5.9. а)1/4; б) 0.

5.10. а)3/5; б) 1.

5.11. а) с = 2; б) М (Х )= 2; в) 1-ln 2 2 ≈ 0,5185.

5.12. а) М (Х )= π /2 ; б) 1/2



© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний