Предикаты. Предикаты: определения и примеры Операции над кванторами

Главная / Оскар Уайльд

Цель семинара:

Рассмотреть практическое применение логики предикатов.

План занятия:

Рассматривается тема логика предикатов на которую отводится 2 часа семинарских занятий.

Задача 1. Каким отношениям и функциям соответствуют следующие предикаты, определённые на множестве натуральных чисел:

1. Предикат тождества Е:N 2 →B:

E(a 1 ,a 2)=1 тогда и только тогда, когда a 1 =a 2 .

2. Предикат порядка Q:N 2 →B:

Q(a 1 ,a 2)=1 тогда и только тогда, когда a 1 ≤ a 2.

3. Предикат делимости D:N 2 →B:

D(a 1 ,a 2)=1 тогда и только тогда, когда a 1 делится на а 2 .

4. Предикат суммы S:N 3 →B:

S(a 1 ,a 2 ,a 3)=1 тогда и только тогда, когда a 1 +a 2 =a 3.

5. Предикат произведения П:N 3 →B:

П(a 1 ,a 2 ,a 3)=1 тогда и только тогда, когда a 1 *a 2 =a 3 .

Решение .

1. Двухместному предикату тождества Е-“x 1 ”=”x 2 ” взаимно однозначно соответствуют:

а) двухместное отношение R 1 – «быть равным», R 1 N 2:(a 1 ,a 2) R 1 тогда и только тогда, когда E(a 1 ,a 2)=1;

б) одноместная функция (операция) тождества f 1 (x 1)=x 2 , а именно: f 1 (x)=x, f:N→N.

2. Двухместному предикату порядка Q-“x 1 ≤ x 2 ” взаимно однозначно соответствует двухместное отношение R 2 - «быть не больше», R 2 N 2:(a 1 ,a 2) R 2 тогда и только тогда, когда Q(a 1 ,a 2)=1.

Однако функции f(x 1)=x 2 для предиката порядка Q(x 1 ,x 2) не существует, так как не выполнено условие Р"(а 1 ,а 2 ,…а n ,а n +1)=0 при одинаковых значениях переменной x 1 существует не единственно значение переменной x 2 , при котором предикат Q истинен. Например, Q(2,4)=1 и Q(2,6)=1, однако 4≠6.

3. Двухместному предикату делимости D-“x 1 делится на х 2 ” взаимно однозначно соответствует двухместное отношение R 3 - “делится”, R 3 N 2:(a 1 ,a 2) R 3 тогда и только тогда, когда D(a 1 ,a 2)=1.

Однако функции f(x 1)=x 2 для предиката делимости D(x 1 ,x 2) не существует, так как не выполнено условие Р"(а 1 ,а 2 ,…а n ,а n +1)=0, например D(6,2)=1 и D(6,3)=1, однако 2≠3.

4. Трехместному предикату суммы S- “х 1 +х 2 =х 3 ” взаимно однозначно соответствуют:

а) трёхместное отношение R 4 N 3: (a 1 ,a 2, a 3) R 4 тогда и только тогда, когда S(a 1 ,a 2 ,a 3)=1;

б) двухместная функция (операция арифметики)- сложение f 2 (x 1 ,x 2), а именно х 1 +х 2 =х 3 .

5. Трёхместному предикату произведения П- “x 1 *x 2 =x 3 ” взаимно однозначно соответствуют:

а) трёхместное отношение R 3 N 3: (a 1 ,a 2, a 3) R 5 тогда и только тогда, когда П (х 1 ,х 2 ,х 3)=1;

б) двухместная функция (операция арифметики)- умножение f 3 (x 1 ,x 2)=x 3 , а именно х 1 *х 2 =х 3.

Взаимная однозначность соответствия между S и f 2 (П и f 3), обусловлена выполнением для предиката S(П) условия Р"(а 1 ,а 2 ,…а n ,а n +1)=0 для каждой системы элементов a 1 ,a 2 N существует единственный элемент а 3 N такой, что S(a 1 ,a 2 ,a 3)=1 (соответственно для П(a 1 ,a 2 ,a 3)=1).

Задача 2. Проиллюстрировать на примере предиката делимости, определённого в задаче 1, понятия переменного высказывания, истинного высказывания, ложного высказывания.

Решение .

Предикат делимости D(x 1 ,x 2)- это переменное (двухместное) высказывание, предметной областью которого могут служить любые множества действительных чисел, например множество N.

D(6,2)- высказывание, значение которого есть истина, т.е. истинное высказывание.

D(5,2)- ложное высказывание.

D(3,х), D(х,2)- переменные (одноместные) высказывания, истинность которых зависит от того, каким числом будет замещён символ x, но D(а,1)- истинное высказывание, так как для любого элемента а N имеет место: D(а,1)=1 (любое натуральное число делится на единицу).

Задача 3. Записать формулой логики предикатов предложение, отражающее транзитивное свойство делимости целых чисел.

Решение .

Составное высказывание (предложении), являющееся формулировкой свойства транзитивности отношения делимости целых чисел.

«если а делится на b и b делится на с, то а делится на с», состоит из трёх простых высказываний D(a,b), D(b,c) и D(a,c). Следовательно, транзитивное свойство делимости можно записать в виде составного высказывания (логической формулы):

«если D(a,b) и D(b,c), то D(a,с) или (D(a,b) & D(b,c)) → D(a,c).

Задача 4. Дать словесные формулировки следующих составных высказываний (предложений):

1. S(a,b,c) & D(a,d) & D(b,d)→D(c,d), где S и D- предикаты суммы и делимости соответственно (см.пример 1);

2. D(a,b) & S(a,b,c);

3. S(a,b,c) ~ S(b,a,c);

4. P 1 ~ P 2 , где P 1 – предикат «число 3n является чётным»; Р 2 - предикат «число n является чётным».

Решение .

1. «Если каждое слагаемое a,b суммы целых чисел делится на некоторое число d, то и сумма с делится на это число»:

S(a,b,c) & D(a,d) & D(b,d)→D(c,d).

2. «Число а не делится на число b, и неверно, что их сумма равна с»: D(a,b) & S(a,b,c).

3. «От перестановки мест слагаемых a и b сумма с не меняется»- свойство коммутативности арифметической операции сложения: S(a,b,c) ~ S(b,a,c).

4. «Число 3n является чётным тогда и только тогда, когда n является чётным»: P 1 ~ P 2.

Эквивалентность может быть выражена и другими словесными формулировками, в том числе:

· «из того, что Р 1 , следует то, что Р 2 , и обратно»;

· «из того, что Р 2 , следует то, что Р 1 , и обратно»;

· «условия Р 1 необходимо и достаточно для того, чтобы Р 2 »;

· «Р 2 необходимо и достаточно, чтобы Р 1 »;

· «Р 1 , если и только если Р 2 »;

· «Р 2 , если и только если Р 1 »;

· «условия Р 1 и Р 2 эквивалентны»;

· «Р 2 тогда и только тогда, когда Р 1 » и др.

Задача 5. Пусть х определён на множестве людей М, а Р(х)- предикат «х-смертен». Дать словесную формулировку предикатной формулы

Решение .

Выражение означает «все люди смертны». Оно не зависит от переменной х, а характеризует всех людей в целом, т.е. выражает суждение относительно всех х множества М.

Задача 6. Пусть Р(х)- предикат «х-чётное число», определённый на множестве М. Дать словесную формулировку высказывания определить его истинность.

Решение .

Исходный предикат Р(х)- «х- чётное число» является переменным высказыванием: при подстановке конкретного числа вместо переменной х он превращается в простое высказывание, являющееся истинным или ложным, например при подстановке числа 5 превращается в высказывание «5-чётное число», являющееся ложным. Высказывание означает «в М существует четное число». Поскольку множество М, на котором задан предикат Р(х), не определено в условии (в таком случае говорят, что задача сформулирована не вполне корректно), доопределим М.

Пусть предикат Р(х) определён на множестве натуральных чисел N, т.е. , тогда высказывание - истинно. В общем случае высказывание истинно на любом множестве М, содержащем хотя бы одно чётное число, и ложно на любом множестве нечетных чисел.

Задача 7. Пусть N(х)- предикат «х-натуральное число». Рассмотреть варианты навешивания кванторов. Проинтерпретировать полученные высказывания и определить их истинность.

Решение .

Высказывание «все числа- натуральные» истинно на любом множестве натуральных чисел и ложно, если М содержит хотя бы одно ненатуральное число, например целое отрицательное;

Высказывание «существует натурально х» истинно на любом множестве М, содержащем хотя бы одно натуральное число, и ложно- в противном случае.

Задача 8. Записать предикатной формулой предложение «Любой человек имеет отца».

Решение .

Для построения предикатной формулы используем два предиката «х- человек» и «у- отец х» и для удобства восприятия обозначим их соответственно: ЧЕЛОВЕК (х) и ОТЕЦ (у). Тогда предложение «Любой человек имеет отца» в предикатной форме имеет вид:

Заметим, что если предикат ОТЕЦ(у,х) определён на множестве людей, то выражение «любой человек имеет отца» можно записать проще:

Задача 9. Пусть предикат Р(х,у) описывает отношение «х любит у» на множестве людей. Рассмотреть все варианты навешивания кванторов на обе переменные. Дать словесную интерпретацию полученных высказываний.

Решение .

Обозначим предикат «х любит у» через ЛЮБИТ (х,у). Предложения, соответствующие различным вариантам навешивания

ЛЮБИТ(х,у)- «для любого человека х существует человек у, которого он любит» или «всякий человек кого-нибудь любит» (рис. а);

ЛЮБИТ (х,у)- «существует такой человек у, что его любят все х» (рис. б)ж

ЛЮБИТ (х,у)- «все люди любят всех людей» (рис. в);

ЛЮБИТ (х,у)- «существует человек, который кого- то любит» (рис. г);

ЛЮБИТ (х,у)- «существует человек, который любит всех людей» (рис. д);

ЛЮБИТ (х,у)- «для всякого человека существует человек, который его любит» (рис. е).

Из приведенного выше можно сделать вывод о том, что перестановка кванторов общности и существования меняет смысл высказывания, т.е. кванторы общности и существования не обладают в общем случае свойством коммутативности.

Задача 10. Пусть Q(x,y)- предикат порядка «х≤у». Рассмотреть различные варианты квантификации его переменных. Определить истинность получаемых выражений для разных случаев интерпретации области определения М предиката, х, у М.

Решение .

Одноместный предикат от у: « для любого х имеет место х≤у». Если М- бесконечное множество неотрицательных целых чисел, то этот предикат ложен; на любом конечном множестве натуральных чисел предикат истинен в единственной точке, представляющей наибольшее число в М. При подстановке любого другого у из М этот предикат обращается в ложное высказывание;

Одноместный предикат от х: «для любого у имеет место х≤у». Если М-множество неотрицательных целых чисел, то этот предикат истинен в единственной точке х=0 и ложен при подстановке вместо х любого числа из М;

Одноместный предикат от у: «существует число в М, которое не больше у». Если М- любое непустое множество чисел, то данный предикат превращается в истинное высказывание при подстановке какого- либо у из М.

Одноместный предикат от х: « существует число в М, которое не меньше х». На любом непустом множестве М чисел данный предикат превращается в истинное высказывание при подстановке какого- либо х из М.

Высказывание « для любых х и у выполняется х≤у» ложно на любом множестве, состоящем более, чем из одного элемента, и истинно на множестве с одним элементом;

Высказывание «существуют такие х и у, что х≤у» истинно на любом непустом множестве;

Высказывание «для любого числа х существует число у, не меньше чем х» истинно на любом непустом множестве;

Высказывание «существует у такой, что для любого х х≤у»утверждает, что в М имеется единственный максимальный элемент;

Высказывание «существует х такой, что он не больше любого у» утверждает, что в М имеется единственный минимальный элемент.

Высказывание «для любого числа у существует число х, не больше, чем у» истинно на любом непустом множестве

Задача 11. Рассмотреть все возможные варианты навешивания кванторов на предикат D(х,у)- «х делится на у», определенный на множестве натуральных чисел N. Дать словесные формулировки полученных высказываний и определить их исьтинность.

Решение .

Операции навешивания кванторов приводят к следующим формулам:

Одноместный предикат «всякое натуральное число из N делится на натуральное число у из N»; истинный только для одного значения свободной переменной у=1;

Переменное высказывание «существует натуральное число, которое делится на у», истинное для любого значения свободной переменной у, взятой из множества N;

Переменное высказывание «натуральное число х делится на всякое натуральное число у», ложное для любого значения свободной переменной х, взятой из N;

Переменное высказывание «существует натуральное число, которое делит натуральное число х», истинное для любого значения свободной переменной х;

Высказывания «для любых двух натуральных чисел имеет место делимость одного на другое» ложные;

Высказывания «существуют такие два натуральных числа, что первое делится на второе», истинны;

Высказывание «существует натуральное число, которое делится на любое натуральное», ложное;

Высказывание « для всякого натурального числа найдется такое натуральное, которое делится на первое», истинное;

Окончательно получим префиксную нормальную форму для исходной предикатной формулы.

Рассмотрим предложение

Это предложение не является высказыванием, так как о нем нельзя сказать, истинно оно или ложно. Оно называется предикатом или условием (на х и у). Приведем другие примеры предложений с переменными:

Есть простое число;

Есть четное число;

Меньше у,

Есть общий делитель у, z.

Будем считать, что допустимыми значениями переменных у и z являются натуральные числа. Если в предложениях заменить переменные их допустимыми значениями, то получатся высказывания, которые могут быть как истинными, так и ложными. Например,

2 есть простое число;

3 есть четное число;

5 меньше 7;

3 есть общий делитель 6 и 12.

ОПРЕДЕЛЕНИЕ. Предложения с переменными, дающие высказывания в результате замены свободных переменных их допустимыми значениями, называются предикатами.

Предложения могут служить примерами предикатов.

По числу входящих свободных переменных различают предикаты одноместные, двухместные, трехместные и т. д. Предикаты (2) и (3) - одноместные, предикаты (1) и (4) - двухместные, предикат (5) - трехместный. Высказывания будем считать нульместными предикатами.

Заменяя в одноместном предикате (2) переменную натуральными числами, будем получать высказывания:

0 есть простое число;

1 есть простое число;

2 есть простое число;

3 есть простое число и т. д.

Некоторые из них являются истинными. Таким образом, данный одноместный предикат выделяет среди натуральных чисел те, при подстановке которых вместо переменной получается истинное высказывание, и его можно рассматривать как условие на значения свободной переменной, входящей в предикат. В данном случае числа, удовлетворяющие этому условию, - простые.

Одноместный предикат можно рассматривать как условие на объекты данного вида; двухместный - как условие на пары объектов данного вида и т. д.

Предикаты можно задавать различными способами. В алгебре часто рассматривают предикаты, заданные с помощью уравнений, неравенств, а также систем уравнений или неравенств. Например, неравенство задает одноместный предикат, уравнение - двухместный, а система уравнений - трехместный у, z - рациональные переменные).

Обозначать предикаты будем большими буквами латинского алфавита (возможно, с нижними индексами) с указанием в скобках всех свободных переменных, входящих в этот предикат. Например, - обозначение двухместного предиката, - трехместного и - обозначение -местного предиката.

В дальнейшем мы будем говорить об истинностном значении произвольного предиката на том или ином наборе входящих в него свободных переменных, понимая под этим истинностное значение высказывания, которое получается в результате замены свободных переменных соответствующими им значениями из рассматриваемого набора.

Высказывание, которое получается при подстановке в предикат набора допустимых значений вместо его переменных, будем обозначать Если это высказывание истинное (ложное), говорят, что набор значений удовлетворяет (не удовлетворяет) предикату

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ


на тему: "Предикаты: определения и примеры"



Введение

Заключение

Введение


В чемсостоит необходимость введения предикатов в математику?

Дело в том, что сама по себе логика высказываний обладает довольно слабыми выразительными возможностями. Пользуясь только логикой, нельзя выразить даже очень простые, с математической точки зрения, рассуждения.

Возьмем, например, следующее умозаключение. "Всякое целое число является рациональным. Число 5 - целое. Следовательно, 5 - рациональное число". Все эти три утверждения с точки зрения логики высказываний являются атомарными. Т.е. только средствами логики высказываний нельзя вскрыть внутреннюю структуру и поэтому нельзя доказать логичность этого рассуждения в рамках логики высказываний. Средства, предоставляемые логикой высказываний, оказываются недостаточными для анализа многих математических рассуждений. В алгебре логики не рассматриваются ни структура высказываний, ни тем более, их содержание. В то же время и в науке, и в практике используются заключения, существенным образом зависящие как от структуры, так и от содержания используемых в них высказываний.

Например, в рассуждении " Всякий ромб - параллелограмм; ABCD - ромб; следовательно, ABCD - параллелограмм" посылки и заключение являются элементарными высказываниями логики высказываний, и с точки зрения этой логики рассматриваются как целые, неделимые, без учёта их внутренней структуры. Следовательно, алгебра логики, будучи важной частью логики, оказывается недостаточной в анализе многих рассуждений.

Поэтому возникает необходимость в расширении логики высказываний и построении такой логической системы, средствами которой можно исследовать структуру и содержание тех высказываний, которые в логике высказываний рассматриваются как элементарные.

В силу изложенного материала, можно заключить, что актуальность данной работы несомненна.

Цель данного реферата заключается в том, чтобы совершить обзор

литературных источников по проблеме предикатов в дискретной математике.

Для достижения поставленной цели необходимо решить следующие задачи:

·найти нужную информацию о предикатах по данной теме;

·тщательно проанализировать и выбрать нужные данные;

·оформить реферат согласно требованиям.

Объектом исследования является архив материалов по математическим предикатам.

Предметом исследования являются предикаты в дискретной математике.

Реферат состоит из введения, основной части, заключения и списка использованной литературы.

Предикаты: определения и примеры


Введем основное понятие темы.

Определение 1. Пусть М - непустое множество. Тогда n-местным предикатом, заданным на М, называется выражение, содержащее n переменных и обращающееся в высказывание при замене этих переменных элементами множества М .

Поясним конкретными примерами. Пусть М есть множество натуральных чисел N . Тогда, например, такие выражения: "x - простое число", "x - четное число", "x больше 10" являются одноместными предикатами. При подстановке вместо x произвольных натуральных чисел получаются высказывания: "2 - простое число", "6 - простое число", "3 - четное число", "5 больше 10" и т.д.

Множество M , на котором задан предикат, называется областью определения предиката .

Множество , на котором предикат принимает только истинные значения, называется областью истинности предиката Р (х ) .

Так, предикат P (x ) - "х - простое число" определён на множестве N , а множество для него есть множество всех простых чисел.

Вот такие выражения: " x больше y", " x делит y нацело", " x плюс y равно 10, или x+y=10 " являются двухместными предикатами. Примеры трехместных предикатов, заданных на множестве натуральных чисел: " число z лежит между x и y", " x плюс y равно z", " |x-y| = z " .

Обычно полагают, что, если имеется такой предикат, в котором нет переменных для замены, то подобное высказывание - нульместный предикат .

Причем местность предикатов не всегда равна числу всех переменных, содержащихся в выражении.

Например, выражение " существует число x такое, что y = 2 x " на множестве натуральных чисел определяет одноместный предикат.,

По смыслу этого выражения, в нем можно заменять только переменную y. Например: если применить замену y на 6, то получим истинное высказывание: " существует число x такое, что 6 = 2x", а если заменим y на 7, то получим ложное (на множестве N) высказывание: " существует число x такое, что 7 =2x".

Предикат с заменяемыми переменными x1,…,xn обычно обозначается заглавной латинской буквой, после которой в скобках указываются эти переменные. Например, P (x1,x2), Q (x2,x3), R (x1). Среди переменных в скобках могут быть и фиктивные .

Определение 2. Предикат (n -местный, или n -арный <#"20" src="doc_zip3.jpg" /> (или " Истина " и " Ложь "), определённая на n -й декартовой степени <#"21" src="doc_zip4.jpg" />,


если на любом наборе аргументов он принимает значение 1.

Предикат называют тождественно - ложным и пишут:


если на любом наборе аргументов он принимает значение 0.

Предикат называют выполнимым, если хотя бы на одном наборе аргументов он принимает значение 1 .

Например, обозначим предикатом EQ (x, y) отношение равенства (" x = y "), где x и y принадлежат множеству вещественных чисел <#"justify">Определение 3. Предикат W (x1,…,xn) называется конъюнкцией предикатов U (x1,…,xn) и V (x1,…,xn), заданных на множестве М , если для любых а1,…, аn из М высказывание W (а1,…, аn) есть конъюнкция высказываний U (а1,…, аn) и V (а1,…, аn) .

Аналогично приводятся определения и других упомянутых выше операций.

В логике предикатов первого порядка вводятся и две новые операции. Называются они квантором общности и квантором существования . Эти операции рассмотрим сначала на примерах.

Пусть дано выражение: " существует число х, такое, что x + y=10". На множестве натуральных чисел это предложение определяет одноместный предикат P (y), так, например, Р (2) и Р (9) - истинные высказывания, а Р (11) - ложное. Если обозначить предикат " x + y = 10 " через S (x,y) (а это предикат двухместный), то P (y) можно записать так: " существует х такой, что S (x,y)". В этом случае говорят, что предикат P (y) получен из предиката S (x,y) навешиванием квантора существования на x и пишут P (y) = (?x) S (x,y)

Рассмотрим другой пример. Выражение " для всех х справедливо, что y = - х2 " определяет на множестве целых чисел одноместный предикат Q (y). Если предикат " y = - х2 " обозначить через T (x,y), то Q (y) можно записать так: "для всех x справедливо T (x,y)". В таком случае говорят, что предикат Q (y) получен из предиката T (x,y) навешиванием квантора общности на х и пишут Q (y) = (?x) T (x,y).

Пользуясь этими примерами, дадим определение в общем виде.

Определение 4. Пусть P (x1,…,xn) - предикат, заданный на множестве M , y - переменная. Тогда выражение: " для всякого y выполняется P (x1,…,xn)" - предикат, полученный из P навешиванием квантора общности на переменную y, а выражение " существует y такой, что выполняется P (x1,…,xn)" - предикат, полученный из P навешиванием квантора существования на переменную y .

Заметим, что в определении не требуется, чтобы y была одна из переменных x1,…,xn, хотя в содержательных примерах, квантор навешивается на одну из переменных x1,…,xn. Указанное требование не накладывается, чтобы избежать усложнения определения формулы логики предикатов. Если y - одна из переменных x1,…,xn, то после навешивания квантора на y новый предикат является (n-1) - местным, если y{ x1,…,xn}, то местность нового предиката равна n .

Если предикат W (x1,…,xn) получен из предикатов U (x1,…,xn) и V (x1,…,xn) с помощью связок, то истинность высказывания W (a1,…,an) определяется таблицами истинности этих связок . Пусть W (x1,…,xn) = (?y) U (x1,…,xn,y). Тогда высказывание W (a1,…,an) истинно тогда и только тогда, когда для любого b M истинно высказывание U (a1,…,an,b). Если же W (x1,…,xn) = (?y) U (x1,…,xn,y), то высказывание W (a1,…,an) истинно в том и только в том случае, когда найдется b M, для которого высказывание U (a1,…,an) истинно .

Вообще понятие предиката - весьма широкое понятие . Это видно уже из приведенных выше римеров. Тем не менее, еще раз подчеркнем, показав, что n - местная функция может рассматриваться как (n+1) - местный предикат. Действительно, функции y = f (x1,…,xn), заданной на множестве М, можно поставить в соответствие выражение " y равно f (x1,…,xn)". Это выражение есть некоторый предикат P (x1,…,xn,y). При этом, если элемент b есть значение функции в точке (a1,…,an), то высказывание P (a1,…,an,b) истинно, и обратно. (Подобное "превращение" функции в предикат мы уже привели в качестве примера выше для сложения натуральных чисел.)

На предикаты можно взглянуть и более формально, причем с двух точек зрения.

Во-первых, предикат можно представить отношением следующим образом.

Пусть предикат P (x1,…,xn) задан на множестве M. Рассмотрим прямую степень этого множества Mn = Mx Mx…xM и подмножество Dp множества Mn, определяемое равенством:

Dp = { (a1,…,an) Mn высказывание P (a1,…,an) истинно}.

Отношение Dp можно назвать областью истинности предиката P. Во многих случаях предикат P можно отождествить с отношением Dp.

При этом, правда, возникают некоторые трудности при определении операций над отношениями, аналогичными операциям над предикатами .

Во-вторых, предикат P (x1,…,xn), заданный на M, можно отождествить с функцией fp: Mn {0,1}, определяемой равенством:

Говорят, что предикат Р (х ) является следствием предиката Q (х ) : , если; и предикаты Р (х ) и Q (х ) равносильны:





Приведём примеры к изложенному материалу.

Пример 1. Среди следующих предложений выделить предикаты и для каждого из них указать область истинности, если M = R для одноместных предикатов и M = R×R для двухместных предикатов :


. х + 5 = 1


При х = 2 выполняется равенство х 2 - 1 = 0


. х 2 - 2х + 1 = 0


Существует такое число х , что х 3 - 2


. х + 2 < Зх - 4


Однозначное неотрицательное число х кратно 3


. (х + 2) - (3х - 4)

. х 2 + у 2 > 0


Решение .

1) Р (х ), I P = { - 4};

2)Предложение не является предикатом. Это ложное высказывание;

3)Предложение является одноместным предикатом Р (х ), I P ={1};

4)Предложение не является предикатом. Это истинное высказывание;

5) Предложение является одноместным предикатом Р (х ), I P = (3; +?);

) Предложение является одноместным предикатом Р (х ), I P = {0; 3; 6; 9};

) Предложение не является предикатом;

) Предложение является двухместным предикатом Q (х,y ), I Q = R×R \ { (0,0) }.

Пример 2. Изобразить на декартовой плоскости область истинности предиката .

Решение . Неравенство, составляющее исходный предикат, ограничивает часть плоскости, заключенную между ветвями параболы х = у 2, она изображена серой частью рисунка:


Рисунок 1. График параболы х = у 2


Предикаты, вслед за высказываниями, являются следующим важным предметом, исследуемым математической логикой.

Понятие предиката обобщает понятие высказывания, а теория предикатов представляет собой более тонкий инструмент, по сравнению с теорией высказываний, для изучения закономерностей процессов умозаключения и логического следования, составляющих предмет математической логики .

Таким образом, в основном, термин " предикат " понимается в смысле исходного определения, т.е. как языковое выражение. Связано это с тем, что одной из главных целей введения предикатов, как уже отмечалось во введении, является изучение выразительных возможностей логики первого порядка, возможности представления средствами этой логики информации, выраженного на каком - либо естественном языке людей, например, на русском или английском языке.

предикат декартова плоскость математика

Заключение


Логика предикатов, как и традиционная формальная логика, расчленяет элементарное высказывание на субъект (буквально - подлежащее, хотя оно может играть и роль дополнения) и предикат (буквально - сказуемое, хотя оно может играть и роль определения).

Субъект - это то, о чем что - то утверждается в высказывании, а предикат - это то, что утверждается о субъекте. Логика предикатов - это расширение логики высказываний за счет использования предикатов в роли логических функций.

Итак, актуальность темы реферата несомненна. Цель достигнута и задачи выполнены. Литература просмотрена, выбрана, проанализирована, результаты представлены в данном реферате.

Список используемых источников


1.Эвнин А.Ю. Дискретная математика. Конспект лекций. 1998.

2.Ерусалимский А.Я. Дискретная математика. Теория. Задачи. Приложения. 2000.

3.Электронный источник. URL: http://forum. vopr.net

Электронный источник. http://lib. mexmat.ru/books/109887

Электронный источник. http://lib. mexmat.ru/books/81214


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.


Логика высказываний – очень узкая логическая система. Есть такие типы логических рассуждений, которые не могут быть осуществлены в рамках логики высказываний, например:

  1. Всякий друг лица А есть друг лица В. С не есть друг В, следовательно, С не есть друг А.
  2. Простое число два – четное. Следовательно, существуют простые четные числа.

Корректность этих умозаключений основана на внутренней структуре самих предложений и на смысле слов «всякий» и «существует».

Рассмотрим предложения, зависящие от параметров, например: «х – четное число», «х меньше y », «x +y =z », «u и v – братья». Если в первых трех предложениях заменить x ,y и z некоторыми числами, а в последнем подставить имена членов некоторой семьи, то полученные высказывания могут быть истинными или ложными. Например, для х =5, y =2, z =7, u – Петр, v – Иван получим: «5 – четное число», «5 меньше 2», «5+2=7», «Петр и Иван – братья».

Предложения такого типа называются предикатами. Точнее, предикатом P(x 1 ,…,x n) называется функция, переменные которой принимают значения из некоторого множества М, а сама она принимает два значения: истинное (И) и ложное (Л), т.е. P(x 1 ,…,x n):М {И,Л}.

Предикат от n аргументов называют n-местным предикатом и обозначают полностью P (n) (x 1 ,…,x n) , если нужно подчеркнуть число аргументов. Высказывания считают нуль-местными предикатами.

Над предикатами можно производить обычные логические операции. В результате получаются новые предикаты

Например:

1. Пусть P (1) (x) означает предикат «х делится на 2», а Q (1) (х) – предикат «х делится на 3». Тогда выражение P (1) (x) &Q (1) (х) означает предикат «х делится на 2 и х делится на 3», т.е. определяет предикат делимости на 6.

2. Пусть S (2) (х,у) означает предикат «х=у ». Он принимает значение И тогда и только тогда, когда х=у . В этом случае выражение ┐S (2) (х,х) ÞS (2) (х,у) определяет предикат, принимающий значение И при любых х и у.

Кроме операций логики высказываний будем применять еще операции связывания квантором.

Квантор всеобщности. Пусть Р(х) – предикат, принимающий значение И или Л для каждого х ÎМ. Тогда под выражением "хР(х) будем подразумевать высказывание истинное, когда Р(х) истинно для каждого элемента х из М, и ложное – в противном случае. Символ "х называется квантором всеобщности и запись "хР(х) читается так: «для всех х Р(х) ». Это высказывание уже не зависит от х.

Квантор существования. Пусть Р(х) – предикат. Под выражением $х Р(х) будем понимать высказывание истинное, если существует элемент множества М, для которого Р(х) истинно, и ложное – в противном случае. Символ $ х называется квантором существования и запись $ хР(х) читается так: «существует х , такое, что (или для которого) Р(х) » .

Для предикатов, рассмотренных чуть ранее, можем записать:

  1. $ х (P (1) (x) &Q (1) (х)) – истинное высказывание;
  2. " х (P (1) (x) &Q (1) (х)) – ложное высказывание;
  3. " х,у (┐S (2) (х,х) ÞS (2) (х,у)) – истинное высказывание.

Введем теперь строгие определения для исчисления предикатов.

(Чистое) исчисление предикатов (первого порядка) - это формальная теория К, в которой оп­ределены следующие компоненты.

1. Алфавит:

связки основные ┐,

дополнительные &,

служебные символы (,) Î (, ’ , ’ ,)

кванторы всеобщности

существования

предметные константы

переменные

предметные предикаты P, Q, . . .

функторы f, q,. . .

С каждым предикатом и функтором связано некоторое натуральное число, которое называется арностью, или иногда местностью.

2. Формулы имеют следующий синтаксис:

Формула = (атом

| (формула | ( формула

(фор­мула ) | (переменная формула

| перемен­ная формула

Атом = предикат ( список термов )

Список термов = терм | терм ,

Список термов терм = константа |

Переменная | функтор ( спи­сок термов )

При этом должны быть выполнены следующие контекстные условия: в терме f (t 1 ,. . .,t n) функтор f должен быть n - местным. В атоме (или атомарной формуле) P(t 1 ,. . .,t n) предикат Р должен быть n - местным.

Вхождения переменных в атомарную формулу называются свободными. Свободные вхождения переменных в формулах А и В остаются свободными в формулах А и А В. В формулах x А и x А формула А, как правило имеет, свободные вхождения переменной х. Вхождения пе­ременной х в формулы x А и x А называются связанными. Вхождения других переменных (отличных от x ), которые были свободными в формуле А, остаются свободными и в формулах x А и x А. Одна и та же переменная может иметь в одной и той же формуле как свободные, так и связанные вхождения. Формула, не содержащая свобод­ных вхождений переменных, называется замкнутой.

Например, рассмотрим формулу x (Р(х) y Q(x,y)) и ее подформулы. В подформулу y Q(x,y) пере­менная х входит свободно, а оба вхождения переменной у связаны (квантором существования). Таким образом, эта подформула не замкнута. С другой стороны, то же самое вхождение пере­менной х в подформулу Q(x,y) является связанным вхождением в формуле x (Р(х) y Q(x,y)) . В этой формуле все вхождения всех переменных связаны, а потому формула замкнута.

Язык теории L не содержит кванторов, поэтому понятия свободного и связанного вхождения пе­ременных не применимы непосредственно. Обычно для удобства полагают, что все формулы тео­рии L замкнуты.

Формулы вида А и ┐А, где А - атом, называются литеральными формулами (или литералами). В формулах x А и x А подформула А называется областью действия квантора по х.

Обычно связки и кванторы упорядочивают по приоритету следующим образом: ┐, ,$, &, , . Лишние скобки при этом опускают. Терм t называется свободным для переменной х в формуле А, если никакое свободное вхождение переменной х в формулу А не лежит в области действия никакого квантора по переменной у, входящей в терм t. В частности, терм t свободен для любой переменной в формуле А , если ника­кая переменная терма не является связанной переменной формулы А.

Например:

а) терм у свободен для переменной х в формуле Р(x) , но тот же терм у не свободен для пере­менной х в формуле y P{x).

б) терм f(x, z) свободен для переменной х в формуле y P(x,y) Q(x), но тот же терм f(x, z) не свободен для переменной х в формуле

z y P(x,y) Q(x).

Переход от предиката Р(х) к " х Р(х) или $ х Р(х) называется связыванием переменной х , или навешиванием квантора на переменную х , или квантификацией переменной х.

Выражение " х Р(х) и $ х Р(х) не зависят от х и при фиксированных Р и предметного множества М имеет вполне определенные значения, представляя вполне конкретные высказывания относительно всех х в предметной области М.

Возвращаясь к определению предиката можно отметить, что высказывание есть просто нуль местный предикат.

Навешивая кванторы на многоместные предикаты и вообще на любые логические выражения, мы тем самым и определяем область действия квантора $ х или " х и все вхождения х в эти выражения являются связными.

Рассмотрим решение некоторых примеров.

Пример 4.4. Пусть N (х) – предикат «х – натуральное число». Рассмотреть варианты навешивания кванторов, интерпретировать и определить их истинность.

Решение. " х N(х) –«все числа натуральные». Это высказывание истинно на любом множестве натуральных чисел и ложно, если М содержит хоть одно ненатуральное число (например, целое отрицательное).

Пример 4.5. Пусть предикат Р(х,у) описывает отношение «х любит у » на множестве людей. Проанализировать варианты навешивания кванторов и дать интерпретацию.

Решение . Используя взаимно однозначное соответствие между отношениями предикатами, можно проиллюстрировать решение схемами (рис. 4.1.).

Рис. 4.1. Иллюстрация влияния кванторов

Интерпретация:

" х $ y Р(х,у) – «для любого х существует у , которого он любит».

$ у " х Р(х,у) – «существует такой у , которого любят все х ».

" х "уР(х,у ) - «все х любят всех у ».

$ х $ у Р(х,у) – « найдется х , который любит кого-то из у » или «найдется человек, который кого-то любит».

$ х " у Р(х,у) – «существует х , который любит всех у ».

" у $ х Р(х,у) – «для любого из у найдется х , который его любит».

Аксиомы (логические): любая система аксиом исчисления высказываний, плюс

P 1: x A(x) A(t),

P 2: A(t) x A(x),

где терм t свободен для переменной х в формуле А.

Правила вывода:

где формула А содержит свободные вхождения переменной х, а формула В их не содержит.

Исчисление предикатов, которое не содержит предметных констант, функторов, предикатов и собственных аксиом, называется чистым. Исчисление предикатов, которое содержит предметные константы и/или функторы и/или предикаты и связывающие их собственные аксиомы, называется прикладным.

Исчисление предикатов, в котором кванторы могут связывать только предметные переменные, но не могут связывать функторы или предикаты, называется исчислением первого порядка. Исчисле­ния, в которых кванторы могут связывать не только предметные переменные, но и функторы, пре­дикаты или иные множества объектов, называются исчисленьями высших порядков. Практика показывает, что прикладного исчисления предикатов первого порядка оказывается дос­таточно для формализации содержательных теорий во всех разумных случаях.

Соответствие между предикатами, отношениями и функциями

n – местный предикат можно рассматривать как функцию Р (х 1 ,…х n) от n переменных х i Î М i , где М i - предметные области, а РÎВ={0,1}={И,Л}. Таким образом, предикат Р (х 1 ,…х n) является функцией типа Р: М 1 ´М 2 ´… ´М n ®В , или, если предметная область едина для всех переменных, то имеем Р: М n ®В .

Из рассмотренного очевидно, что для любых М и n существует однозначное соответствие между n-местными отношениями R ÍМ n и предикатами Р (х 1 ,…х n) , М n ®В :

Каждому n – местному отношению R соответствует предикат Р (х 1 ,…х n) такой, что Р (а 1 ,…а n)=1, если и только если (а 1 ,…а n)ÎR;

Всякий предикат Р (х 1 ,…х n) определяет отношение R такое, что (а 1 ,…а n)ÎR , если и только если Р (а 1 ,…а n)=1.

При этом R задает область истинности предиката P.

Рассмотрим теперь функцию f (х 1 ,…, х n), f : М n ®M . Тогда можно видеть, что всякой функции f: М n ®M соответствует предикат Р (х 1 ,…х n +1), Р: М n +1 ®В , такой что Р(а 1 ,…а n +1)=1 , если и только если f (а 1 ,…а n)=а n +1 .

Понятие предиката шире понятия функции (см. рис. 4.1.), поэтому обратное соответствие (от (n+1 )-местного предиката к n–местной функции) возможно не всегда, а только для таких предикатов, для которых выполняется условие, связанное с однозначностью функции:

Р(а 1 ,…а n +1)=0 ® ("а¢ n +1 ÎМ|а¢ n +1 ¹а n +1 Р(а 1 ,…а¢ n +1)=0. (4.3.)

Аналогичное соответствие имеется между подмножеством отношений {R¢}Ì{R} и множеством функций {f} . Для этого класса отношений выполняется условие

(а 1 ,…а n +1)ÎR¢ ® ("а¢ n +1 ÎМ|а¢ n +1 ¹а n +1 (а 1 ,…а¢ n +1)ÎR¢). (4.4.)

Пример 4.6. Каким отношениям и функциям соответствуют предикаты, определенные на множестве натуральных чисел?

1. Предикат суммы S: N 3 ®В:

S(х 1 ,х 2 ,х 3)=1 тогда и только тогда, когда х 1 +х 2 =х 3 .

2. Предикат порядка Q:N 2 ®В:

Q (х 1 ,х 2)=1 тогда и только тогда, когда х 1 £х 2 .

Понятие предиката.

Предикат- представляет собой функцию субъекта и выражения свойств о субъекте.

Средства, предоставляемые логикой высказываний, оказываются недостаточными для анализа многих математических рассуждений. В алгебре логики не рассматриваются ни структура высказываний, ни, тем более, их содержание. В то же время и в науке, и в практике используются заключения, существенным образом зависящие как от структуры, так и от содержания используемых в них высказываний.

Например, в рассуждении «Всякий ромб – параллелограмм; ABCD – ромб; следовательно, ABCD – параллелограмм» посылки и заключение являются элементарными высказываниями логики высказываний и с точки зрения этой логики рассматриваются как целые, неделимые, без учёта их внутренней структуры. Следовательно, алгебра логики, будучи важной частью логики, оказывается недостаточной в анализе многих рассуждений.

Поэтому возникает необходимость в расширении логики высказываний и построении такой логической системы, средствами которой можно исследовать структуру и содержание тех высказываний, которые в логике высказываний рассматриваются как элементарные.

Логика предикатов , как и традиционная формальная логика, расчленяет элементарное высказывание на субъект (буквально – подлежащее, хотя оно может играть и роль дополнения) и предикат (буквально – сказуемое, хотя оно может играть и роль определения).

Субъект – это то, о чем что-то утверждается в высказывании, а предикат – это то, что утверждается о субъекте. Логика предикатов – это расширение логики высказываний за счет использования предикатов в роли логических функций.

Например, в высказывании «7 – простое число», «7» – субъект, «простое число» – предикат. Это высказывание утверждает, что «7» обладает свойством «быть простым числом».

Если в рассмотренном примере заменить конкретное число 7 переменной х из множества натуральных чисел, то получим высказывательную форму «х – простое число». При одних значениях х (например, х = 13, х = 17) эта форма дает истинные высказывания, а при других значениях х (например, х = 10, х = 18) эта форма дает ложные высказывания.

Определение 1. Одноместным предикатом Р (х ) называется всякая функция одного переменного, в которой аргумент x пробегает значения из некоторого множества M , а функция при этом принимает одно из двух значений: истина или ложь.

Множество M , на котором задан предикат, называется областью определения предиката.

Множество , на котором предикат принимает только истинные значения, называется областью истинности предиката Р (х ).

Так, предикат P (x ) – «х – простое число» определён на множестве N , а множество для него есть множество всех простых чисел.

Определение 2. Предикат Р (х ), определённый на множестве M , называется тождественно истинным (тождественно ложным ), если .

Определение 3. Двухместным предикатом P ( x ) называется функция двух переменных х и у , определённая на множестве М =М 1 ×М 2 и принимающая значения из множества {1,0}.

В качестве примеров двухместных предикатов можно назвать предикаты: Q (x ) – «х = у » предикат равенства, определённый на множестве R 2 =R ×R ; F (x ) – «х || у » прямая х параллельна прямой у , определённой на множестве прямых, лежащих на данной плоскости.

Аналогично определяется n -местный предикат.

Говорят, что предикат Р (х ) является следствием предиката Q (х ) , если ; и предикаты Р (х ) и Q (х )равносильны , если .

Приведём примеры к изложенному материалу.

Пример 1. Среди следующих предложений выделить предикаты и для каждого из них указать область истинности, еслиM = R для одноместных предикатов и M = R×R для двухместных предикатов:

1) х + 5 = 1;


2) при х = 2 выполняется равенство х 2 – 1 = 0;
3) х 2 – 2х + 1 = 0;
4) существует такое число х , что х 3 – 2х + 1 = 0;
5) х + 2 х – 4;
6) однозначное неотрицательное число х кратно 3;
7) (х + 2) – (3х – 4);
8) х 2 + у 2 > 0.

Решение . 1) Предложение является одноместным предикатом Р (х ), I P = {– 4};
2) предложение не является предикатом. Это ложное высказывание;
3) предложение является одноместным предикатом Р (х ), I P = {1};
4) предложение не является предикатом. Это истинное высказывание;
5) предложение является одноместным предикатом Р (х ), I P = (3; +∞);
6) предложение является одноместным предикатом Р (х ), I P = {0; 3; 6; 9};
7) предложение не является предикатом;
8) предложение является двухместным предикатом Q (х,y ), I Q = R×R \ {(0,0)}.

Пример 2. Изобразить на декартовой плоскости область истинности предиката .

Решение . Неравенство, составляющее исходный предикат, ограничивает часть плоскости, заключенную между ветвями параболы х = у 2 , она изображена серой частью рисунка:


24.Логические операции над предикатами: конъюнкция, дизъюнкция, отрицание, импликация. Кванторные операции. Кванторы всеобщности и существования.

Логические операции над предикатами

Предикаты, так же, как высказывания, принимают два значения и и л (1, 0), поэтому к ним применимы все операции логики высказываний.

Рассмотрим применение операций логики высказываний к предикатам на примерах одноместных предикатов.

Пусть на некотором множестве М определены два предиката Р (х ) и Q (х ).

Определение 4. Конъюнкцией двух предикатов Р (х ) и Q (х ) называется новый предикат Р (х )&Q (х ), который принимает значение «истина» при тех и только тех значениях , при которых каждый из предикатов Р (х ) и Q (х ) принимает значение «истина» и принимает значение «ложь» во всех остальных случаях. Очевидно, что областью истинности предиката Р (х )&Q (х ) является общая часть областей истинности предикатов Р (х ) и Q (х ), т.е. пересечение .

Так, например, для предикатов Р (х ): «х – четное число» и Q (х ): « х кратно 3» конъюнкцией Р (х )&Q (х ) является предикат «х – четное число и х кратно 3», то есть предикат «х делится на 6».

Определение 5. Дизъюнкцией двух предикатов Р (х ) и Q (х ) называется новый предикат , который принимает значение «ложь» при тех и только тех значениях , при которых каждый из предикатов принимает значение «ложь» и принимает значение «истина» во всех остальных случаях. Ясно, что областью истинности предиката является объединение областей истинности предикатов Р (х ) и Q (х ), то есть объединение .

Определение 6. Отрицанием предиката Р (х ) называется новый предикат , который принимает значение «истина» при всех значениях , при которых предикат Р (х ) принимает значение «ложь», и принимает значение «ложь» при тех значениях , при которых предикат Р (х ) принимает значение «истина». Очевидно, что, .

Определение 7. Импликацией предикатов Р (х ) и Q (х ) называется новый предикат , который является ложным при тех и только тех значениях , при которых одновременно Р (х ) принимает значение «истина», а Q (х ) – значение «ложь» и принимает значение «истина» во всех остальных случаях.

Так как при каждом фиксированном справедлива равносильность , то .

Ясно, что при выполнении логических операций над предикатами к ним применимы и равносильности алгебры логики.

Пример 3. Пусть даны предикаты А (х,у ) и В (х,у ), определенные на множестве . Найти множество истинности предиката и изобразить ее с помощью кругов Эйлера-Венна.

Решение . Так как , то .

Изображена серой частью рисунка:

Можно рассматривать и обратную задачу: «Зная область истинности предиката, полученного в результате применения логических операций к некоторым предикатам, записать этот предикат».

Пример 4. Записать предикат, полученный в результате логических операций над предикатами Р (х ), Q (х ) и R (х ), область истинности которого изображена серой частью рисунка:

Решение . Так как здесь , то искомый предикат имеет вид: .
Кванторные операции над предикатами

Пусть имеется предикат Р (х ), определенный на множестве М . Если , то при подстановке а вместо х в предикат Р (х ) получится высказывание Р (а ). Такое высказывание называется единичным . Наряду с образованием из предикатов единичных высказываний в логике предикатов рассматривается еще две операции, которые превращают одноместный предикат в высказывание.

Определение 8. Пусть Р (х М . Под выражением понимают высказывание, истинное, когда Р (х ) тождественно истинный на множестве М предикат, и ложное в противном случае. Это высказывание уже не зависит от х . Соответствующее ему словесное выражение будет: «Для всякого х Р (х ) истинно». Символ называют квантором всеобщности .

Переменную х в предикате Р (х ) называют свободной (ей можно придавать различные значения из М ), в высказывании переменную х называют связанной квантором .

Определение 9. Пусть Р (х ) – предикат, определенный на множестве М . Под выражением понимают высказывание, которое является истинным, если существует хотя бы один элемент , для которого Р (х ) истинно, и ложным в противном случае. Это высказывание уже не зависит от х . Соответствующее ему словесное выражение будет: «Существует х , при котором Р (х ) истинно». Символ называют квантором существования. В высказывании переменная х связана квантором .

Приведем пример употребления кванторов.

Пример 5. Пусть на множестве N натуральных чисел задан предикат Р (х ): «Число х кратно 5». Используя кванторы, из данного предиката можно получить высказывания: – «Все натуральные числа кратны 5»; – «Существует натуральное число, кратное 5». Очевидно, первое из этих высказываний ложно, а второе истинно.

Ясно, что высказывание истинно только в том единственном случае, когда Р (х ) – тождественно истинный предикат, а высказывание ложно только в том единственном случае, когда Р (х ) – тождественно ложный предикат.

Кванторные операции применяются и к многоместным предикатам. Так, применение к двухместному предикату Q (х,у ) квантора всеобщности по переменной х дает одноместный предикат , зависящий от у . К этому предикату можно применить кванторную операцию по переменной у . В результате получим или высказывание или высказывание .

Таким образом, может быть получено одно из восьми высказываний: , , , , , , , .

Легко показать, что перестановка любых кванторов местами, вообще говоря, изменяет логическое значение высказывания.

Пример 6 . Пусть предикат Q (х,у ): «ху» определен множестве N × N. Показать, что высказывания и имеют различные логические значения.

Решение . Так как высказывание означает, что для всякого натурального числа у существует натуральное число х такое, что у является делителем х , то это высказывание истинно. Высказывание означает, что есть натуральное число х , которое делится на любое натуральное число у. Это высказывание, очевидно, ложно.

Если предикат Р (x ) является тождественно истинным, то истинными будут высказывания Р (а 1), Р (а 2),..., Р (а n ). При этом истинными будут высказывание и конъюнкция Р (а 1)&Р (а 2)&...&Р (а n ).

Если же хотя бы для одного элемента Р (а k ) окажется ложным, то ложными будут высказывание и конъюнкция Р (а 1)&Р (а 2)&...&Р (а n ). Следовательно, справедлива равносильность

Нетрудно показать, что справедлива и равносильность

Это означает, что кванторные операции обобщают операции конъюнкции и дизъюнкции на случай бесконечных областей.

25. Понятие формулы логики предикатов. Значение формулы логики предикатов. Равносильные формулы логики предикатов. Основные равносильности логики предикатов.

Понятие формулы логики предикатов.

В логике предикатов используется следующая символика:

1. Символы р , q , r , ... – переменные высказывания, принимающие два значения: 1 – истина, 0 – ложь.

2. Предметные переменные – х , у , z , ..., которые пробегают значения из некоторого множества М : х 0 , у 0 , z 0 , ... – предметные константы, то есть значения предметных переменных.

3. Р (·), F (·) – одноместные предикатные переменные; Q (·,·,...,·), R (·,·,...,·) – n -местные предикатные переменные. Р 0 (·), Q 0 (·,·,…,·) – символы постоянных предикатов.

4. Символы логических операций: .

5. Символы кванторных операций: .

6. Вспомогательные символы: скобки, запятые.

Определение формулы логики предикатов.

1. Каждое высказывание как переменное, так и постоянное, является формулой.

2. Если F (·,·,...,·) – n -местная предикатная переменная или постоянный предикат, а x 1 , х 2 , ..., х n – предметные переменные или предметные постоянные, не обязательно все различные, то F (x 1 , х 2 ,..., х n ) есть формула. В этой формуле предметные переменные являются свободными. Формулы вида 1 и 2 называются элементарными.

3. Если A и B – формулы, причем такие, что одна и та же предметная переменная не является в одной из них связанной, а в другой свободной, то слова есть формулы. В этих формулах те переменные, которые в исходных формулах были свободными, являются свободными, а те, которые были связанными, являются связанными.

4. Если А – формула, то – формула, и характер предметных переменных при переходе от формулы А к формуле не меняется.

5. Если А (х ) – формула, в которую предметная переменная х входит свободно, то слова и являются формулами, причем предметная переменная в них входит связанно.

6. Никакая другая строка символов формулой не является.

Например, если Р (x ) и Q (х,у ) – одноместный и двухместный предикаты, а q , r – переменные высказывания, то формулами будут слова:

Не является формулой слово: . Здесь нарушено условие п.3, так как в формулу переменная х входит связано, а в формулу Р (х ) переменная х входит свободно.

Из определения формулы логики предикатов ясно, что всякая формула алгебры высказываний является формулой логики предикатов.

Пример 1. Какие из следующих выражений являются формулами логики предикатов? В каждой формуле выделите свободные и связанные переменные.

2) ;

3) ;

Решение. Выражения 1), 2), 4), 6) являются формулами, так как записаны в соответствии с определением формулы логики предикатов. Выражения 3) и 5) не являются формулами. В выражении 3) операция конъюнкции применена к формулам P (x ) и ; в первой из них переменная х свободна, а во второй связана квантором общности, что противоречит определению формулы. В выражении 5) квантор существования по переменной у навешен на формулу , в которой переменная у связана квантором общности, что также противоречит определению формулы.

В формуле 1) переменная у свободна, а переменные х и z связаны. В формуле 2) нет предметных переменных. В формуле 4) переменная х связана, а переменная у свободна.

Значение формулы логики предикатов

О логическом значении формулы логики предикатов можно говорить лишь тогда, когда задано множество М , на котором определены входящие в эту формулу предикаты. Логическое значение формулы логики предикатов зависит от значения трех видов переменных, входящих в формулу:

а) переменных высказываний;
б) свободных предметных переменных из множества М ;
в) предикатных переменных.

При конкретных значениях каждого из трех видов переменных формула логики предикатов становится высказыванием, имеющим истинное или ложное значение.

Пример 2. Дана формула , где предикаты Р (x ), Q (x ) и R (x ) определены на множестве N. Найти ее значение, если

1) Р (x ): «число х делится на 3», Q (x ): «число х делится на 4», R (x ): «число х делится на 2»;

2) Р (x ): «число х делится на 3», Q (x ): «число х делится на 4», R (x ): «число х делится на 5».

Решение. В обоих случаях конъюнкция Р (x )&Q (x ) есть утверждение, что число х делится на 12. Но тогда при всех х , если число х делится на 12, то оно делится и на 2, и, значит, в случае 1) формула истинна.



© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний