Общие уравнения прямой, как линии пересечения двух плоскостей. Прямая, заданная пересечением двух плоскостей Написать уравнение линии пересечения двух плоскостей

Главная / Г. Х. Андерсен

Рассмотрим решение примера.

Пример.

Найдите координаты любой точки прямой, заданной в пространстве уравнениями двух пересекающихся плоскостей .

Решение.

Перепишем систему уравнений в следующем виде

В качестве базисного минора основной матрицы системы возьмем отличный от нуля минор второго порядка , то есть, z – свободная неизвестная переменная. Перенесем слагаемые, содержащие z , в правые части уравнений: .

Примем , где - произвольное действительное число, тогда .

Решим полученную систему уравнений :

Таким образом, общее решение системы уравнений имеет вид , где .

Если взять конкретное значение параметра , то мы получим частное решение системы уравнений, которое нам дает искомые координаты точки, лежащей на заданной прямой. Возьмем , тогда , следовательно, - искомая точка прямой.

Можно выполнить проверку найденных координат точки, подставив их в исходые уравнения двух пересекающихся плоскостей:

Ответ:

Направляющий вектор прямой, по которой пересекаются две плоскости.

В прямоугольной системе координат от прямой линии неотделим направляющий вектор прямой . Когда прямая а в прямоугольной системе координат в трехмерном пространстве задана уравнениями двух пересекающихся плоскостей и , то координаты направляющего вектора прямой не видны. Сейчас мы покажем, как их определять.

Мы знаем, что прямая перпендикулярна к плоскости, когда она перпендикулярна любой прямой, лежащей в этой плоскости. Тогда нормальный вектор плоскости перпендикулярен любому ненулевому вектору, лежащему в этой плоскости. Этими фактами и воспользуемся при нахождении направляющего вектора прямой.

Прямая а лежит как в плоскости , так и в плоскости . Следовательно, направляющий вектор прямой а перпендикулярен и нормальному вектору плоскости , и нормальному вектору плоскости . Таким образом, направляющим вектором прямой а является и :

Множество всех направляющих векторов прямой а мы можем задать как , где - параметр, принимающий любые действительные значения, отличные от нуля.

Пример.

Найдите координаты любого направляющего вектора прямой, которая задана в прямоугольной системе координат Oxyz в трехмерном пространстве уравнениями двух пересекающихся плоскостей .

Решение.

Нормальными векторами плоскостей и являются векторы и соответственно. Направляющим вектором прямой, являющейся пересечением двух заданных плоскостей, примем векторное произведение нормальных векторов:

Ответ:

Переход к параметрическим и каноническим уравнениям прямой в пространстве.

Бывают случаи, в которых использование уравнений двух пересекающихся плоскостей для описания прямой не совсем удобно. Некоторые задачи проще решаются, если известны канонические уравнения прямой в пространстве вида или параметрические уравнения прямой в пространстве вида , где x 1 , y 1 , z 1 - координаты некоторой точки прямой, a x , a y , a z - координаты направляющего вектора прямой, а - параметр, принимающий произвольные действительные значения. Опишем процесс перехода от уравнений прямой вида к каноническим и параметрическим уравнениям прямой в пространстве.

В предыдущих пунктах мы научились находить координаты некоторой точки прямой, а также координаты некоторого направляющего вектора прямой, которая задана уравнениями двух пересекающихся плоскостей. Этих данных достаточно, чтобы записать и канонические и параметрические уравнения этой прямой в прямоугольной системе координат в пространстве.

Рассмотрим решение примера, а после этого покажем еще один способ нахождения канонических и параметрических уравнений прямой в пространстве.

Пример.

Решение.

Вычислим сначала координаты направляющего вектора прямой. Для этого найдем векторное произведение нормальных векторов и плоскостей и :

То есть, .

Теперь определим координаты некоторой точки заданной прямой. Для этого найдем одно из решений системы уравнений .

Определитель отличен от нуля, возьмем его в качестве базисного минора основной матрицы системы. Тогда переменная z является свободной, переносим слагаемые с ней в правые части уравнений, и придаем переменной z произвольное значение :

Решаем методом Крамера полученную систему уравнений:

Следовательно,

Примем , при этом получаем координаты точки прямой: .

Теперь мы можем записать требуемые канонические и параметрические уравнения исходной прямой в пространстве:

Ответ:

и

Вот второй способ решения этой задачи.

При нахождении координат некоторой точки прямой мы решаем систему уравнений . В общем случае ее решения можно записать в виде .

А это как раз искомые параметрические уравнения прямой в пространстве. Если каждое из полученных уравнений разрешить относительно параметра и после этого приравнять правые части равенств, то получим канонические уравнения прямой в пространстве

Покажем решение предыдущей задачи по этому методу.

Пример.

Прямая в трехмерном пространстве задана уравнениями двух пересекающихся плоскостей . Напишите канонические и параметрические уравнения этой прямой.

Решение.

Решаем данную систему из двух уравнений с тремя неизвестными (решение приведено в предыдущем примере, не будем повторяться). При этом получаем . Это и есть искомые параметрические уравнения прямой в пространстве.

Осталось получить канонические уравнения прямой в пространстве:

Полученные уравнения прямой внешне отличаются от уравнений, полученных в предыдущем примере, однако они эквивалентны, так как определяют одно и то же множество точек трехмерного пространства (а значит, одну и ту же прямую).

Ответ:

и

Список литературы.

  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

Если две плоскости пересекаются, то система линейных уравнений задаёт уравнение прямой в пространстве .

То есть прямая задана уравнениями двух плоскостей. Типовая и распространенная задача состоит в том, чтобы переписать уравнения прямой в каноническом виде:

Пример 9

Решение : Чтобы составить канонические уравнения прямой, необходимо знать точку и направляющий вектор. А у нас даны уравнения двух плоскостей….

1) Сначала найдём какую-либо точку, принадлежащую данной прямой. Как это сделать? В системе уравнений нужно обнулить какую-нибудь координату. Пусть , тогда получаем систему двух линейных уравнений с двумя неизвестными: . Почленно складываем уравнения и находим решение системы:

Таким образом, точка принадлежит данной прямой. Обратите внимание на следующий технический момент: желательно найти точку с целыми координатами. Если бы в системе мы обнулили «икс» или «зет», то не факт, что получилась бы «хорошая» точка без дробных координат. Такой анализ и подбор точки следует проводить мысленно или на черновике.

Выполним проверку: подставим координаты точки в исходную систему уравнений: . Получены верные равенства, значит, действительно .

2) Как найти направляющий вектор прямой? Его нахождение наглядно демонстрирует следующий схематический чертёж:

Направляющий вектор нашей прямой ортогонален нормальным векторам плоскостей. А если , то вектор «пэ» найдём как векторное произведение векторов нормали: .

Из уравнений плоскостей снимаем их векторы нормали:

И находим направляющий вектор прямой:

Как проверить результат, рассматривалось в статье Векторное произведение векторов .

3) Составим канонические уравнения прямой по точке и направляющему вектору :

Ответ :

На практике можно пользоваться готовой формулой: если прямая задана пересечением двух плоскостей , то вектор является направляющим вектором данной прямой.

Пример 10

Записать канонические уравнения прямой

Это пример для самостоятельного решения. Ваш ответ может отличаться от моего ответа (смотря, какую точку подберёте). Если отличие есть, то для проверки возьмите точку из вашего уравнения и подставьте в моё уравнение (или наоборот).

Полное решение и ответ в конце урока.

Во второй части урока мы рассмотрим взаимное расположению прямых в пространстве, а также разберём задачи, которые связаны с пространственными прямыми и точками. Терзают меня смутные ожидания, что материала будет прилично, поэтому лучше всё-таки сделать отдельную веб страницу.

Добро пожаловать: Задачи с прямой в пространстве >>>

Решения и ответы:



Пример 4: Ответы :

Пример 6: Решение : Найдём направляющий вектор прямой:

Уравнения прямой составим по точке и направляющему вектору :

Ответ : («игрек» – любое) :

Ответ :

В задаче необходимо найти линию пересечения двух плоскостей и определить натуральную величину одной из них методом плоскопараллельного перемещения.

Для решения такой классической задачи по начертательной геометрии необходимо знать следующий теоретический материал:

— нанесение проекций точек пространства на комплексный чертеж по заданным координатам;

— способы задания плоскости на комплексном чертеже, плоскости общего и частного положения;

— главные линии плоскости;

— определение точки пересечения прямой линии с плоскостью (нахождение «точки встречи» );

— метод плоскопараллельного перемещения для определения натуральной величины плоской фигуры;

— определение видимости на чертеже прямых линий и плоскостей с помощью конкурирующих точек.

Порядок решения Задачи

1. Согласно варианту Задания по координатам точек наносим на комплексный чертеж две плоскости, заданные в виде треугольников ABC (A’, B’, C’; A, B, C) и DKE (D’, K’, E’; D, K, Е) (рис.1.1 ).

Рис.1.1

2 . Для нахождения линии пересечения воспользуемся методом проецирующей плоскости . Суть его в том, что берется одна сторона (линия) первой плоскости (треугольника) и заключается в проецирующую плоскость. Определяется точка пересечения этой линии с плоскостью второго треугольника. Повторив эту задачу еще раз, но для прямой второго треугольника и плоскости первого треугольника, определим вторую точку пересечения. Так как полученные точки одновременно принадлежат обеим плоскостям, они должны находиться на линии пересечения этих плоскостей. Соединив эти точки прямой, будем иметь искомую линию пересечения плоскостей.

3. Задача решается следующим образом:

а) заключаем в проецирующую плоскость Ф(Ф’) сторону AB (A B ’) первого треугольника во фронтальной плоскости проекций V . Отмечаем точки пересечения проецирующей плоскости со сторонами DK и DE второго треугольника, получая точки 1(1’) и 2 (2’) . Переносим их по линиям связи на горизонтальную плоскость проекций H на соответствующие стороны треугольника, точка 1 (1) на стороне DE и точка 2(2) на стороне DK .

Рис.1.2

б) соединив проекции точек 1 и 2 , будем иметь проекцию проецирующей плоскости Ф . Тогда точка пересечения прямой АВ с плоскостью треугольника DKE определится (согласно правилу) вместе пересечения проекции проецирующей плоскости 1-2 и одноименной проекции прямой AB . Таким образом, получили горизонтальную проекцию первой точки пересечения плоскостей – M , по которой определяем (проецируем по линиям связи) её фронтальную проекцию – M на прямой A B (рис.1.2.а );

в) аналогичным путем находим вторую точку. Заключаем в проецирующую плоскость Г(Г) сторону второго треугольника DK (DK ) . Отмечаем точки пересечения проецирующей плоскости со сторонами первого треугольника AC и BC во горизонтальной проекции, получая проекции точек 3 и 4 . Проецируем их на соответствующие стороны в фронтальной плоскости, получаем 3’ и 4’ . Соединив их прямой, имеем проекцию проецирующей плоскости. Тогда вторая точка пересечения плоскостей будет в месте пересечения линии 3’-4’ со стороной треугольника D K , которую заключали в проецирующую плоскость. Таким образом, получили фронтальную проекцию второй точки пересечения – N , по линии связи находим горизонтальную проекцию – N (рис.1.2.б ).

г) соединив полученные точки MN (MN ) и (M N ’) на горизонтальной и фронтальной плоскостях, имеем искомую линию пересечения заданных плоскостей.

4. С помощью конкурирующих точек определяем видимость плоскостей. Возьмем пару конкурирующих точек, например, 1’=5’ во фронтальной проекции. Спроецируем их на соответствующие стороны в горизонтальную плоскость, получим 1 и 5 . Видим, что точка 1 , лежащая на стороне D Е имеет большую координату до оси x , чем точка 5 , лежащая на стороне A В . Следовательно, согласно правилу, большей координаты, точка 1 и сторона треугольника D ’Е ’ во фронтальной плоскости будут видимые. Таким образом, определяется видимость каждой стороны треугольника в горизонтальной и фронтальной плоскостях. Видимые линии на чертежах проводятся сплошной контурной линией, а не видимые — штриховой линией. Напомним, что в точках пересечения плоскостей (M N и M ’- N ) будет происходить смена видимости.

Рис.1.3

Р ис.1. 4 .

На эпюре дополнительно показано определение видимости в горизонтальной плоскости с использованием конкурирующих точек 3 и 6 на прямых DK и АВ .

5. Методом плоскопараллельного перемещения определяем натуральную величину плоскости треугольника ABC , для чего:

а) в указанной плоскости через точку С(С) проводим фронталь C F (С- F и C ’- F ’) ;

б) на свободном поле чертежа во горизонтальной проекции берем (отмечаем) произвольную точку С 1 , считая, что это одна из вершин треугольника (конкретно вершина C ). Из нее восстанавливаем перпендикуляр к фронтальной плоскости (через ось х );

Рис.1.5

в) плоскопараллельным перемещением переводим горизонтальную проекцию треугольника ABC , в новое положение A 1 B 1 C 1 таким образом, чтобы в фронтальной проекции он занял проецирующее положение (преобразовался в прямую линию). Для этого: на перпендикуляре от точки С 1 , откладываем фронтальную проекцию горизонтали C 1 F 1 (длина l CF ) получаем точку F 1 . Раствором циркуля из точки F 1 величиною F-A делаем дуговую засечку, а из точки C 1 — засечку величиной CA , тогда в пересечении дуговых линий получаем точку A 1 (вторая вершина треугольника);

— аналогично получаем точку B 1 (из точки C 1 делаем засечку величиной C B (57мм), а из точки F 1 величиной F B (90мм).Заметим, что при правильном решении три точки A 1 F ’ 1 и B ’ 1 должны лежать на одной прямой (сторона треугольника A 1 B 1 )две другие стороны С 1 A 1 и C 1 B 1 получаются путем соединения их вершин;

г) из метода вращения следует, что при перемещении или вращении точки в какой-то плоскости проекций — на сопряженной плоскости проекция этой точки должна двигаться по прямой линии, в нашем конкретном случае по прямой параллельной оси х . Тогда проводим из точек A B C фронтальной проекции эти прямые (их называют плоскостями вращения точек), а из фронтальных проекций перемещенных точек A 1 В 1 C 1 восстановим перпендикуляры (линии связи) (рис.1.6 ).

Рис.1.6

Пересечения указанных линий с соответствующими перпендикулярами дает новые положения фронтальной проекции треугольника ABC , конкретно A 1 В’ 1 C ’ 1 который должен стать проецирующим (прямой линией), поскольку горизонталь h 1 мы провели перпендикулярно фронтальной плоскости проекций (рис.1.6 );

5) тогда для получения натуральной величины треугольника достаточно его фронтальную проекцию развернуть до параллельности с горизонтальной плоскостью. Разворот осуществляем с помощью циркуля через точку А’ 1 , считая ее как центр вращения, ставим треугольник A 1 В’ 1 C ’ 1 параллельно оси х , получаем A 2 В’ 2 C ’ 2 . Как было сказано выше, при вращении точки, на сопряженной (теперь на горизонтальной) проекции они двигаются по прямым параллельным оси х . Опуская перпендикуляры (линии связи) из фронтальных проекций точек A 2 В’ 2 C ’ 2 пересечения их с соответствующими линиями находим горизонтальную проекцию треугольника ABC (A 2 В 2 C 2 ) в натуральную величину (рис.1.7 ).


Рис. 1.7

У меня есть все готовые решения задач с такими координатами, купить можно

Цена 55 руб , чертежи по начертательной геометрии из книжки Фролова Вы легко можете скачать сразу после оплаты или я вышлю Вам на почту. Они находятся в ZIP архиве в различных форматах:
*.jpg обычный цветной рисунок чертежа в масштабе 1 к 1 в хорошем разрешении 300 dpi;
*.cdw формат программы Компас 12 и выше или версии LT;
*.dwg и.dxf формат программы AUTOCAD, nanoCAD;

Раздел: Начертательная геометрия /

С помощю этого онлайн калькулятора можно найти линию пересечения плоскостей. Дается подробное решение с пояснениями. Для нахождения уравнения линии пересечения плоскостей введите коэффициенты в уравнения плоскостей и нажимайте на кнопку "Решить". Теоретическую часть и численные примеры смотрите ниже.

×

Предупреждение

Очистить все ячейки?

Закрыть Очистить

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Линия пересечения плоскостей − теория, примеры и решения

Две плоскости в пространстве могут быть параллельными, могут совпадать или пересекаться. В данной статье мы определим взаимное расположение двух плоскостей, и если эти плоскости пересекаются, выведем уравнение линии пересечения плоскостей.

Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат заданы плоскости α 1 и α 2:

Поскольку векторы n 1 и n 2 коллинеарны, то существует такое число λ ≠0, что выполнено равенство n 1 =λ n 2 , т.е. A 1 =λ A 2 , B 1 =λ B 2 , C 1 =λ C 2 .

Умножив уравнение (2) на λ , получим:

Если выполненио равенство D 1 =λ D 2 , то плоскости α 1 и α 2 совпадают, если же D 1 ≠λ D 2 то плоскости α 1 и α 2 параллельны, то есть не пересекаются.

2. Нормальные векторы n 1 и n 2 плоскостей α 1 и α 2 не коллинеарны (Рис.2).

Если векторы n 1 и n 2 не коллинеарны, то решим систему линейных уравнений (1) и (2). Для этого переведем свободные члены на правую сторону уравнений и составим соответствующее матричное уравнение:

где x 0 , y 0 , z 0 , m, p, l действительные числа, а t − переменная.

Равенство (5) можно записать в следующем виде:

Пример 1. Найти линию пересечения плоскостей α 1 и α 2:

α 1: x +2y +z +54=0. (7)

Решим систему линейных уравнений (9) отностительно x, y, z . Для решения системы, построим расширенную матрицу:

Второй этап. Обратный ход Гаусса.

Исключим элементы 2-го столбца матрицы выше элемента a 22 . Для этого сложим строку 1 со строкой 2, умноженной на −2/5:

Получим решение:

Получили уравнение линии пересечения плоскостей α 1 и α 2 в параметрическом виде. Запишем ее в каноническом виде.

Ответ. Уравнение линии пересечения плоскостей α 1 и α 2 имеет вид:

(15)

α 1 имеет нормальный вектор n 1 ={A 1 , B 1 , C 1 }={1, 2, 7}. Плоскость α 2 имеет нормальный вектор n 2 ={A 2 , B 2 , C 2 }={2, 4, 14}.

n 1 и n 2 коллинеарны (n 1 можно получить умножением n 2 на число 1/2), то плоскости α 1 и α 2 параллельны или совпадают.

α 2 умножив на число 1/2:

(18)

Решение. Определим, сначала, взаимное расположение данных плоскостей. Плоскость α 1 имеет нормальный вектор n 1 ={A 1 , B 1 , C 1 }={5, −2, 3}. Плоскость α 2 имеет нормальный вектор n 2 ={A 2 , B 2 , C 2 }={15, −6, 9}.

Поскольку направляющие векторы n 1 и n 2 коллинеарны (n 1 можно получить умножением n 2 на число 1/3), то плоскости α 1 и α 2 параллельны или совпадают.

При умножении уравнения на ненулевое число уравнение не изменяется. Преобразуем уравнение плоскости α 2 умножив на число 1/3:

(19)

Так как нормальные векторы уравнений (17) и (19) совпадают, и свободные члены равны, то плоскости α 1 и α 2 совпадают.



© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний