Доказательство иррациональности корня из двух на примере. Иррациональные числа, определение, примеры

Главная / Оскар Уайльд

Множество иррациональных чисел обычно обозначается заглавной латинской буквой I {\displaystyle \mathbb {I} } в полужирном начертании без заливки. Таким образом: I = R ∖ Q {\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} } , то есть множество иррациональных чисел есть разность множеств вещественных и рациональных чисел.

О существовании иррациональных чисел, точнее отрезков , несоизмеримых с отрезком единичной длины, знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа .

Энциклопедичный YouTube

  • 1 / 5

    Иррациональными являются:

    Примеры доказательства иррациональности

    Корень из 2

    Допустим противное: 2 {\displaystyle {\sqrt {2}}} рационален , то есть представляется в виде дроби m n {\displaystyle {\frac {m}{n}}} , где m {\displaystyle m} - целое число , а n {\displaystyle n} - натуральное число .

    Возведём предполагаемое равенство в квадрат:

    2 = m n ⇒ 2 = m 2 n 2 ⇒ m 2 = 2 n 2 {\displaystyle {\sqrt {2}}={\frac {m}{n}}\Rightarrow 2={\frac {m^{2}}{n^{2}}}\Rightarrow m^{2}=2n^{2}} .

    История

    Античность

    Концепция иррациональных чисел была неявным образом воспринята индийскими математиками в VII веке до нашей эры, когда Манава (ок. 750 г. до н. э. - ок. 690 г. до н. э.) выяснил, что квадратные корни некоторых натуральных чисел, таких как 2 и 61, не могут быть явно выражены [ ] .

    Первое доказательство существования иррациональных чисел обычно приписывается Гиппасу из Метапонта (ок. 500 гг. до н. э.), пифагорейцу . Во времена пифагорейцев считалось, что существует единая единица длины, достаточно малая и неделимая, которая целое число раз входит в любой отрезок [ ] .

    Нет точных данных о том, иррациональность какого числа было доказано Гиппасом. Согласно легенде он нашёл его изучая длины сторон пентаграммы. Поэтому разумно предположить, что это было золотое сечение [ ] .

    Греческие математики назвали это отношение несоизмеримых величин алогос (невыразимым), однако согласно легендам не воздали Гиппасу должного уважения. Существует легенда, что Гиппас совершил открытие, находясь в морском походе, и был выброшен за борт другими пифагорейцами «за создание элемента вселенной, который отрицает доктрину, что все сущности во вселенной могут быть сведены к целым числам и их отношениям». Открытие Гиппаса поставило перед пифагорейской математикой серьёзную проблему, разрушив лежавшее в основе всей теории предположение, что числа и геометрические объекты едины и неразделимы.

    1.Доказательство является примерами дедуктивного рассуждения и отличаются от индуктивных или эмпирических аргументов. Доказательство должно продемонстрировать, что доказываемое утверждение всегда верно, иногда путем перечисления всех возможных случаев и показывая, что утверждение выполняется в каждом из них. Доказательство может опираться на очевидные или общепринятые явления или случаи, известные как аксиомы. Вопреки этому, доказывается иррациональность “корня квадратного из двух”.
    2.Вмешательство топологии здесь объясняется самой природой вещей, что означает, что чисто алгебраического способа доказательства иррациональности, в частности, исходя из рациональных чисел нет.Вот пример, за вами право выбора: 1+1/2 + 1/4 + 1/8 ….= 2 или 1+1/2 + 1/4 + 1/8 …≠ 2 ???
    Если вы примете 1+1/2 + 1/4 + 1/8 +…= 2, что считается “алгебраическим” подходом, то совсем не составляет труда показать, что существует n/m ∈ ℚ, которое на бесконечной последовательности является иррациональным и конечным числом.Это подсказывает, что иррациональные числа являются замыканием поля ℚ, но это относится к топологической особенности.
    Так для чисел Фибоначчи, F(k): 1,1,2,3,5,8,13,21,34,55,89,144,233,377, … lim{F(k+1)/F(k)} = φ
    Это лишь показывает, что существует непрерывный гомоморфизм ℚ → I, и можно показать строго, что существования такого изоморфизма не является логическим следствием алгебраических аксиом.

    Какие числа являются иррациональными? Иррациональное число — это не рациональное вещественное число, т.е. оно не может быть представлено как дробь (как отношение двух целых чисел), где m — целое число, n — натуральное число . Иррациональное число можно представить как бесконечную непериодическую десятичную дробь.

    Иррациональное число не может иметь точного значения. Только в формате 3,333333…. Например , квадратный корень из двух - является числом иррациональным.

    Какое число иррациональное? Иррациональным числом (в отличии от рациональных) называется бесконечная десятичная непериодическая дробь.

    Множество иррациональных чисел зачастую обозначают заглавной латинской буквой в полужирном начертании без заливки. Т.о.:

    Т.е. множество иррациональных чисел это разность множеств вещественных и рациональных чисел.

    Свойства иррациональных чисел.

    • Сумма 2-х неотрицательных иррациональных чисел может быть рациональным числом.
    • Иррациональные числа определяют дедекиндовы сечения в множестве рациональных чисел, в нижнем классе у которых нет самого большого числа, а в верхнем нет меньшего.
    • Всякое вещественное трансцендентное число - это иррациональное число.
    • Все иррациональные числа являются или алгебраическими, или трансцендентными.
    • Множество иррациональных чисел везде плотно на числовой прямой: меж каждой парой чисел есть иррациональное число.
    • Порядок на множестве иррациональных чисел изоморфен порядку на множестве вещественных трансцендентных чисел.
    • Множество иррациональных чисел бесконечно, является множеством 2-й категории.
    • Результатом каждой арифметической операции с рациональными числами (кроме, деления на 0) является рациональные числа. Результатом арифметических операций над иррациональными числами может стать как рациональное, так и иррациональное число.
    • Сумма рационального и иррационального чисел всегда будет иррациональным числом.
    • Сумма иррациональных чисел может быть рациональным числом. Например, пусть x иррациональное, тогда y=x*(-1) тоже иррациональное; x+y=0, а число 0 рациональное (если, например, сложить корень любой степени из 7 и минус корень такой же степени из семи, то получим рациональное число 0).

    Иррациональные числа, примеры.

    γ ζ (3) — ρ — √2 — √3 — √5 — φ δs α e π δ

    Что такое иррациональные числа? Почему они так называются? Где они используются и что собой представляют? Немногие могут без раздумий ответить на эти вопросы. Но на самом деле ответы на них довольно просты, хоть нужны не всем и в очень редких ситуациях

    Сущность и обозначение

    Иррациональные числа представляют собой бесконечные непериодические Необходимость введения этой концепции обусловлена тем, что для решения новых возникающих задач уже было недостаточно ранее имеющихся понятий действительных или вещественных, целых, натуральных и рациональных чисел. Например, для того, чтобы вычислить, квадратом какой величины является 2, необходимо использовать непериодические бесконечные десятичные дроби. Кроме того, многие простейшие уравнения также не имеют решения без введения концепции иррационального числа.

    Это множество обозначается как I. И, как уже ясно, эти значения не могут быть представлены в виде простой дроби, в числителе которой будет целое, а в знаменателе -

    Впервые так или иначе с этим явлением столкнулись индийские математики в VII веке когда было обнаружено, что квадратные корни из некоторых величин не могут быть обозначены явно. А первое доказательство существования подобных чисел приписывают пифагорейцу Гиппасу, который сделал это в процессе изучения равнобедренного прямоугольного треугольника. Серьезный вклад в изучение этого множества привнесли еще некоторые ученые, жившие до нашей эры. Введение концепции иррациональных чисел повлекло за собой пересмотр существовавшей математической системы, вот почему они так важны.

    Происхождение названия

    Если ratio в переводе с латыни - это "дробь", "отношение", то приставка "ир"
    придает этому слову противоположное значение. Таким образом, название множества этих чисел говорит о том, что они не могут быть соотнесены с целым или дробным, имеют отдельное место. Это и вытекает из их сущности.

    Место в общей классификации

    Иррациональные числа наряду с рациональными относится к группе вещественных или действительных, которые в свою очередь относятся к комплексным. Подмножеств нет, однако различают алгебраическую и трансцендентную разновидность, о которых речь пойдет ниже.

    Свойства

    Поскольку иррациональные числа - это часть множества действительных, то к ним применимы все их свойства, которые изучаются в арифметике (их также называют основными алгебраическими законами).

    a + b = b + a (коммутативность);

    (a + b) + c = a + (b + c) (ассоциативность);

    a + (-a) = 0 (существование противоположного числа);

    ab = ba (переместительный закон);

    (ab)c = a(bc) (дистрибутивность);

    a(b+c) = ab + ac (распределительный закон);

    a x 1/a = 1 (существование обратного числа);

    Сравнение также проводится в соответствии с общими закономерностями и принципами:

    Если a > b и b > c, то a > c (транзитивность соотношения) и. т. д.

    Разумеется, все иррациональные числа могут быть преобразованы с помощью основных арифметических действий. Никаких особых правил при этом нет.

    Кроме того, на иррациональные числа распространяется действие аксиомы Архимеда. Она гласит, что для любых двух величин a и b справедливо утверждение, что, взяв a в качестве слагаемого достаточное количество раз, можно превзойти b.

    Использование

    Несмотря на то что в обычной жизни не так уж часто приходится сталкиваться с ними, иррациональные числа не поддаются счету. Их огромное множество, но они практически незаметны. Нас повсюду окружают иррациональные числа. Примеры, знакомые всем, - это число пи, равное 3,1415926..., или e, по сути являющееся основанием натурального логарифма, 2,718281828... В алгебре, тригонометрии и геометрии использовать их приходится постоянно. Кстати, знаменитое значение "золотого сечения", то есть отношение как большей части к меньшей, так и наоборот, также

    относится к этому множеству. Менее известное "серебряное" - тоже.

    На числовой прямой они расположены очень плотно, так что между любыми двумя величинами, отнесенными к множеству рациональных, обязательно встречается иррациональная.

    До сих пор существует масса нерешенных проблем, связанных с этим множеством. Существуют такие критерии, как мера иррациональности и нормальность числа. Математики продолжают исследовать наиболее значительные примеры на предмет принадлежности их к той или иной группе. Например, считается, что е - нормальное число, т. е. вероятность появления в его записи разных цифр одинакова. Что же касается пи, то относительно его пока ведутся исследования. Мерой иррациональности же называют величину, показывающую, насколько хорошо то или иное число может быть приближено рациональными числами.

    Алгебраические и трансцендентные

    Как уже было упомянуто, иррациональные числа условно разделяются на алгебраические и трансцендентные. Условно, поскольку, строго говоря, эта классификация используется для деления множества C.

    Под этим обозначением скрываются комплексные числа, которые включают в себя действительные или вещественные.

    Итак, алгебраическим называют такое значение, которое является корнем многочлена, не равного тождественно нулю. Например, квадратный корень из 2 будет относиться к этой категории, поскольку он является решением уравнения x 2 - 2 = 0.

    Все же остальные вещественные числа, не удовлетворяющие этому условию, называются трансцендентными. К этой разновидности относятся и наиболее известные и уже упомянутые примеры - число пи и основание натурального логарифма e.

    Что интересно, ни одно, ни второе не были изначально выведены математиками в этом качестве, их иррациональность и трансцендентность были доказаны через много лет после их открытия. Для пи доказательство было приведено в 1882 году и упрощено в 1894, что положило конец спорам о проблеме квадратуры круга, которые длились на протяжении 2,5 тысяч лет. Оно до сих пор до конца не изучено, так что современным математикам есть над чем работать. Кстати, первое достаточно точное вычисление этого значения провел Архимед. До него все расчеты были слишком приблизительными.

    Для е (числа Эйлера или Непера), доказательство его трансцендентности было найдено в 1873 году. Оно используется в решении логарифмических уравнений.

    Среди других примеров - значения синуса, косинуса и тангенса для любых алгебраических ненулевых значений.

    А свои корни они извлекли из латинского слова «ratio», что означает «разум». Исходя из дословного перевода:

    • Рациональное число — это «разумное число».
    • Иррациональное число, соответственно, «неразумное число».

    Общее понятие рационального числа

    Рациональным числом считается то число, которое можно записать в виде:

    1. Обыкновенной положительной дроби.
    2. Отрицательной обыкновенной дроби.
    3. В виде числа нуль (0).

    Иными словами, к рациональному число подойдет следующие определения:

    • Любое натуральное число является по своей сути рациональным, так как любое натуральное число можно представить в виде обыкновенной дроби.
    • Любое целое число, включительно число нуль, так как любое целое число можно записать как ввиде положительной обыкновенной дроби, в виде отрицательной обыкновенной дроби, так и ввиде числа нуль.
    • Любая обыкновенная дробь, и здесь не имеет значение положительная она или отрицательная, тоже напрямую подходит к определению рационального числа.
    • Так же в определение можно отнести и смешанное число, конечную десятичную дробь либо бесконечную периодическую дробь.

    Примеры рационального числа

    Рассмотрим примеры рациональных чисел:

    • Натуральные числа — «4», «202», «200».
    • Целые числа — «-36», «0», «42».
    • Обыкновенные дроби.

    Из вышеперечисленных примеров совершенно очевидно, что рациональные числа могут быть как положительными так и отрицательными . Естественно, число 0 (нуль), которое тоже в свою очередь является рациональным числом, в тоже время не относится к категории положительного или отрицательного числа.

    Отсюда, хотелось бы напомнить общеобразовательную программу с помощью следующего определения: «Рациональными числами» — называются те числа, которые можно записать в виде дроби х/у, где х (числитель) — целое число, а у (знаменатель) — натуральное число.

    Общее понятие и определение иррационального числа

    Помимо «рациональных чисел» нам известны и так называемые «иррациональные числа». Вкратце попробуем дать определение данным числам.

    Еще древние математики, желая вычислить диагональ квадрата по его сторонам, узнали о существовании иррационального числа.
    Исходя из определения о рациональных числах, можно выстроить логическую цепь и дать определение иррациональному числу.
    Итак, по сути, те действительные числа, которые не являются рациональными, элементарно и есть иррациональными числами.
    Десятичные дроби же, выражающие иррациональные числа, не периодичны и бесконечны.

    Примеры иррационального числа

    Рассмотрим для наглядности небольшой пример иррационально числа. Как мы уже поняли, бесконечные десятичные непериодические дроби называются иррациональными, к примеру:

    • Число «-5,020020002… (прекрасно видно, что двойки разделены последовательностью из одного, двух, трех и т.д. нулей)
    • Число «7,040044000444… (здесь ясно, что число четверок и количество нулей каждый раз цепочкой увеличивается на единицу).
    • Всем известное число Пи (3,1415…). Да, да — оно тоже является иррациональным.

    Вообще все действительные числа являются как рациональными так и иррациональными. Говоря простыми словами, иррациональное число нельзя представить ввиде обыкновенной дроби х/у.

    Общее заключение и краткое сравнение между числами

    Мы рассмотрели каждое число по отдельности, осталось отличие между рациональным числом и иррациональным:

    1. Иррациональное число встречается при извлечении квадратного корня, при делении окружности на диаметр и т.д.
    2. Рациональное число представляет обыкновенную дробь.

    Заключим нашу статью несколькими определениями:

    • Арифметическая операция, произведенная над рациональным числом, кроме деления на 0 (нуль), в конечном результате приведет тоже к рациональному числу.
    • Конечный результат же, при совершении арифметической операции над иррациональным числом, может привести как к рациональному так и к иррациональному значению.
    • Если же в арифметической операции принимают участие и те и другие числа (кроме деления или умножения на нуль), то результат нам выдаст иррациональное число.



© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний