Свойства открытых и замкнутых множеств. Множества чисел

Главная / Фридрих Шиллер

Одна из основных задач теории точечных множеств - изучение свойств различных типов точечных множеств. Познакомимся с этой теорией на двух примерах и изучим свойства так называемых замкнутых и открытых множеств.

Множество называется замкнутым , если оно содержит все свои предельные точки. Если множество не имеет ни одной предельной точки, то его тоже принято считать замкнутым. Кроме своих предельных точек, замкнутое множество может также содержать изолированные точки. Множество называется открытым , если каждая его точка является для него внутренней.

Приведем примеры замкнутых и открытых множеств .

Всякий отрезок есть замкнутое множество, а всякий интервал (a, b) - открытое множество. Несобственные полуинтервалы и замкнуты , а несобственные интервалы и открыты . Вся прямая является одновременно и замкнутым и открытым множеством. Удобно считать пустое множество тоже одновременно замкнутым и открытым. Любое конечное множество точек на прямой замкнуто, так как оно не имеет предельных точек.

Множество, состоящее из точек:

замкнуто; это множество имеет единственную предельную точку x=0, которая принадлежит множеству.

Основная задача состоит в том, чтобы выяснить, как устроено произвольное замкнутое или открытое множество. Для этого нам понадобится ряд вспомогательных фактов, которые мы примем без доказательства.

  • 1. Пересечение любого числа замкнутых множеств замкнуто.
  • 2. Сумма любого числа открытых множеств есть открытое множество.
  • 3. Если замкнутое множество ограничено сверху, то оно содержит свою верхнюю грань. Аналогично, если замкнутое множество ограничено снизу, то оно содержит свою нижнюю грань.

Пусть E - произвольное множество точек на прямой. Назовем дополнением множества E и обозначим через CE множество всех точек па прямой, не принадлежащих множеству E. Ясно, что если x есть внешняя точка для E, то она является внутренней точкой для множества CE и обратно.

4. Если множество F замкнуто, то его дополнение CF открыто и обратно.

Предложение 4 показывает, что между замкнутыми и открытыми множествами имеется весьма тесная связь: одни являются дополнениями других. В силу этого достаточно изучить одни замкнутые или одни открытые множества. Знание свойств множеств одного типа позволяет сразу выяснить свойства множеств другого типа. Например, всякое открытое множество получается путем удаления из прямой некоторого замкнутого множества.

Приступаем к изучению свойств замкнутых множеств. Введем одно определение. Пусть F - замкнутое множество. Интервал (a, b), обладающий тем свойством, что ни одна из его точек не принадлежит множеству F, а точки a и b принадлежат F, называется смежным интервалом множества F.

К числу смежных интервалов мы будем также относить несобственные интервалы или, если точка a или точка b принадлежит множеству F, а сами интервалы с F не пересекаются. Покажем, что если точка x не принадлежит замкнутому множеству F, то она принадлежит одному из его смежных интервалов.

Обозначим через часть множества F, расположенную правее точки x. Так как сама точка x не принадлежит множеству F, то можно представить в форме пересечения:

Каждое из множеств F и замкнуто. Поэтому, в силу предложения 1, множество замкнуто. Если множество пусто, то весь полуинтервал не принадлежит множеству F. Допустим теперь, что множество не пусто. Так как это множество целиком расположено на полуинтервале, то оно ограничено снизу. Обозначим через b его нижнюю грань. Согласно предложению 3, а значит. Далее, так как b есть нижняя грань множества, то полуинтервал (x, b), лежащий левее точки b, не содержит точек множества и, следовательно, не содержит точек множества F. Итак, мы построили полуинтервал (x, b), не содержащий точек множества F, причем либо, либо точка b принадлежит множеству F. Аналогично строится полуинтервал (a, x), не содержащий точек множества F, причем либо, либо. Теперь ясно, что интервал (a, b) содержит точку x и является смежным интервалом множества F. Легко видеть, что если и - два смежных интервала множества F, то эти интервалы либо совпадают, либо не пересекаются.

Из предыдущего следует, что всякое замкнутое множество на прямой получается путем удаления из прямой некоторого числа интервалов, а именно смежных интервалов множества F. Так как каждый интервал содержит по крайней мере одну рациональную точку, а всех рациональных точек на прямой - счетное множество, то легко убедиться, что число всех смежных интервалов не более чем счётно. Отсюда получаем окончательный вывод. Всякое замкнутое множество на прямой получается путем удаления из прямой не более чем счетного множества непересекающихся интервалов.

В силу предложения 4, отсюда сразу вытекает, что всякое открытое множество на прямой представляет собой не более чем счетную сумму непересекающихся интервалов. В силу предложений 1 и 2, ясно также, что всякое множество, устроенное, как указано выше, действительно является замкнутым (открытым).

Как видно из нижеследующего примера, замкнутые множества могут иметь весьма сложное строение.

Определение 19. МножествоЕ называетсяоткрытым , если все его точки являются внутренними, то есть если оно не содержит своих граничных точек.

Определение 20. МножествоЕ называетсязамкнутым , если оно содержит все свои предельные точки, то есть. (Иначе,
).

Пример 1. Любоеn -мерный интеграл – открытое множество. Любой отрезок – замкнутое множество.

Следует обратить особое внимание на то что, классы замкнутых и открытых множеств не охватывают вместе всех множеств, кроме того, эти классы пересекаются. Существуют множества, которые не являются ни замкнутыми, ни открытыми, а так же множества, которые одновременно являются и замкнутыми, и открытыми.

Пример 2. Пустое множество следует считать замкнутым, хотя оно в то же время является и открытым. МножествоR действительных чисел одновременно является и замкнутым, и открытым.

Множество Q рациональных чисел ни замкнуто, ни открыто. Линейный полуинтервал - ни замкнутое, ни открытое множество.

Теорема 3. Любой шарS (a , r ) - открытое множество.

Доказательство:

Пусть . Возьмём
. Докажем, что шар
(это будет означать, что любая точка шара
- внутренняя, то есть
- открытое множество). Возьмём. Докажем, что
, для этого оценим расстояние
:

Следовательно,
, то есть
, то естьS (a , r ) - открытое множество.

Теорема 4. Производное множество
любого множестваE замкнуто.

Доказательство:

Пусть
. Тогдав любой окрестности
точкисуществует хотя бы одна точкамножества
, отличная от. Так как- предельная точка множестваE , то в любой её окрестности (в том числе сколь угодно малой, содержащейся в
) существует хотя бы одна точкамножестваE , отличная от точки. Таким образом, по определению точкаявляется предельной точкой для множестваE . Итак,
, что по определению означает замкнутость множестваE .

Следует заметить, что в частном случае производное множество
может оказаться пустым.

Свойства открытых и замкнутых множеств

Теорема 5. Объединение любого конечного числа замкнутых множеств является замкнутым множеством.

Доказательство:

Пусть
- замкнутые множества. Докажем, что
- замкнутое множество.

Пусть - предельная точка множества

. Тогда- предельная точка хотя бы одного из множеств
(доказывается от противного). Так как- замкнутое множество, то
. Но тогда
. Итак, любая предельная точка множества
ему принадлежит, то есть
замкнуто.

Теорема 6. Пересечение любого числа замкнутых множеств является замкнутым множеством.

Доказательство:

Пусть
- любая совокупность замкнутых множеств. Докажем, что
- замкнутое множество.

Пусть - предельная точка множества

. Тогда по теореме 1 в любой окрестности

. Но все точки множества
являются и точками множеств
. Следовательно, в
содержится бесконечно много точек из
. Но все множествазамкнуты, поэтому

и
, то есть
замкнуто.

Теорема 7. Если множествоF замкнуто, то его дополнениеCF открыто.

Доказательство:

Пусть . Так как
замкнуто, тоне является его предельной точкой (
). Но это означает, что существует окрестность
точки, не содержащая точек множестваF , то есть
. Тогда
и поэтому- внутренняя точка множества
. Так как- произвольная точка множестваCF , то все точки этого множества являются внутренними, то естьCF открыто.

Теорема 8. Если множествоG открыто, то его дополнениеCG замкнуто.

Доказательство:

Пусть вместе с некоторой окрестностью. Следовательно,не является предельной точкой множестваCG . Итак,
не является предельной точкой для
, то есть
содержит все свои предельные точки. По определению,
замкнуто.

Теорема 9. Объединение любого числа открытых множеств является открытым множеством.

Доказательство:

Пусть
- произвольная совокупность открытых множестви
. Докажем, что- открытое множество. Имеем:

.

Так как множества открыты
, то по теореме 8 множества
замкнуты
. Тогда по теореме 6 их пересечение

открыто.

Теорема 10. Пересечение любого конечного числа открытых множеств является открытым множеством.

Доказательство:

Пусть
- пересечение любого конечного числа открытых множеств
. Докажем, что- открытое множество. Имеем:

.

Так как множества открыты
, то по теореме 8 множества
замкнуты
. Тогда по теореме 5 их объединение

замкнуто. По теореме 7 множество
открыто.

Множество натуральных чисел образуют числа 1, 2, 3, 4, ..., используемые для счёта предметов. Множество всех натуральных чисел принято обозначать буквой N :

N = {1, 2, 3, 4, ..., n , ...} .

Законы сложения натуральных чисел

1. Для любых натуральных чисел a и b верно равенство a + b = b + a . Это свойство называют переместительным (коммутативным) законом сложения.

2. Для любых натуральных чисел a , b , c верно равенство (a + b ) + c = a + (b + c ) . Это свойство называют сочетальным (ассоциативным) законом сложения.

Законы умножения натуральных чисел

3. Для любых натуральных чисел a и b верно равенство ab = ba . Это свойство называют переместительным (коммутативным) законом умножения.

4. Для любых натуральных чисел a , b , c верно равенство (a b )c = a (b c ) . Это свойство называют сочетальным (ассоциативным) законом умножения.

5. При любых значениях a , b , c верно равенство (a + b )c = ac + bc . Это свойство называют распределительным (дистрибутивным) законом умножения (относительно сложения).

6. При любых значениях a верно равенство a *1 = a . Это свойство называют законом об умножении на единицу.

Результатом сложения или умножения двух натуральных чисел всегда является натуральное число. Или, говоря иначе, эти операции можно выполнить, оставаясь во множестве натуральных чисел. Относительно вычитания и деления этого сказать нельзя: так, из числа 3 нельзя, оставаясь во множестве натуральных чисел, вычесть число 7; число 15 нельзя разделить на 4 нацело.

Признаки делимости натуральных чисел

Делимость суммы. Если каждое слагаемое делится на некоторое число, то и сумма делится на это число.

Делимость произведения. Если в произведении хотя бы один из сомножителей делится нацело на некоторое число, то и произведение делится на это число.

Эти условия, как для суммы, так и для произведения, являются достаточными, но не необходимыми. Например, произведение 12*18 делится на 36, хотя ни 12, ни 18 на 36 не делятся.

Признак делимости на 2. Для того, чтобы натуральное число делилось на 2, необходимо и достаточно, чтобы его последняя цифра была чётной.

Признак делимости на 5. Для того, чтобы натуральное число делилось на 5, необходимо и достаточно, чтобы его последняя цифра была либо 0, либо 5.

Признак делимости на 10. Для того, чтобы натуральное число делилось на 10, необходимо и достаточно, чтобы цифра единиц была 0.

Признак делимости на 4. Для того, чтобы натуральное число, содержащее не менее трёх цифр, делилось на 4, необходимо и достаточно, чтобы последние цифры были 00, 04, 08 или двузначное число, образованное последними двумя цифрами данного числа, делилось на 4.

Признак делимости на 2 (на 9). Для того, чтобы натуральное число делилось на 3 (на 9), необходимо и достаточно, чтобы сумма его цифр делилась на 3 (на 9).

Множество целых чисел

Рассмотрим числовую прямую с началом отсчёта в точке O . Координатой числа нуль на ней будет точка O . Числа, расположенные на числовой прямой в заданном направлении, называют положительными числами. Пусть на числовой прямой задана точка A с координатой 3. Она соответствует положительному числу 3. Отложим теперь три раза единичный отрезок от точки O , в направлении, противоположном заданному. Тогда получим точку A" , симметричную точке A относительно начала координат O . Координатой точки A" будет число - 3. Это число, противоположное числу 3. Числа, расположенные на числовой прямой в направлении, противоположном заданному, называют отрицательными числами.

Числа, противоположные натуральным, образуют множество чисел N" :

N" = {- 1, - 2, - 3, - 4, ...} .

Если объединить множества N , N" и одноэлементное множество {0} , то получим множество Z всех целых чисел:

Z = {0} ∪ N N" .

Для целых чисел верны все перечисленные выше законы сложения и умножения, которые верны для натуральных чисел. Кроме того, добавляются следующие законы вычитания:

a - b = a + (- b ) ;

a + (- a ) = 0 .

Множество рациональных чисел

Чтобы сделать выполнимой операцию деления целых чисел на любое число, не равное нулю, вводятся дроби:

Где a и b - целые числа и b не равно нулю.

Если к множеству целых чисел присоединить множество всех положительных и отрицательных дробей, то получается множество рациональных чисел Q :

.

При этом каждое целое число является также рациональным числом, так как, например, число 5 может быть представлено в виде , где числитель и знаменатель - целые числа. Это бывает важно при операциях над рациональными числами, из которых одно может быть целым числом.

Законы арифметических действий над рациональными числами

Основное свойство дроби. Если числитель и знаменатель данной дроби умножить или разделить на одно и то же натуральное число, то получится дробь, равная данной:

Это свойство используется при сокращении дробей.

Сложение дробей. Сложение обыкновенных дробей определяется следующим образом:

.

То есть, для сложения дробей с разными знаменателями дроби приводятся к общему знаменателю. На практике при сложении (вычитании) дробей с разными знаменателями дроби приводятся к наименьшему общему знаменателю. Например, так:

Для сложения дробей с одинаковыми числителями достаточно сложить числители, а знаменатель оставить прежним.

Умножение дробей. Умножение обыкновенных дробей определяется следующим образом:

То есть, для умножения дроби на дробь нужно числитель первой дроби умножить на числитель второй дроби и записать произведение в числитель новой дроби, а знаменатель первой дроби умножить на знаменатель второй дроби и записать произведение в знаменатель новой дроби.

Деление дробей. Деление обыкновенных дробей определяется следующим образом:

То есть, для деления дроби на дробь нужно числитель первой дроби умножить на знаменатель второй дроби и произведение записать в числитель новой дроби, а знаменатель первой дроби умножить на числитель второй дроби и произведение записать в знаменатель новой дроби.

Возведение дроби в степень с натуральным показателем. Эта операция определяется следующим образом:

То есть, для возведения дроби в степень числитель возводится в эту степень и знаменатель возводится в эту степень.

Периодические десятичные дроби

Теорема. Любое рациональное число можно представить в виде конечной или бесконечной периодической дроби.

Например,

.

Последовательно повторяющаяся группа цифр после запятой в десятичной записи числа называется периодом, а конечная или бесконечная десятичная дробь, имеющая такой период в своей записи, называется периодической.

При этом любую конечную десятичную дробь считают бесконечной периодической дробью с нулём в периоде, например:

Результат сложения, вычитания, умножения и деления (кроме деления на нуль) двух рациональных чисел - также рациональное число.

Множество действительных чисел

На числовой прямой, которую мы рассмотрели в связи с множеством целых чисел, могут быть точки, не имеющие координат в виде рационального числа. Так, не существует рационального числа, квадрат которого равен 2. Следовательно, число не является рациональным числом. Так же не существует рациональных чисел, квадраты которых равны 5, 7, 9. Следовательно, иррациональными являются числа , , . Иррациональным является и число .

Никакое иррациональное число не может быть представлено в виде периодической дроби. Их представляют в виде непериодических дробей.

Объединение множеств рациональных и иррациональных чисел представляет собой множество действительных чисел R .

Пусть даны два множества X и Y, совпадающие или нет.

Определение. Множество упорядоченных пар элементов, из которых первый принадлежит X, а второй Y, называется декартовым произведением множеств и обозначается .

Пример. Пусть
,
, тогда

.

Если
,
, тогда
.

Пример. Пусть
, где R – множество всех вещественных чисел. Тогда
есть множество всех декартовых координат точек плоскости.

Пример. Пусть
– некоторое семейство множеств, тогда декартовым произведением этих множеств называется множество всех упорядоченных строк длины n:

Если , то. Элементы из
– это векторы-строки длины n.

Алгебраические структуры с одной бинарной операцией

1 Бинарные алгебраические операции

Пусть
– произвольное конечное или бесконечное множество.

Определение. Бинарной алгебраической операцией (внутренним законом композиции ) на
называется произвольное, но фиксированное отображение декартова квадрата
в
, т.е.

(1)

(2)

Таким образом, любой упорядоченной паре

. Тот факт, что
, записывается символически в виде
.

Как правило, бинарные операции обозначаются символами
и т.д. Как и ранее, операция
означает «сложение», а операция «» – «умножение». Они различаются формой записи и, возможно, аксиомами, что будет ясно из контекста. Выражение
будем называть произведением, а
– суммой элементови.

Определение. Множество
называется замкнутым относительно операции, если для любых .

Пример. Рассмотрим множество целых неотрицательных чисел
. В качестве бинарных операций на
будем рассматривать обычные операции сложения
и умножения. Тогда множества
,
будут замкнуты относительно этих операций.

Замечание. Как следует из определения, задание алгебраической операции * на
, эквивалентно замкнутости множества
относительно этой операции. Если оказывается, что множество
не замкнуто относительно заданной операции *, то в этом случае говорят, что операция * не алгебраическая. Например, операция вычитания на множестве натуральных чисел не алгебраическая.

Пусть
и
два множества.

Определение. Внешним законом композиции на множестве называется отображение

, (3)

т.е. закон, посредством которого любому элементу
и любому элементу
ставится в соответствие элемент
. Тот факт, что
, обозначается символом
или
.

Пример. Умножение матрицы
на число
является внешним законом композиции на множестве
. Умножение чисел в
можно рассматривать и как внутренний закон композиции, и как внешний.

дистрибутивным относительно внутреннего закона композиции * в
, если

Внешний закон композиции называется дистрибутивным относительно внутреннего закона композиции * в Y, если

Пример. Умножение матрицы
на число
дистрибутивно как относительно сложения матриц, так и относительно сложения чисел, т.к.,.

    1. Свойства бинарных операций

Бинарная алгебраическая операция  на множестве
называется:

Замечание. Свойства коммутативности и ассоциативности независимы.

Пример. Рассмотрим множество целых чисел . Операцию на определим в соответствии с правилом
. Выберем числа
и выполним операцию над этими числами:

т.е. операция  коммутативна, но не ассоциативна.

Пример. Рассмотрим множество
квадратных матриц размерности
с вещественными коэффициентами. В качестве бинарной операции * на
будем рассматривать операции умножения матриц. Пусть
, тогда
, однако
, т.е. операция умножения на множестве квадратных матриц ассоциативна, но не коммутативна.

Определение. Элемент
называетсяединичным или нейтральным относительно рассматриваемой операции  на
, если

Лемма. Если – единичный элемент множества
, замкнутого относительно операции *, то он единственный.

Доказательство . Пусть – единичный элемент множества
, замкнутого относительно операции *. Предположим, что в
существует ещё один единичный элемент
, тогда
, так как– единичный элемент, и
, так как– единичный элемент. Следовательно,
– единственный единичный элемент множества
.

Определение. Элемент
называетсяобратным или симметричным к элементу
, если

Пример. Рассмотрим множество целых чисел с операцией сложения
. Элемент
, тогда симметричным элементом
будет элемент
. Действительно,.

Счетное множество- есть бесконечное множество элементы которого можно пронумеровать натуральными числами, или это множество, равномощное множеству натуральных чисел.

Иногда счётными называются множества равномощные любому подмножеству множества натуральных чисел, то есть все конечные множества тоже считаются счётными.

Счётное множество является «наименьшим» бесконечным множеством, то есть в любом бесконечном множестве найдётся счётное подмножество.

Свойства:

1.Любое подмножество счётного множества не более чем счётно.

2.Объединение конечного или счётного числа счётных множеств счётно.

3.Прямое произведение конечного числа счётных множеств счётно.

4.Множество всех конечных подмножеств счётного множества счётно.

5.Множество всех подмножеств счётного множества континуально и, в частности, не является счётным.

Примеры счетных множеств:

Простые числа Натуральные числа, Целые числа, Рациональные числа, Алгебраические числа, Кольцо периодов, Вычислимые числа, Арифметические числа.

Теория вещественных чисел.

(Вещественные = действительные – памятка для нас, пацаны.)

Множество R содержит рациональные и иррациональные числа.

Действительные числа, не являющиеся рациональными, называются иррациональными

Теорема: Не существует рационального числа, квадрат которого равен числу 2

Рациональные числа: ½, 1/3, 0.5, 0.333.

Иррациональные числа: корень из 2=1,4142356… , π=3.1415926…

Множество R действительных чисел обладает следующими свойствами:

1. Оно упорядоченное: для любых двух различных чисел a и b имеет место одно из двух соотношений a либо a>b

2. Множество R плотное: между двумя различными числами a и b содержится бесконечное множество действительных чисел х, т.е чисел, удовлетворяющих неравенству а

Там еще 3-е свойство, но оно огромное, сорри

Ограниченные множества. Свойства верхних и нижних границ.

Ограниченное множество - множество, которое в определенном смысле имеет конечный размер.

ограниченным сверху , если существует число , такое что все элементы не превосходят :

Множество вещественных чисел называется ограниченным снизу , если существует число ,

такое что все элементы не меньше :

Множество , ограниченное сверху и снизу, называется ограниченным .

Множество , не являющееся ограниченным, называется неограниченным . Как следует из определения, множество не ограничено тогда и только тогда, когда оно не ограничено сверху или не ограничено снизу .

Числовая последовательность. Предел последовательности. Лемма о двух милиционерах.

Числовая последовательность - это последовательность элементов числового пространства.

Пусть - это либо множество вещественных чисел , либо множество комплексных чисел . Тогда последовательность элементов множества называется числовой последовательностью.

Пример.

Функция является бесконечной последовательностью рациональных чисел. Элементы этой последовательности начиная с первого имеют вид .

Предел последовательности - это объект, к которому члены последовательности приближаются с ростом номера. В частности, для числовых последовательностей предел - это число, в любой окрестности которого лежат все члены последовательности начиная с некоторого.

Теорема о двух милиционерах…

Если функция такая, что для всех в некоторой окрестности точки , причем функции и имеют одинаковый предел при , то существует предел функции при , равный этому же значению, то есть



© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний