Уравнение с корнем 4. Степенные или показательные уравнения

Главная / Г. Х. Андерсен

Для уравнений четвертой степени применимы все те общие схемы решения уравнений высших степеней, что мы разбирали в предыдущем материале. Однако существует ряд нюансов в решении двучленных, биквадратных и возвратных уравнений, на которых мы хотели бы остановиться подробнее.

Также в статье мы разберем искусственный метод разложения многочлена на множители, решение в радикалах и метод Феррари, который используется для того, чтобы свести решение уравнения четвертой степени к кубическому уравнению.

Решение двучленного уравнения четвертой степени

Это простейший тип уравнений четвертой степени. Запись уравнения имеет вид A x 4 + B = 0 .

Определение 1

Для решения этого типа уравнений применяются формулы сокращенного умножения:

A x 4 + B = 0 x 4 + B A = 0 x 4 + 2 B A x 2 + B A - 2 B A x 2 = 0 x 2 + B A 2 - 2 B A x 2 = 0 x 2 - 2 B A 4 x + B A x 2 + 2 B A 4 x + B A = 0

Остается лишь найти корни квадратных трехчленов.

Пример 1

Решить уравнение четвертой степени 4 x 4 + 1 = 0 .

Решение

Для начала проведем разложение многочлена 4 x 4 + 1 на множители:

4 x 4 + 1 = 4 x 4 + 4 x 2 + 1 = (2 x 2 + 1) 2 - 4 x 2 = 2 x 2 - 2 x + 1 (2 x 2 + 2 x + 1)

Теперь найдем корни квадратных трехчленов.

2 x 2 - 2 x + 1 = 0 D = (- 2) 2 - 4 · 2 · 1 = - 4 x 1 = 2 + D 2 · 2 = 1 2 + i x 2 = 2 - D 2 · 2 = 1 2 - i

2 x 2 + 2 x + 1 = 0 D = 2 2 - 4 · 2 · 1 = - 4 x 3 = - 2 + D 2 · 2 = - 1 2 + i x 4 = - 2 - D 2 · 2 = - 1 2 - i

Мы получили четыре комплексных корня.

Ответ: x = 1 2 ± i и x = - 1 2 ± i .

Решение возвратного уравнения четвертой степени

Определение 2

Возвратные уравнения четвертого порядка имеют вид A x 4 + B x 3 + C x 2 + B x + A = 0

х = 0 не является корнем этого уравнения: A · 0 4 + B · 0 3 + C · 0 2 + B · 0 + A = A ≠ 0 . Поэтому на x 2 можно смело разделить обе части этого уравнения:

A x 4 + B x 3 + C x 2 + B x + A = 0 A x 2 + B x + C + B x + A x 2 = 0 A x 2 + A x 2 + B x + B x + C = 0 A x 2 + 1 x 2 + B x + 1 x + C = 0

Проведем замену переменных x + 1 x = y ⇒ x + 1 x 2 = y 2 ⇒ x 2 + 1 x 2 = y 2 - 2:

A x 2 + 1 x 2 + B x + 1 x + C = 0 A (y 2 - 2) + B y + C = 0 A y 2 + B y + C - 2 A = 0

Так мы проведи сведение возвратного уравнения четвертой степени к квадратному уравнению.

Пример 2

Найти все комплексные корни уравнения 2 x 4 + 2 3 + 2 x 3 + 4 + 6 x 2 + 2 3 + 2 x + 2 = 0 .

Решение

Симметрия коэффициентов подсказывает нам, что мы имеем дело с возвратным уравнением четвертой степени. Проведем деление обеих частей на x 2:

2 x 2 + 2 3 + 2 x + 4 + 6 + 2 3 + 2 x + 2 x 2 = 0

Проведем группировку:

2 x 2 + 2 x 2 + 2 3 + 2 x + 2 3 + 2 x + 4 + 6 + = 0 2 x 2 + 1 x 2 + 2 3 + 2 x + 1 x + 4 + 6 = 0

Проведем замену переменной x + 1 x = y ⇒ x + 1 x 2 = y 2 ⇒ x 2 + 1 x 2 = y 2 - 2

2 x 2 + 1 x 2 + 2 3 + 2 x + 1 x + 4 + 6 = 0 2 y 2 - 2 + 2 3 + 2 y + 4 + 6 = 0 2 y 2 + 2 3 + 2 y + 6 = 0

Решим полученное квадратное уравнение:

D = 2 3 + 2 2 - 4 · 2 · 6 = 12 + 4 6 + 2 - 8 6 = = 12 - 4 6 + 2 = 2 3 - 2 2 y 1 = - 2 3 - 2 + D 2 · 2 = - 2 3 - 2 + 2 3 - 2 4 = - 2 2 y 2 = - 2 3 - 2 - D 2 · 2 = - 2 3 - 2 - 2 3 + 2 4 = - 3

Вернемся к замене: x + 1 x = - 2 2 , x + 1 x = - 3 .

Решим первое уравнение:

x + 1 x = - 2 2 ⇒ 2 x 2 + 2 x + 2 = 0 D = 2 2 - 4 · 2 · 2 = - 14 x 1 = - 2 - D 2 · 2 = - 2 4 + i · 14 4 x 2 = - 2 - D 2 · 2 = - 2 4 - i · 14 4

Решим второе уравнение:

x + 1 x = - 3 ⇒ x 2 + 3 x + 1 = 0 D = 3 2 - 4 · 1 · 1 = - 1 x 3 = - 3 + D 2 = - 3 2 + i · 1 2 x 4 = - 3 - D 2 = - 3 2 - i · 1 2

Ответ: x = - 2 4 ± i · 14 4 и x = - 3 2 ± i · 1 2 .

Решение биквадратного уравнения

Биквадратные уравнения четвертой степени имеют вид A x 4 + B x 2 + C = 0 . Мы можем свести такое уравнение к квадратному A y 2 + B y + C = 0 путем замены y = x 2 . Это стандартный прием.

Пример 3

Решить биквадратное уравнение 2 x 4 + 5 x 2 - 3 = 0 .

Решение

Выполним замену переменной y = x 2 , что позволит нам свести исходное уравнение к квадратному:

2 y 2 + 5 y - 3 = 0 D = 5 2 - 4 · 2 · (- 3) = 49 y 1 = - 5 + D 2 · 2 = - 5 + 7 4 = 1 2 y 2 = - 5 - D 2 · 2 = - 5 - 7 4 = - 3

Следовательно, x 2 = 1 2 или x 2 = - 3 .

Первое равенство позволяет нам получить корень x = ± 1 2 . Второе равенство не имеет действительных корней, зато имеет комплексно сопряженных корней x = ± i · 3 .

Ответ: x = ± 1 2 и x = ± i · 3 .

Пример 4

Найти все комплексные корни биквадратного уравнения 16 x 4 + 145 x 2 + 9 = 0 .

Решение

Используем метод замены y = x 2 для того, чтобы свести исходное биквадратное уравнение к квадратному:

16 y 2 + 145 y + 9 = 0 D = 145 2 - 4 · 16 · 9 = 20449 y 1 = - 145 + D 2 · 16 = - 145 + 143 32 = - 1 16 y 2 = - 145 - D 2 · 16 = - 145 - 143 32 = - 9

Поэтому, в силу замены переменной, x 2 = - 1 16 или x 2 = - 9 .

Ответ: x 1 , 2 = ± 1 4 · i , x 3 , 4 = ± 3 · i .

Решение уравнений четвертой степени с рациональными корнями

Алгоритм нахождения рациональных корней уравнения четвертой степени приведен в материале «Решение уравнений высших степеней».

Решение уравнений четвертой степени по методу Феррари

Уравнения четвертой степени вида x 4 + A x 3 + B x 2 + C x + D = 0 в общем случае можно решить с применением метода Феррари. Для этого необходимо найти y 0 . Это любой из корней кубического уравнения y 3 - B y 2 + A C - 4 D y - A 2 D + 4 B D - C 2 = 0 . После этого необходимо решить два квадратных уравнения x 2 + A 2 x + y 0 2 + A 2 4 - B + y 0 x 2 + A 2 y 0 - C x + y 0 2 4 - D = 0 , у которых подкоренное выражение является полным квадратом.

Корни, полученные в ходе вычислений, будут корнями исходного уравнения четвертой степени.

Пример 5

Найти корни уравнения x 4 + 3 x 3 + 3 x 2 - x - 6 = 0 .

Решение

Имеем А = 3 , В = 3 , С = - 1 , D = - 6 . Применим метод Феррари для решения данного уравнения.

Составим и решим кубическое уравнение:
y 3 - B y 2 + A C - 4 D y - A 2 D + 4 B D - C 2 = 0 y 3 - 3 y 2 + 21 y - 19 = 0

Одним из корней кубического уравнения будет y 0 = 1 , так как 1 3 - 3 · 1 2 + 21 · 1 - 19 = 0 .

Запишем два квадратных уравнения:
x 2 + A 2 x + y 0 2 ± A 2 4 - B + y 0 x 2 + A 2 y 0 - C x + y 0 2 4 - D = 0 x 2 + 3 2 x + 1 2 ± 1 4 x 2 + 5 2 x + 25 4 = 0 x 2 + 3 2 x + 1 2 ± 1 2 x + 5 2 2 = 0

x 2 + 3 2 x + 1 2 + 1 2 x + 5 2 = 0 или x 2 + 3 2 x + 1 2 - 1 2 x - 5 2 = 0

x 2 + 2 x + 3 = 0 или x 2 + x - 2 = 0

Корнями первого уравнения будут x = - 1 ± i · 2 , корнями второго х = 1 и х = - 2 .

Ответ: x 1 , 2 = - 1 ± i 2 , x 3 = 1 , x 4 = - 2 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

На канал на youtube нашего сайта сайт, чтобы быть в курсе всех новых видео уроков.

Для начала вспомним основные формулы степеней и их свойства.

Произведение числа a само на себя происходит n раз, это выражение мы можем записать как a a … a=a n

1. a 0 = 1 (a ≠ 0)

3. a n a m = a n + m

4. (a n) m = a nm

5. a n b n = (ab) n

7. a n /a m = a n — m

Степенные или показательные уравнения – это уравнения в которых переменные находятся в степенях (или показателях), а основанием является число.

Примеры показательных уравнений:

В данном примере число 6 является основанием оно всегда стоит внизу, а переменная x степенью или показателем.

Приведем еще примеры показательных уравнений.
2 x *5=10
16 x — 4 x — 6=0

Теперь разберем как решаются показательные уравнения?

Возьмем простое уравнение:

2 х = 2 3

Такой пример можно решить даже в уме. Видно, что x=3. Ведь чтобы левая и правая часть были равны нужно вместо x поставить число 3.
А теперь посмотрим как нужно это решение оформить:

2 х = 2 3
х = 3

Для того, чтобы решить такое уравнение, мы убрали одинаковые основания (то есть двойки) и записали то что осталось, это степени. Получили искомый ответ.

Теперь подведем итоги нашего решения.

Алгоритм решения показательного уравнения:
1. Нужно проверить одинаковые ли основания у уравнения справа и слева. Если основания не одинаковые ищем варианты для решения данного примера.
2. После того как основания станут одинаковыми, приравниваем степени и решаем полученное новое уравнение.

Теперь прорешаем несколько примеров:

Начнем с простого.

Основания в левой и правой части равны числу 2, значит мы можем основание отбросить и приравнять их степени.

x+2=4 Получилось простейшее уравнение.
x=4 — 2
x=2
Ответ: x=2

В следующем примере видно, что основания разные это 3 и 9.

3 3х — 9 х+8 = 0

Для начала переносим девятку в правую сторону, получаем:

Теперь нужно сделать одинаковые основания. Мы знаем что 9=3 2 . Воспользуемся формулой степеней (a n) m = a nm .

3 3х = (3 2) х+8

Получим 9 х+8 =(3 2) х+8 =3 2х+16

3 3х = 3 2х+16 теперь видно что в левой и правой стороне основания одинаковые и равные тройке, значит мы их можем отбросить и приравнять степени.

3x=2x+16 получили простейшее уравнение
3x — 2x=16
x=16
Ответ: x=16.

Смотрим следующий пример:

2 2х+4 — 10 4 х = 2 4

В первую очередь смотрим на основания, основания разные два и четыре. А нам нужно, чтобы были — одинаковые. Преобразовываем четверку по формуле (a n) m = a nm .

4 х = (2 2) х = 2 2х

И еще используем одну формулу a n a m = a n + m:

2 2х+4 = 2 2х 2 4

Добавляем в уравнение:

2 2х 2 4 — 10 2 2х = 24

Мы привели пример к одинаковым основаниям. Но нам мешают другие числа 10 и 24. Что с ними делать? Если приглядеться видно, что в левой части у нас повторяется 2 2х,вот и ответ — 2 2х мы можем вынести за скобки:

2 2х (2 4 — 10) = 24

Посчитаем выражение в скобках:

2 4 — 10 = 16 — 10 = 6

Все уравнение делим на 6:

Представим 4=2 2:

2 2х = 2 2 основания одинаковые, отбрасываем их и приравниваем степени.
2х = 2 получилось простейшее уравнение. Делим его на 2 получаем
х = 1
Ответ: х = 1.

Решим уравнение:

9 х – 12*3 х +27= 0

Преобразуем:
9 х = (3 2) х = 3 2х

Получаем уравнение:
3 2х — 12 3 х +27 = 0

Основания у нас одинаковы равны трем.В данном примере видно, что у первой тройки степень в два раза (2x) больше, чем у второй (просто x). В таком случаем можно решить методом замены . Число с наименьшей степенью заменяем:

Тогда 3 2х = (3 х) 2 = t 2

Заменяем в уравнении все степени с иксами на t:

t 2 — 12t+27 = 0
Получаем квадратное уравнение. Решаем через дискриминант, получаем:
D=144-108=36
t 1 = 9
t 2 = 3

Возвращаемся к переменной x .

Берем t 1:
t 1 = 9 = 3 х

Стало быть,

3 х = 9
3 х = 3 2
х 1 = 2

Один корень нашли. Ищем второй, из t 2:
t 2 = 3 = 3 х
3 х = 3 1
х 2 = 1
Ответ: х 1 = 2; х 2 = 1.

На сайте Вы можете в разделе ПОМОГИТЕ РЕШИТЬ задавать интересующие вопросы мы Вам обязательно ответим.

Вступайте в группу

Вскоре после того, как Кардано опубликовал способ решения кубических уравнений, его ученики и последователи нашли способы сведения общего уравнения четвертой степени к кубическому уравнению. Изложим наиболее простой способ, принадлежащий Л. Феррари.

При изложении способа нужно будет воспользоваться следующей элементарной леммой.

Лемма. Для того чтобы квадратный трехчлен был квадратом линейного двучлена, необходимо и достаточно, чтобы его дискриминант равнялся нулю.

Доказательство. Необходимость. Пусть . Тогда Достаточность. Пусть Тогда

Идея излагаемого способа состоит в том, чтобы представить левую часть уравнения в виде разности двух квадратов. Тогда ее можно будет разложить на два множителя второй степени, и решение уравнения приведется к решению двух квадратных уравнений. Для достижения цели левую часть представим в виде:

Здесь у - вспомогательная неизвестная, которую нужно подобрать так, чтобы выражение в квадратных скобках оказалось квадратом линейного двучлена. В силу леммы для этого необходимо и достаточно выполнения условия

Это условие есть уравнение третьей степени относительно у. После раскрытия скобок оно преобразуется к виду

Пусть - один из корней этого уравнения. Тогда при условие будет выполнено, так что имеет место

при некоторых k и I. Исходное уравнение примет вид

Приравнивая нулю каждый из сомножителей, мы найдем четыре корня исходного уравнения.

Сделаем еще одно замечание. Пусть - корни первого сомножителя, и - корни второго. Тогда Сложив эти равенства, получим, что

Таким образом, мы получили выражение корня вспомогательного кубического уравнения через корни исходного уравнения четвертой степени.

Пример. Решить уравнение . Согласно изложенному выше методу преобразуем левую часть:

Теперь положим . После образований получим уравнение

Легко видеть, что одним из корней этого уравнения является число . Подставив его в преобразованную левую часть исходного уравнения, получим:

Приравнивая сомножители нулю, получим

Что касается уравнений выше четвертой степени, то здесь были известны некоторые классы уравнений сравнительно частного вида, допускающих алгебраические решения в радикалах, т. е. в виде результатов арифметических действий и действия извлечения корня. Однако попытки дать решение общих уравнений пятой степени и выше были безуспешны, пока, наконец, в начале 19 в. Руффини и Абель не доказали, что решение такого рода для общих уравнений выше четвертой степени невозможно. Наконец, в 1830 г. гениальному французскому математику Э. Галуа удалось найти необходимые и достаточные условия (проверяемые довольно сложно) для разрешимости в радикалах конкретно заданного уравнения. При этом Галуа создал и использовал новую для своего времени теорию групп подстановок.


В общем случае решение уравнения четвёртой степени осуществляется с использованием методов решения уравнений для высших степеней, например, методом Феррари или с помощью схемы Горнера. Но некоторые уравнения 4-ой степени имеют более простое решение.

Существует несколько особых типов уравнений четвертой степени, со способами решения которых вы познакомитесь ниже:

  • Биквадратное уравнения $ax^4+bx^2+c=0$;
  • Возвратные уравнения вида $ax^4+bx^3+cx^2 +bx+ a=0$;
  • Уравнения вида $ax^4+b=0$.

Решение биквадратных уравнений четвёртой степени

Биквадратные уравнения $ax^4+bx^2+c=0$ сводятся к квадратным путём замены переменной $x^2$ на новую, например, на $y$. После замены решается новое полученное уравнение, а затем значение найденной переменной подставляется в уравнение $x^2=y$. Результатом решения будут корни уравнения $x^2=y$.

Пример 1

Решите уравнение $x(x-1)(x-2)(x-3)=24$:

Раскроем скобки в многочлене:

$(x^2-3x)(x^2-3x+2)=24$

В таком виде становится очевидно, что в качестве новой переменной можно выбрать выражение $y=x^2-3x$, подставим её:

$y \cdot (y+2)=24$

Теперь решим два квадратных уравнения $x^2-3x=-4$ и $x^2-3x=-6$.

Корни первого уравнения $x_1{1,2}=4;-1$, второе решений не имеет.

Решение возвратных уравнений 4 степени

Эти уравнения вида $ax^4+bx^3+cx^2 +bx+ a=0$ повторяют своими коэффициентами при младших членах коэффициенты при многочленах со старшими степенями. Для решения такого уравнения сначала делят его на $x^2$:

$ax^4+bx^3+cx^2 +bx+ a=0|:x^2$

$ax^2+bx+c+\frac{b}{x} + \frac{a}{x^2}=0$

$a(x^2+\frac{1}{x^2})+b(x+\frac{1}{x}) + c=0$

Затем заменяют $(x+\frac{1}{x})$ на новую переменную, тогда $(x^2+\frac{1}{x^2})=y^2-2$, после подстановки получаем следующее квадратное уравнение:

$a(y^2-2)+by+c=0$

После этого ищем корни уравнений $x+\frac{1}{x}=y_1$ и $x+\frac{1}{x}=y_2$.

Аналогичным методом решаются возвратные уравнения вида $ax^4+bx^3+cx^2 +kbx+ k^2a=0$.

Пример 2

Решите уравнение:

$3x^4-2x^3-9x^2-4x+12=0$

Данное уравнение – возвратное уравнение вида $ax^4+bx^3+cx^2 +kbx+ k^2a=0$. Поэтому разделим всё уравнение на $x^2$:

$3x^2-2x-9 \cdot \frac{2 \cdot 2}{x}+3 \cdot (\frac{2}{x})^2=0$

$3(x^2+\frac{4}{x^2})-2(x+\frac{2}{x}-9=0$

Произведём замену выражения $x+\frac{2}{x}$: $3(y^2-4)-2y-9=0$

Рассчитаем корни данного уравнения, они равны $y_1=3$ и $y_2=-\frac{7}{3}$.

Соответственно, теперь необходимо решить два уравнения $x+\frac{2}{x}=3$ и $x+\frac{2}{x}=-\frac{7}{3}$. Решение первого уравнения - $x_1=1, x_2=2$, второе уравнение не имеет корней.

Следовательно, корнями исходного уравнения являются $x_1=1, x_2=2$.

Уравнения вида $ax^4+b=0$

Корни уравнения такой разновидности находятся с помощью применения формул сокращённого умножения.

Решение Декарта - Эйлера

Сделав подстановку , получим уравнение в следующем виде (он называется «неполным»):

y 4 + p y 2 + q y + r = 0 .

Корни y 1 , y 2 , y 3 , y 4 такого уравнения равны одному из следующих выражений:

в которых сочетания знаков выбираются таким образом, чтобы выполнялось следующее соотношение:

,

причём z 1 , z 2 и z 3 - это корни кубического уравнения

Решение Феррари

Основная статья : Метод Феррари

Представим уравнение четвёртой степени в виде:

A x 4 + B x 3 + C x 2 + D x + E = 0,

Его решение может быть найдено из следующих выражений:

если β = 0 , решив u 4 + αu 2 + γ = 0 и, сделав подстановку , найдём корни: . , (любой знак квадратного корня подойдёт) , (три комплексных корня, один из которых подойдёт) Два ± s должны иметь одинаковый знак, ± t - независимы. Для того, чтобы найти все корни, надо найти x для знаковых комбинаций ± s ,± t = +,+ для +,− для −,+ для −,−. Двойные корни появятся два раза, тройные корни - три раза и корни четвёртого порядка - четыре раза. Порядок корней зависит от того, какой из кубических корней U выбран.

См. также

  • Легко решаемые типы уравнений 4 степени: Биквадратное уравнение , возвратное уравнение четвёртой степени

Литература

  • Корн Г., Корн Т. (1974) Справочник по математике.

Ссылки

  • Решение Феррари (англ.)

Wikimedia Foundation . 2010 .

Смотреть что такое "Уравнение четвертой степени" в других словарях:

    уравнение четвертой степени - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN quartic equation … Справочник технического переводчика

    График многочлена 4 ой степени с четырьмя корнями и тремя критическими точками. Уравнение четвёртой степени в математике алгебраическое уравнение вида: Четвёртая степень для алгебраических уравнений является наивысшей, при которой… … Википедия

    Уравнение вида: anxn + an − 1xn − 1 + ... + a1x + a0 = 0 называется возвратным, если его коэффициенты, стоящие на симметричных позициях, равны, то есть если an − k = ak, при k = 0, 1, …, n. Содержание 1 Уравнение четвёртой степени … Википедия

    В котором неизвестный член в четвертой степени. Полный словарь иностранных слов, вошедших в употребление в русском языке. Попов М., 1907. БИКВАДРАТНОЕ УРАВНЕНИЕ от лат. bis, дважды, и quadratum, квадрат. Уравнение, в котором наибольшая степень… … Словарь иностранных слов русского языка

    Вместе с арифметикой есть наука о числах и через посредство чисел о величинах вообще. Не занимаясь изучением свойств каких нибудь определенных, конкретных величин, обе эти науки исследуют свойства отвлеченных величин как таковых, независимо от… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Совокупность прикладных знаний, позволяющих авиационным инженерам на занятий в области аэродинамики, проблем прочности, двигателестроения и динамики полета летательных аппаратов (т.е. теории) создать новый летательный аппарат или улучшить… … Энциклопедия Кольера

    Самой древней математической деятельностью был счет. Счет был необходим, чтобы следить за поголовьем скота и вести торговлю. Некоторые первобытные племена подсчитывали количество предметов, сопоставляя им различные части тела, главным образом… … Энциклопедия Кольера

    История технологий По периодам и регионам: Неолитическая революция Древние технологии Египта Наука и технологии древней Индии Наука и технологии древнего Китая Технологии Древней Греции Технологии Древнего Рима Технологии исламского мира… … Википедия

    Уравнением называется математическое соотношение, выражающее равенство двух алгебраических выражений. Если равенство справедливо для любых допустимых значений входящих в него неизвестных, то оно называется тождеством; например, соотношение вида… … Энциклопедия Кольера

    Теорема Абеля Руффини утверждает, что общее уравнение степени при неразрешимо в радикалах. Содержание 1 Подробности … Википедия



© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний