Условия независимости криволинейного интеграла II рода от пути интегрирования. Условия независимости криволинейного интеграла от пути интегрирования От пути интегрирования не зависят

Главная / Фридрих Шиллер

Рассмотрим криволинейный интеграл

взятый по некоторой плоской кривой L, соединяющей точки М и N. Будем предполагать, что функции имеют непрерывные частные производные в рассматриваемой области D. Выясним, при каких условиях написанный криволинейный интеграл не зависит от формы кривой L, а зависит только от положения начальной и конечной точек М и N.

Рассмотрим две произвольные кривые MPN и MQN, лежащие в рассматриваемой области D и соединяющие точки М и N (рис. 351). Пусть

Тогда на основании свойств 1 и 2 криволинейных интегралов (§ 1) имеем

т. e. криволинейный интеграл по замкнутому контуру

В последней формуле криволинейный интеграл взят по замкнутому контуру L, составленному из кривых . Этот контур L можно, очевидно, считать произвольным.

Таким образом, из условия, что для любых двух точек М и N криволинейный интеграл не зависит формы соединяющей их кривой, а зависит только от положения этих точек, следует, что криволинейный интеграл по любому замкнутому контуру равен нулю.

Справедливо и обратное заключение: если криволинейный интеграл по любому замкнутому контуру равен нулю, то этот криволинейный интеграл не зависит от формы кривой, соединяющей две любые точки, а зависит только от положения этих точек. Действительно, из равенства (2) следует равенство (1).

В примере 4 § 2 криволинейный интеграл не зависит от пути интегрирования, в примере 3 криволинейный интеграл зависит от пути интегрирования, так как в этом примере интеграл по замкнутому контуру не равняется нулю, а дает площадь, ограниченную рассматриваемым контуром; в примерах 1 и 2 криволинейные интегралы также зависят от пути интегрирования.

Естественно возникает вопрос: каким условиям должны удовлетворять функции для того, чтобы криволинейный интеграл по любому замкнутому контуру был равен нулю. Ответ на этот вопрос дает следующая теорема:

Теорема. Пусть во всех точках некоторой области D функции вместе со своими частными производными и непрерывны. Тогда, для того чтобы криволинейный интеграл по любому замкнутому контуру L, лежащему в области D, был равен нулю, т. е. чтобы

необходимо и достаточно выполнение равенства

во всех течках области

Доказательство. Рассмотрим произвольный замкнутый контур L в области D и для него напишем формулу Грина:

Если выполняется условие (3), то двойной интеграл, стоящий слева, тождественно равен нулю и, следовательно,

Таким образом, достаточность условия (3) доказана.

Докажем теперь необходимость этого условия, т. е. докажем, что если равенство (2) выполняется для любой замкнутой кривой L в области D, та в каждой точке этой области выполняется и условие (3).

Допустим, напротив, что равенство (2) выполняется, т. е.

а условие (3) не выполняется, т. е.

хотя бы в одной точке. Пусть, например, в некоторой точке имеем неравенство

Так как в левой части неравенства стоит непрерывная функция, то она будет положительна и больше некоторого числа во всех точках некоторой достаточно малой области D, содержащей точку . Возьмем двойной интеграл по этой области от разности . Он будет иметь положительное значение. Действительно,

Но по формуле Грина левая часть последнего неравенства равна криволинейному интегралу по границе области который равен нулю. Следовательно, последнее неравенство противоречит условию (2) и, значит, предположение, что отлично от нуля хотя бы в одной точке, неверно. Отсюда

вытекает, что

во всех точках данной области

Таким образом, теорема полностью доказана.

В § 9 гл. XIII было доказано, что выполнение условия равносильно тому, что выражение есть полный дифференциал некоторой функции , т. е.

Но в этом случае вектор

есть градиент функции функция градиент которой равен вектору называется потенциалом этого вектора. Докажем, что в этом случае криволинейный интеграл

По любой кривой L, соединяющей точки М и N, (М) равняется разности значений функции и в этих точках:

Доказательство. Если является полным дифференциалом функции то и криволинейный интеграл примет вид

Для вычисления этого интеграла напишем параметрические уравнения кривой L, соединяющей точки М и

интеграл, сведется к следующему определенному интегралу:

Выражение, стоящее в скобках, есть функция от являющаяся полной производной от функции Поэтому

Как мы видим, криволинейный интеграл от полного дифференциала не зависит от формы кривой, по которой производится интегрирование.

Аналогичное утверждение имеет место и для криволинейного интеграла по пространственной кривой (см. ниже § 7).

Замечание. Иногда приходится рассматривать криволинейные интегралы по длине дуги L от некоторой функции

Область называется односвязной, если ее граница представляет собой связное множество. Область называется n-связной, если ее граница распадается на n- связных множеств.

Замечание. Формула Грина верна и для многосвязных областей.

Для того, чтобы интеграл (A, B – любые точки из D) не зависел от пути интегрирования (а только от начальной и конечной точек A, B) необходимо и достаточно, чтобы по любой замкнутой кривой (по любому контуру) лежащей в D интеграл был равен нулю =0

Доказательство (необходимость). Пусть (4) не зависит от пути интегрирования. Рассмотрим произвольный контур C, лежащий в области D и выберем две произвольные точки A, B на этом контуре. Тогда кривую C можно представить, как объединение двух кривых AB=G2 , AB=G1 , C=Г - 1 + G2 .

Теорема 1. Для того, чтобы криволинейный интеграл не зависел от пути интегрирования в D, необходимо и достаточно чтобы

в области D. Достаточность. Если выполнено, то формуле Грина для любого контура C будет откуда по лемме следует требуемое утверждение. Необходимость. По лемме для любого контура= 0. Тогда по формуле Грина для области D , ограниченной этим контуром=0. По теореме о среднем=mDили==0. Переходя к пределу, стягивая контур к точке, получим, что в этой точке.

Теорема 2. Для того, чтобы криволинейный интеграл (4) не зависел от пути интегрирования в D, необходимо и достаточно чтобы подинтегральное выражение Pdx+Qdy являлось полным дифференциалом некоторой функции u в области D. du = Pdx+Qdy. Достаточность. Пусть выполнено, тогда Необходимость. Пусть интеграл не зависит от пути интегрирования. Фиксируем некоторую точку A0 в области D и определим функцию u(A) = u(x,y)=

В этом случае

XÎ (xÎ). Таким образом, существует производная =P. Аналогично, проверяется, что =Q. При сделанных предположениях функция u оказывается непрерывно - дифференцируемой и du = Pdx+Qdy.

32-33. Определение криволинейных интегралов 1 и 2 рода

Криволинейный интеграл по длине дуги (1 рода)

Пусть ф-ция f(x,y) определена и непрерывна в точках дуги АВ гладкой кривой К. Произвольно разобъем дугу на n элементарных дуг точками t0..tn пусть lk длина k частной дуги. Возьмем на каждой элементарной дуге произвольную точку N(k,k) и умножив сию точку на соотв. длину дуги составим три интегральную суммы:

1 = f(k,k)lk 2 = Р(k,k)хk 3 = Q(k,k)yk, где хk = x k -x k -1 , yk = y k -y k -1

Криволинейным интегралом 1 рода по длине дуги будет называться предел интегральной суммы 1 при условии, что max(lk)  0

Если предел интегральной суммы 2 или 3 при   0, то этот предел наз. криволинейным интегралом 2 рода, функции P(x,y) или Q(x,y) по кривой l = AB и обозначается:
или

сумму:
+
принято называть общим криволинейным интегралом 2 рода и обозначать символом:
в этом случае ф-ции f(x,y), P(x,y), Q(x,y) – называются интегрируемыми вдоль кривой l = AB. Сама кривая l наз контуром или путем интегрирования А – начальной, В – конечной точками интегрирования, dl – дифференциал длины дуги, поэтому криволинейный интеграл 1 рода наз. криволинейным интегралом по дуге кривой, а второго рода – по функции..

Из определения криволинейных интегралов следует, что интегралы 1 рода не зависят от того в каком направлении от А и В или от В и А пробегается кривая l. Криволинейный интеграл 1 рода по АВ:

, для криволинейных интегралов 2 рода изменение направления пробегания кривой ведет к изменению знака:

В случае, когда l – замкнутая кривая т. е. т. В совпадает с т. А, то из двух возможных направлений обхода замкнутого контура l называют положительным то направление, при котором область лежащая внутри контура остается слева по отношению к??? совершающей обход, т. е. направление движения против часовой стрелки. Противоположное направление обхода наз – отрицательным. Криволинейный интеграл АВ по замкнутому контуру l пробегаемому в положит направлении будем обозначать символом:

Для пространственной кривой аналогично вводятся 1 интеграл 1 рода:

и три интеграла 2 рода:

сумму трех последних интегралов наз. общим криволинейным интегралом 2 рода.

Некоторые приложения криволинейных интегралов 1 рода .

1.Интеграл
- длине дуги АВ

2.Механический смысл интеграла 1 рода.

Если f(x,y) = (x,y) – линейная плотность материальной дуги, то ее масса:

3.Координаты центра масс материальной дуги:

4. Момент инерции дуги лежащей в плоскости оху относительно начала координат и осей вращения ох, оу:

5. Геометрический смысл интеграла 1 рода

Пусть ф-ция z = f(x,y) – имеет размерность длины f(x,y)>=0 во всех точках материальной дуги лежащей в плоскости оху тогда:

, где S – площадь цилиндрической поверхности, кот состоит из перпендикуляров плоскости оху, вост. в точках М(x,y) кривой АВ.

Некоторые приложения криволинейных интегралов 2 рода.

Вычисление площади плоской области D с границей L

2.Работа силы. Пусть материальная т очка под действием силы перемещается вдоль непрерывной плоской кривой ВС, направясь от В к С, работа этой силы:

Пусть дано плоское векторное поле . В дальнейшем мы будем предполагать, что функции Р и Q непрерывны вместе со своими производными и в некоторой области О плоскости

Рассмотрим в области G две произвольные точки Эти точки можно соединить различными линиями, лежащими в области вдоль которых значения криволинейного интеграла вообще говоря, различны.

Так, например, рассмотрим криволинейный интеграл

и две точки . Вычислим этот интеграл, во-первых, вдоль отрезка прямой , соединяющей точки А и В, и, во-вторых, вдоль дуги параболы соединяющей эти же точки. Применяя правила вычисления криволинейного интеграла, найдем

а) вдоль отрезка

б) вдоль дуги параболы:

Таким образом, мы видим, что значения криволинейного интеграла зависят от пути интегрирования, т. е. зависят от вида линии, соединяющей точки А и В. Наоборот, как нетрудно проверить, криволинейный интеграл вдоль тех же линий , соединяющих точки дает одно и то же значение, равное .

Разобранные примеры показывают, что криволинейные интегралы, вычисленные по различным путям, соединяющим две данные точки, в одних случаях различны между собой, а в других случаях принимают одно и то же значение.

Пусть А и В - две произвольные точки области G. Рассмотрим различные кривые, лежащие в области G и соединяющие точки А и В.

Если криволинейный интеграл по любому из этих путей принимает одно и то же значение, то говорят, что он не зависит от пути интегрирования.

В следующих двух теоремах приводятся условия, при которых криволинейный интеграл не зависит от пути интегрирования.

Теорема 1. Для того чтобы криволинейный интеграл в некоторой области G не зависел от пути интегрирования, необходимо и достаточно, чтобы интеграл по любому замкнутому контуру, лежащему в этой области, был равен нулю.

Доказательство. Достаточность.

Пусть интеграл по любому замкнутому контуру, проведенному в области G, равен нулю. Покажем, что этот интеграл не зависит от пути интегрирования. В самом деле, пусть А и В две точки, принадлежащие области G. Соединим эти точки двумя различными, произвольно выбранными кривыми лежащими в области G (рис. 257).

Покажем, что дуги образуют замкнутый контур Учитывая свойства криволинейных интегралов, получим

так как . Но по условию как интеграл по замкнутому контуру.

Следовательно, или Таким образом, криволинейный интеграл не зависит от пути интегрирования.

Необходимость. Пусть в области G криволинейный интеграл не зависит от пути интегрирования. Покажем, что интеграл по любому замкнутому контуру, лежащему в этой области, равен нулю. В самом деле, рассмотрим произвольный замкнутый контур, лежащий в области G, и возьмем на нем две произвольные точки А я В (см. рис. 257). Тогда

так как по условию . Итак, интеграл по любому замкнутому контуру L, лежащему в области G, равен нулю.

Следующая теорема дает удобные для практического использования условия, при соблюдении которых криволинейный интеграл не зависит от пути интегрирования.

Теорема 2.

Для того чтобы криволинейный интеграл не зависел от пути интегрирования в односвязной области необходимо и достаточно, чтобы в каждой точке этой области выполнялось условие

Доказательство. Достаточность. Пусть в области Покажем, что криволинейный интеграл по любому замкнутому контуру L, лежащему в области G, равен нулю. Рассмотрим площадку а, ограниченную контуром L. В силу односвязности области G площадка а целиком принадлежит этой области. На основании формулы Остроградского-Грина частности, на площадке Поэтому а следовательно, . Итак, интеграл по любому замкнутому контуру L в области G равен нулю. На основании теоремы 1 заключаем, что криволинейный интеграл не зависит от пути интегрирования.

Необходимость. Пусть криволинейный интеграл не зависит от пути интегрирования в некоторой области Q. Покажем, что во всех точках области

Предположим противное, т. е. что в некоторой точке области Пусть для определенности . В силу предположения о непрерывности частных производных и разность будет непрерывной функцией. Следовательно, около точки можно описать круг а (лежащий в области G), во всех точках которого, как и в точке разность будет положительной. Применим к кругу формулу Остроградского-Грина.

Формула Остроградского - Грина

Эта формула устанавливает связь между криволинейным интегралом по замкнутому контуры С и двойным интегралом по области, ограниченной этим контуром.

Определение 1. Область D называется простой областью, если её можно разбить на канечное число областей первого типа и независимо от этого на конечное число областей второго типа.

Теорема 1. Пусть в простой области определены функции P(x,y) и Q(x,y) непрерывные вместе со своими частными производными и

Тогда имеет место формула

где С - замкнутый контур области D.

Это формула Остроградского - Грина.

Условия независимости криволинейного интеграла от пути интегрирования

Определение 1. Говорят, что замкнутая квадрируемая область D односвязна, если любую замкнутую кривую l D можно непрерывно диформировать в точку так, что все точки этой кривой принадлежали бы области D (область без “дырок” - D 1), если такое деформирование невозможно, то область назывется многосвязной (с “дырками” - D 2).

Определение 2. Если значение криволинейного интеграла по кривой АВ не зависит от вида кривой, соединяющей точки А и В, то говорят, что этот криволинейный интеграл не зависит от пути интегрирования:

Теорема 1. Пусть в замкнутой односвязной области D определены непрерывные, вместе со своими частными производными функции P(x,y) и Q(x,y). Тогда следующие 4 условия равносильны (эквивалентны):

1) криволинейный интеграл по замкнутому контуру

где С - любой замкнутый контур в D;

2) криволинейный интеграл по замкнутому контуру не зависит от пути интегрирования в области D, т.е.

3) дифференциальная форма P(x,y)dx + Q(x,y)dy является полным дифференциалом некоторой функции F в области D, т.е., что существует функция F такая, что (х,у) D имеет место равенство

dF(x,y) = P(x,y)dx + Q(x,y)dy; (3)

4) для всех точек (х,у) D будет выполняться следующее условие:

Докажем по схеме.

Докажем, что из.

Пусть дано 1), т.е. = 0 по свойству 2 §1, что = 0 (по свойству 1 §1) .

Докажем, что из.

Дано, что кр.инт. не зависит от пути интегрирования, а только от выбора начала и канца пути

Рассмотрим функцию

Пакажем, что дифференциальная форма P(x,y)dx + Q(x,y)dy является полным дифференциалом функции F(x,y), т.е. , что

Зададим частный прирост

х F (x,y)= F(х + х, у) -F (x,y)= = == =

(по свойству 3 § 1, ВВ* Оу) = = P (c,y)х (по теореме о среднем, с -const), где x

(всилу непрерывности функции Р). Получили формулу (5). Аналогично получается формула (6).

Докажем, что из.

Дана формула

dF(x,y) = P(x,y)dx + Q(x,y)dy.

Очевидно, что = Р(х,у). Тогда

По условию теоремы правые части равенств (7) и (8) непрерывные функции, то по теореме о равенстве смешанных производных будут равны и левые части, т.е.., что

Докажем, что из 41.

Выберем любой замкнутый контур из области D, который ограничивает область D 1 .

Функции P и Q удовлетворяют условиям Остроградского-Грина:

В силу равенства (4) в левой части (9) интеграл равен 0, а это значит, что и правая часть равенства равна

Замечание 1. Теорема 1. может быть сформулировано в виде трёх самостоятельных теорем

Теорема 1*. Для того, чтобы в односвязной квадрируемой области D крив.инт. не зависил от пути интегрирования чтобы выполнялось условие (.1), т.е.

Теорема 2*. Для того, чтобы в односвязной квадрируемой области D крив.инт. не зависил от пути интегрирования чтобы выполнялось условие (3):

дифференциальная форма P(x,y)dx + Q(x,y)dy является полным дифференциалом некоторой функции F в области D.

Теорема 3*. Для того, чтобы в односвязной квадрируемой области D крив.инт. не зависил от пути интегрирования чтобы выполнялось условие (4):

Замечание 2. В теореме2* область D может быть и многосвязной.

  • 6. Формула среднего значения для определенного интеграла.
  • 7. Интеграл с переменным верхним пределом. Его непрерывность и дифференцируемость.
  • 8. Формула Ньютона-Лейбница для определенного интеграла.
  • 9. Вычисление определенного интеграла по частям и заменой переменной.
  • 10. Применение определенного интеграла (площадь плоской фигуры, длина дуги кривой, объем тела вращения).
  • 11. Понятие числового ряда и его суммы. Критерий Коши сходимости ряда. Необходимое условие сходимости.
  • 12. Признаки Деламбера и Коши сходимости рядов с неотрицательными членами.
  • 13. Интегральный признак Коши сходимости числового ряда.
  • 14. Знакопеременные числовые ряды. Абсолютная и условная сходимость. Знакочередующиеся ряды. Признак Лейбница.
  • 15. Функциональный ряд. Сумма ряда. Определение равномерной сходимости ряда. Критерий Коши равномерной сходимости функционального ряда.
  • 16. Признак Вейерштрасса равномерной сходимости.
  • 18. Степенной ряд. Теорема Абеля.
  • 19. Радиус сходимости степенного ряда. Формула Коши-Адамара для радиуса сходимости степенного ряда.
  • 21. Функции многих переменных. Понятие n-мерного евклидового пространства. Множество точек евклидового пространства. Последовательность точек и ее предел. Определение функции нескольких переменных.
  • 22. Предел функции нескольких переменных. Непрерывность функции. Частные производные.
  • 23. Определение дифференцируемой функции нескольких переменных и ее дифференциала. Производные и дифференциалы высших порядков.
  • 24. Формула Тейлора для функции многих переменных. Экстремум функции нескольких переменных. Необходимое условие экстремума. Достаточное условие экстремума.
  • 25. Двойной интеграл и его свойства. Сведение двойного интеграла к повторному.
  • 27. Замена переменных в тройном интеграле. Цилиндрические и сферические координаты.
  • 28. Вычисление площади гладкой поверхности, заданной параметрически и в явном виде.
  • 29. Определение криволинейных интегралов первого и второго рода, их основные свойства и вычисление.
  • 30. Формула Грина. Условия независимости криволинейного интеграла от пути интегрирования.
  • 31. Поверхностные интегралы первого и второго рода, их основные свойства и вычисление.
  • 32. Теорема Гаусса-Остроградского, ее запись в координатной и векторной (инвариантной) формах.
  • 33. Формула Стокса, ее запись в координатной и векторной (инвариантной) формах.
  • 34. Скалярное и векторное поля. Градиент, дивергенция, ротор. Потенциальное и соленоидальное поля.
  • 35. Оператор Гамильтона. (набла) его применение (примеры).
  • 36. Основные понятия, относящиеся к обыкновенным дифференциальным уравнениям (оду) первого порядка: общее и частное решения, общий интеграл, интегральная кривая. Задача Коши, ее геометрический смысл.
  • 37. Интегрирование оду первого порядка с разделяющимися переменными и однородных.
  • 38. Интегрирование линейных оду первого порядка и уравнения Бернулли.
  • 39. Интегрирование оду первого порядка в полярных дифференциалах. Интегрирующий множитель.
  • 40. Дифференциальные уравнения первого порядка, неразрешенные относительно производной. Метод введения параметра.
  • 41. Уравнение n-го порядка с постоянными коэффициентами. Характеристическое уравнение. Фундаментальная система решений (фср) однородного уравнения, общее решение неоднородного уравнения.
  • 42. Система линейных дифференциальных уравнений первого порядка. Фср однородной системы. Общее решение однородной системы.
  • 30. Формула Грина. Условия независимости криволинейного интеграла от пути интегрирования.

    Формула Грина: Если C – замкнутая граница области D и функции P(x,y) и Q(x,y) вместе со своими частными производными первого порядканепрерывны в замкнутой области D (включая границу C), то справедлива формула Грина:, причем обход вокруг контура C выбирается так, что область D остается слева.

    Из лекций: Пусть заданы функции P(x,y) и Q(x,y), которые непрерывны в области D вместе с частными производными первого порядка. Интеграл по границе (L), целиком лежащий в области D и содержащий все точки в области D: . Положительное направление контура такое, когда ограниченная часть контура находится слева.

    Условие независимости криволинейного интеграла 2-го рода от пути интегрирования. Необходимым и достаточным условием того, что криволинейный интеграл первого рода, соединяющий точки M1 и M2, не зависит от пути интегрирования, а зависит только от начальной и конечной точек, является равенство:.

    .

    31. Поверхностные интегралы первого и второго рода, их основные свойства и вычисление.

    – задание поверхности.

    Спроектируем S на плоскость xy, получим область D. Разобьём область D сеткой линий на части, называемые Di. Из каждой точки каждой линии проведём параллельные z линии, тогда и S разделится на Si. Составим интегральную сумму: . Устремим максимум диаметра Di к нулю:, получим:

    Это поверхностный интеграл первого рода

    Так считается поверхностный интеграл первого рода.

    Определение вкратце. Если существует конечный предел интегральной суммы, не зависящий от способа разбиения S на элементарные участки Si и от выбора точек, то он называется поверхностным интегралом первого рода.

    При переходе от переменных x и y к u и v:

    Поверхностный интеграл обладает всеми свойствами обычного интеграла. См. в вопросах выше.

    Определение поверхностного интеграла второго рода, его основные свойства и вычисление. Связь с интегралом первого рода.

    Пусть задана поверхность S, ограниченная линией L (рис. 3.10). Возьмём на поверхности S какой-нибудь контур L, не имеющий общих точек с границей L. В точке М контура L можно восстановить две нормали ик поверхности S. Выберем какое-либо одно из этих направлений. Обводим точку M по контуру L с выбранным направлением нормали.

    Если в исходное положение точка M вернётся с тем же направлением нормали (а не с противоположным), то поверхность S называют двусторонней. Мы будем рассматривать только двусторонние поверхности. Двусторонней поверхностью является всякая гладкая поверхность с уравнением .

    Пусть S – двусторонняя незамкнутая поверхность, ограниченная линией L, не имеющей точек самопересечения. Выберем определённую сторону поверхности. Будем называть положительным направлением обхода контура L такое направление, при движении по которому по выбранной стороне поверхности сама поверхность остаётся слева. Двусторонняя поверхность с установленным на ней таким образом положительным направлением обхода контуров называется ориентированной поверхностью.

    Перейдём к построению поверхностного интеграла второго рода. Возьмём в пространстве двустороннюю поверхность S, состоящую из конечного числа кусков, каждый из которых задан уравнением вида или является цилиндрической поверхностью с образующими, параллельными оси Oz.

    Пусть R(x,y,z) – функция, опредёленная и непрерывная на поверхности S. Сетью линий разбиваем S произвольным образом на n "элементарных" участков ΔS1, ΔS2, ..., ΔSi, ..., ΔSn, не имеющих общих внутренних точек. На каждом участке ΔSi произвольным образом выберем точку Mi(xi,yi,zi) (i=1,...,n). Пусть (ΔSi)xy – площадь проекции участка ΔSi на координатную плоскость Оху, взятая со знаком "+", если нормаль к поверхности S в точке Mi(xi,yi,zi) (i=1,...,n) образует с осью Oz острый угол, и со знаком "–", если этот угол тупой. Составим интегральную сумму для функции R(x,y,z) по поверхности S по переменным x,y: . Пусть λ – наибольший из диаметров ΔSi (i = 1, ..., n).

    Если существует конечный предел , не зависящий от способа разбиения поверхности S на "элементарные" участки ΔSi и от выбора точек, то он называется поверхностным интегралом по выбранной стороне поверхности S от функции R(x,y,z) по координатам х, у (или поверхностным интегралом второго рода) и обозначается.

    Аналогично можно построить поверхностные интегралы по координатам x, z или у, z по соответствующей стороне поверхности, т. е. и.

    Если существуют все эти интегралы, то можно ввести "общий" интеграл по выбранной стороне поверхности: .

    Поверхностный интеграл второго рода обладает обычными свойствами интеграла. Заметим лишь, что любой поверхностный интеграл второго рода изменяет знак при перемене стороны поверхности.

    Связь между поверхностными интегралами первого и второго рода.

    Пусть поверхность S задана уравнением: z = f(x,y), причем f(x,y), f"x(x,y), f"y(x,y) - непрерывные функции в замкнутой области τ (проекции поверхности S на координатную плоскость Оху), а функция R(x,y,z) непрерывна на поверхности S. Нормаль к поверхности S, имеющая направляющие косинусы cos α, cos β, cos γ, выбрана к верхней стороне поверхности S. Тогда .

    Для общего случая имеем:

    =

    "


    © 2024 gimn70.ru -- Учимся легко - Портал полезных знаний