Формула относительной погрешности для момента инерции маятника. Лабораторная работа15

Главная / Максим Горький

ВЫВОД РАСЧЕТНОЙ ФОРМУЛЫ

Физическим маятником называется твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси О , не проходящей через центр масстела точку С (рис. 2.1).

Если маятник выведен из положения равновесия на некоторый угол j , то составляющая силы тяжести уравновешивается силой реакции оси О , а составляющая стремится возвратить маятник в положение равновесия. Все силы приложены к центру масс тела. При этом

. (2.1)

Знак минус означает, что угловое смещение j и возвращающая сила имеют противоположные направления. При достаточно малых углах отклонения маятника из положения равновесия sinj » j , поэтому F t » -mgj . Поскольку маятник в процессе колебаний совершает вращательное движение относительно оси О , то оно может быть описано основным законом динамики вращательного движения

где М – момент силы F t относительно оси О , I – момент инерции маятника относительно оси О , – угловое ускорение маятника.

Момент силы в данном случае равен

M = F t ×l = mgj×l , (2.3)

где l – расстояние между точкой подвеса и центром масс маятника.

С учетом (2.2) уравнение (2.3) можно записать

(2.4)

где .

Решением дифференциального уравнения (2.5) является функция, позволяющая определить положение маятника в любой момент времени t ,

j=j 0 × cos(w 0 t+a 0) . (2.6)

Из выражения (2.6) следует, что при малых колебаниях физический маятник совершает гармонические колебания с амплитудой колебаний j 0 , циклической частотой , начальной фазой a 0 и периодом, определяемым по формуле

где L=I/(mg) – приведенная длина физического маятника, т. е. длина такого математического маятника, период которого совпадает с периодом физического маятника. Формула (2.7) позволяет определить момент инерции твердого тела относительно любой оси, если измерен период колебаний этого тела относительно этой оси. Если физический маятник имеет правильную геометрическую форму и его масса равномерно распределена по всему объему, в формулу (2.7) можно подставить соответствующее выражение для момента инерции (Приложение 1).

В эксперименте исследуется физический маятник, называемый оборотным и представляющий собой тело, колеблющееся вокруг осей, расположенных на разном расстоянии от центра тяжести тела.

Оборотный маятник состоит из металлического стержня, на котором неподвижно укреплены опорные призмы О 1 и О 2 и две подвижные чечевицы А и B , которые могут закрепляться в определённом положении с помощью винтов (рис. 2.2).

Физический маятник совершает гармонические колебания при малых углах отклонения от положения равновесия . Период таких колебаний определяется соотношением (2.7)

,

где I – момент инерции маятника относительно оси вращения, m – масса маятника, d – расстояние от точки подвеса до центра масс, g – ускорение силы тяжести.

Применяемый в работе физический маятник имеет две опорные призмы О 1 и О 2 для подвешивания. Такой маятник называется оборотным.

Сначала маятник подвешивают на кронштейн опорной призмой О 1 и определяют период колебаний Т 1 относительно этой оси:

(2.8)

Затем маятник подвешивают призмой О 2 и определяют Т 2:

Таким образом, моменты инерции I 1 и I 2 О 1 и О 2 , будут соответственно равны и . Масса маятника m и периоды колебаний Т 1 и Т 2 могут быть измерены с высокой степенью точности.

По теореме Штейнера

где I 0 – момент инерции маятника относительно оси, проходящей через центр тяжести. Таким образом, момент инерции I 0 можно определить,зная моменты инерции I 1 и I 2 .

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Снимите маятник с кронштейна, поместите его на трёхгранную призму так, чтобы расстояния от опоры до призм О 1 и О 2 не были равны между собой. Передвигая чечевицу вдоль стержня, установите маятник в положение равновесия, после чего закрепите чечевицу винтом.

2. Измерьте расстояние d 1 от точки равновесия (центр масс С ) до призмы О 1 и d 2 – от С до призмы О 2 .

3. Подвесив маятник опорной призмой О 1 , определите период колебаний , где N – число колебаний (не более 50 ).

4. Аналогичным образом определите период колебаний Т 2 относительно оси, проходящей через ребро призмы О 2 .

5. Подсчитайте моменты инерции I 1 и I 2 относительно осей, проходящих через опорные призмы О 1 и О 2 , по формулам и , измерив массу маятника m и периоды колебаний Т 1 и Т 2 . Из формул (2.10) и (2.11) определите момент инерции маятника относительно оси, проходящей через центр тяжести (масс) I 0 . Из двух опытов найдите среднее < I 0 > .


На ось маятника намотать нить подвески и зафиксировать ее.

Проверить, отвечает ли нижняя грань кольца нулю шкалы на колонке. Если нет, отвинтить верхний кронштейн и отрегулировать его высоту. Привинтить верхний кронштейн.

Нажать кнопку «ПУСК» миллисекундомера (сотового телефона).

В момент прохождения маятником нижней точки остановить миллисекундомер.

Намотать на ось маятника нить подвески, обращая внимание на то, чтобы она наматывалась равномерно, один виток рядом с другим.

Фиксировать маятник, обращая внимание на то, чтобы нить в этом положении не была слишком скручена.

Записать измеренное значение времени падения маятника.

Определить замер времени n = 10 раз.

Определить значение среднего времени падения маятника по формуле:

где n – количество выполненных замеров, t i – значение времени, полученное в i – том замере, t – среднее значение времени падения маятника.

По шкале на вертикальной колонке прибора определить расстояние, проходимое маятником за время падения.

Используя формулу (11) и известные значения диаметров d о и d н , определить диаметр оси вместе с намотанной на нее нитью.

По формуле (10) вычислить массу маятника вместе с кольцом, наложенным в данном опыте. Значения масс отдельных элементов нанесены на них.

По формуле (9) определить момент инерции маятника.

Сравнить с теоретическим значением момента инерции

I теор = I о + I м,

где I о – момент инерции оси, I м - момент инерции маховика, которые вычисляются по следующим формулам:

I о = m o r o 2 / 2 ; I к = m м r м 2 / 2 .

Практические данные:

Длина маятника.

Таблица 1.

l, м t1 t2 t3 t4 t5

Подставив все и вычислив получим:

I 1 =(0.00090±0.00001) кг*м 2 .

Вывод: В ходе работы были определены моменты инерции маятника для разных длин намотанной нити и определены погрешности. Сравнение результатов расчётов и экспериментальное значение обнаруживает значительное различие данных.


Вывод: Мы определили экспериментальный и теоретический моменты инерции маятника, которые составили

и сравнили их

1.1. Движение маятника Максвелла представляет собой пример плоского движения твердого тела, при котором траектории всех его точек лежат в параллельных плоскостях. Это движение может быть сведено к поступательному движению маятника и вращательному движению вокруг оси, проходящей через его центр масс перпендикулярно этим плоскостям.

Такой тип движения широко распространен в технике: качение цилиндра по плоскости, колеса автомобиля, катка дорожной машины, движение вращающегося винта вертолета и т. д.

1.2. Целью настоящей лабораторной работы является экспериментальное ознакомление с плоским движением твердого тела на примере маятника Максвелла и определение момента инерции маятника.

2. ОСНОВНЫЕ ПОНЯТИЯ

2.1. Маятник Максвелла представляет собой небольшой маховик. Он может опускаться под действием силы тяжести и силы натяжения нитей, предварительно намотанных на ось маятника (рис.1). Нити во время движения вниз разматываются полностью. Раскрутившийся маховик продолжает вращаться в том же направлении и наматывает нити на ось, вследствие чего поднимается вверх, замедляя при этом свое движение. Дойдя до верхней точки -опять начинает опускаться вниз.

Маховик совершает периодически повторяющееся движение, поэтому он получил название маятника. Итак, движение маятника Максвелла можно разделить на две стадии: опускание и подъем.

2.2. Согласно основным законам динамики поступательного и вращательного движения (для соответственных осей), пренебрегая силами трения о воздух и отклонением нитей от вертикали, запишем

где m - масса маятника, I - момент инерции маятника относительно оси, - радиус оси маятника, N - сила натяжения каждой нити, g - ускорение свободного падения, a - линейное ускорение центра масс маятника, - угловое ускорение. Вследствие нерастяжимости нитей

Эти уравнения применимы как к первой, так и ко второй стадиям движения маятника. Начальные условия на разных стадиях различны: при опускании маятника начальная скорость его центра масс равна нулю, при его подъеме она отлична от нуля.

2.3.Из уравнений (1), (2), (3) следует

(5)

Из зависимости пути от времени при равноускоренном движении с нулевой начальной скоростью можно найти линейное ускорение маятника

где t - время движения маятника от верхней до нижней точки, h - расстояние, проходимое за это время. При имеем ; (7)

Отметим, что направления линейного ускорения и сил натяжения не зависят от того, куда движется маятник - вверх или вниз. За одно полное колебание линейная скорость меняет своё направление в нижней точке на противоположное, а линейное ускорение и силы не меняют. Угловая же скорость, наоборот, не меняет своего направления, а момент сил и угловое ускорение в нижней точке меняют на противоположные.

2.4.При подъеме вверх маятник движется равнозамедленно. Высота h2 , на которую он поднимется, будет меньше, чем та, с которой опускается h1 . Разность этих высот определяет убыль механической энергии, затраченной на преодоление сил деформации нитей при ударе и сил сопротивления движению.

Доля потерянной механической энергии

(9)

ОПИСАНИЕ УСТАНОВКИ

3.1. Схема установки изображена на рис. 2. В основании 1 закреплена колонка 2, на ней держится верхний кронштейн 3, на котором находится электромагнит 4, фотоэлектрический датчик 5 и вороток 6 для выравнивания подвески маятника. К нижнему кронштейну прикреплен второй фотоэлектрический датчик 7. Маховик маятника Максвелла состоит из диска 8, насаженного на ось 9, и прикреплённого к нему массивного кольца 10. Он подвешен на двух параллельных нитях, намотанных на ось. Маятник удерживается в верхнем положении электромагнитом. Высоты опускания и подъёма маятника определяются по миллиметровой линейке 11, находящейся на колонке прибора. Миллисекундомер МС 12 предназначен для измерения времени t движения маятника Максвелла. Начало и окончание отсчёта времени осуществляются автоматически с помощью фотодатчиков, упомянутых выше.

Определение момента инерции маятника Максвелла производится косвенным образом.

Из уравнений (6) и (8) следует, что момент инерции можно рассчитать по формуле

Здесь m – полная масса маятника,

m = m о + m д + m K , (11)

где m о - масса оси, m д - масса диска,.

4. ПОРЯДОК ИЗМЕРЕНИЙ

4.1. Технические данные.

4.1.1. Внести данные установки в табл. 1.

Таблица 1

4.1.2. Занести в табл. 2 значения масс и диаметров элементов маятника. Эти данные указаны на установке.

Таблица 2

4.3. Определение момента инерции маятника Максвелла.

4.2.2. На ось маятника симметрично, виток к витку, намотать нити подвески и зафиксировать маятник. Работать следует очень аккуратно.

4.2.3. Отпустить маятник и запустить отсчёт времени. В нижней точке отсчёт остановить.

4.2.5. Измеренное значение времени движения маятника занести в табл.3. Повторяя операции по пунктам 4.2.2 и 4.2.3, провести измерение времени еще 10 раз и данные занести в табл. 3.

Таблица 3

4.3. Определение убыли механической энергии

4.3.1. По линейке определить высоту h 1 , с которой опускается маятник; занести в табл. 3.

4.3.2. Повторить операции, описанные в п. 4.2.2 и 4.2.3, дать маятнику совершить пять полных колебаний, измерить разность высот d h . Это измерение произвести 1 раз и занести его результат в табл. 3.

5. ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

5.1. Определение момента инерции маятника Максвелла.

Вычислить среднее значение времени движения маятника и занести в табл. 3.

Вычислить среднюю квадратичную ошибку в измерении времени движения маятника

(12)

5.1.3. Вычислить абсолютную случайную ошибку

D t сл = 2,1 DS . (13)

5.1.4. Вычислить полную абсолютную ошибку

D t = D t сл + D t приб. (14)

5.1.5. Вычислить относительную ошибку

все вычисленные величины поместить в табл. 3.

5.1.6. По формуле (10) вычислить момент инерции маятника, подставляя в качестве его среднее значение.

5.1.7. Вычислить относительную ошибку момента инерции маятника

, (16)

где D m , D rо , D h1 - приборные погрешности соответственных величин, Dt – полная абсолютнаяпогрешность времени движения; m - суммарная масса маятника, вычисленная по формуле (11).

5.1.8. По полученному значению e J рассчитать величину абсолютной ошибки DJ в определении момента инерции

DJ = e J ·J = . (17)

Округлить DJ до одной значащей цифры, а значения `J до разряда абсолютной ошибки.

5.1.9. Окончательный результат записать в виде

J =`J ± D J = (±) кг × м 2 . (18)

5.2. Определение убыли механической энергии при движении маятника Максвелла.

5.2.1. Формула (9) выражает долю механической энергии, потерянной за пять колебаний маятника Максвелла; за одно колебание доля будет в пять раз меньше:

6. ВОПРОСЫ, выносимые на ЗАЩИТУ РАБОТЫ

1. Основной закон динамики поступательного движения.

3. Как изменяются импульс и осевой момент импульса маятника Максвелла в нижней точке его движения? Объясните причины.

4. Закон сохранения полной энергии для маятника Максвелла.

5. Найти линейную и угловую скорости маятника в нижней точке.

6. Момент инерции твердого тела (определение). От чего зависит его величина?

7. Найти отношение кинетической энергии поступательного движения к кинетической энергии вращательного движения для данного маятника Максвелла.

8. Как меняются линейное и угловое ускорения за период движения маятника Максвелла?

9. Импульс и осевой момент импульса твердого тела.

10. Оценить натяжение нитей при прохождении маятником нижней точки (продолжительность “удара” в ней принять равной Dt »0,05c).

11. Как изменится время движения маятника, если радиус его оси увеличить в два раза?

12. Кинетическая энергия поступательного и вращательного движения твердого тела.

13. Расчет момента инерции диска радиусом R , массой m

14. Какие силы и моменты сил действуют на маятник Максвелла при его движении? Как они изменяются за период?

15. Расчет момента инерции кольца радиусом R , массой m относительно оси, проходящей через центр перпендикулярно его плоскости.

16. Получить формулу (10), исходя из закона сохранения механической энергии. (Учесть, что для маятника Максвелла Е к вр >>Е к пост ).

17. На каком участке движения маятника, верхнем или нижнем, потери механической энергии больше? Объяснить причины.

ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ

ФИЗИЧЕСКОГО МАЯТНИКА

Цель работы : ознакомление с физическим маятником и определение его момента инерции относительно оси вращения. Изучение зависимости величины момента инерции маятника от пространственного распределения массы.

Приборы и принадлежности : физический маятник с кронштейном для его подвеса, металлическая призма для определения положения центра тяжести маятника, секундомер.

Теоретическое введение.

Физическим маятником (рис.1) называется любое твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси (О), не проходящей через центр его тяжести (С). Точка подвеса маятника является центром вращения.

Рис.1. Физический маятник

При отклонении маятника от положения равновесия на угол  возникает вращающий момент, созданный силой тяжести:

,

где l – расстояние между точкой подвеса и центром тяжести маятника (знак ми-нус обусловлен тем, что момент силы М имеет такое направление, что стремит-ся вернуть маятник к положению равновесия, т.е. уменьшить угол ).

Для малых углов отклонения
, тогда

(0)

С другой стороны момент возвращающей силы можно записать в виде:

(0)

I – момент инерции маятника

i – угловое ускорение.

Из (1) и (2) можно получить:

.

Обозначая
(0)

получим
(4)

Уравнение (4) – линейное дифференциальное уравнение 2-го порядка. Его решением является выражение
.

С учетом уравнения (3) период малых колебаний физического маятника можно записать как:

, (5)

где
- приведенная длина физического маятника

Из формулы (5) можно выразить момент инерции физического маятника относительно оси вращения

(6)

Находя путем измерений m , l и T , можно по формуле (6) вычислить момент инерции физического маятника относительно заданной оси вращения.

В данной работе используется физический маятник (рис.2), представляющий собой стальной стержень, на котором закреплены две массивные стальные чечевицы (А 1 и А 2) и опорные призмы для подвеса (П 1 и П 2). Момент инерции такого маятника будет складываться из моментов инерции стержня, чечевиц и призм:

,

где I 0 - момент инерции стержня относительно оси, проходящей через центр тяжести.

(7)

m ст – масса стержня,

l ст – длина стержня,

d – расстояние от центра тяжести стержня до точки подвеса.

Моменты инерции чечевиц и призм можно приближенно рассчитать как для точечных масс. Тогда момент инерции маятника запишется в виде:

где
- массы чечевиц А 1 и А 2 ,

- расстояния от оси вращения (точки подвеса) до чечевиц А 1 и А 2 соответственно,

- массы призм П 1 и П 1 ,

- расстояния от оси вращения до призм П 1 и П 2 соответственно.

Т.к. по условиям выполнения работы перемещается лишь одна чечевица А 1 , то изменяться будет лишь момент инерции и

(9)

Описание установки.

Применяемый в данной работе физический маятник (рис.2) представляет собой стальной стержень (С), на котором закреплены две массивные стальные чечевицы (А 1 и А 2) и опорные призмы для подвеса (П 1 и П 2). Маятник подвешивается на кронштейне.

Посредством перемещения одной из чечевиц можно изменить момент инерции маятника относительно точки подвеса (оси вращения).

Центр тяжести маятника определяется балансированием маятника на горизонтальном ребре специальной призмы (рис.3). На стержне маятника через 10 мм нанесены кольцевые нарезки, служащие для точного определения расстояния от центра тяжести до оси вращения без помощи линейки. Небольшим смещением чечевицы А 1 вдоль стержня можно добиться, чтобы расстояние l от точки подвеса до центра тяжести равнялось целому числу сантиметров, отсчитываемому по шкале на стержне.

Порядок выполнения работы.

    Определить положение центра тяжести маятника.

а) Снять маятник с кронштейна и установить его в горизонтальном положении на специальной призме П 3 (рис.3) так, чтобы он находился в равновесии. Точное положение равновесия достигается небольшим передвижением чечевицы А 1 .

Рис.3. Уравновешивание маятника

б) По шкале на маятнике измерить l - расстояние от точки подвеса (ребро призмы П 1) до центра тяжести маятника (верхнее ребро призмы П 3).

в) По шкале маятника измерить расстояние - от точки подвеса (ребро призмы П 1) до верхней чечевицы А 1 .

2. Определить период колебаний физического маятника.

а) Установить маятник призмой П 1 на кронштейн (рис.2)

б) Определить время полных 50 - 100 колебаний маятника. Записать время t и число n колебаний маятника.

в) Определить период колебаний физического маятника по формуле:

(10)

3. Снять маятник с кронштейна. Передвинуть чечевицу А 1 на несколько сантиметров в новое положение и повторить опыт. Измерения должны быть выполнены не менее, чем для трех различных положений чечевицы А 1 относительно точки подвеса.

4. По формуле (6) вычислить момент инерции физического маятника I оп .

5. Вычислить относительную погрешность момента инерции для одного из рассмотренных случаев по формуле:

. (11)

Величины T и l определяются по классу точности приборов.

6. Найти абсолютную погрешность
для каждого случая, принимая относительную погрешность одинаковой для всех случаев.

Записать в таблицу окончательный результат в виде

7. По формуле (8) вычислить момент инерции маятника I теор для каждого случая.

8. Сравнить полученные результаты I оп и I теор , вычислив отношение:

(12)

Сделать вывод о том, насколько велико расхождение полученных значений и каковы причины расхождений.

Результаты измерений и вычислений

п/п

,

, кг м 2

I теор , кг м 2

Контрольные вопросы.

    Что такое физический маятник?

    Что называется приведенной длиной физического маятника?

    Какое колебание называется гармоническим?

    Что такое период колебаний?

    Выведите формулу для вычисления периода колебаний физического маятника.

    Что такое момент инерции? В чем заключается аддитивность момента инерции?

    Получите формулу для вычисления момента инерции физического маятника.

Литература

1. Савельев И. В. Курс общей физики: Учебн. пособие для втузов: в 3 т. Т.1: Механика. Молекулярная физика. - 3-е изд., испр. - М.: Наука, 1986. – 432с.

2. Детлаф А. А. , Яворский Б. М. Курс физики: Учебн. пособие для втузов. - М.: Высшая школа, 1989. - 607 с. - предм. указ.: с. 588-603.

3. Лабораторный практикум по физике: Учеб. пособие для студентов втузов/ Б. Ф. Алексеев, К. А. Барсуков, И. А. Войцеховская и др.; Под ред. К. А. Барсукова и Ю. И. Уханова. – М.: Высш. школа,1988. – 351 с.: ил.

Цель работы: изучение законов динамики поступательного и вращательного движения, экспериментальное определение момента инерции маятника Максвелла.

Приборы и принадлежности: маятник Максвелла, сменные кольца, электрический миллисекундомер, миллиметровая шкала.

Методика и техника эксперимента

Маятник Максвелла представляет собой массивный диск или колесо, к концам оси которого прикреплены два шнура; за концы этих шнуров маятник подвешивают к опоре.

Если шнуры намотать на ось и затем отпустить маятник, то под действием силы тяжести шнуры будут разматываться и маятник будет опускаться с ускорением а . Опустившись в крайнее нижнее положение, при котором шнуры полностью размотаны, колесо будет по инерции вращаться в том же направлении, шнуры намотаются на ось, вследствие чего маятник поднимется.

Применим законы динамики и кинематические уравнения для описания движения маятника Максвелла. Маятник участвует в двух движениях: прямолинейном движении центра масс с ускорением а и вращательном движении вокруг оси, проходящей через центр масс, с угловым ускорением e. На маятник действуют сила тяжести m g и сила натяжения нити T .

Согласно уравнению движения центра масс, совпадающему по форме с вторым законом Ньютона, имеем:

. (1)

Вращательное движение маятник совершает под действием момента силы натяжения нити T . Момент силы тяжести, приложенной к маховику, равен нулю, т.к. линия действия этой силы проходят через ось вращения. Применим основной закон динамики вращательного движения:

где J - момент инерции маятника, e - его угловое ускорение, - момент силы Т , - радиус вала, d - диаметр вала.

Ускорение маятника связано с угловым ускорением соотношением

При равноускоренном движении

Разрешим систему уравнений (1) - (4) относительно момента инерции.

Из (3) выразим , из (1) и подставим в (2):

,

откуда момент инерции колеса определится выражением:

Учитывая, что согласно (4) , а , окончательно получим:

(5)

Установка, используемая в данной работе, состоит из вертикальной стойки, где крепятся два кронштейна: верхний 1 и нижний 2. Верхний кронштейн снабжен электромагнитом и устройством 3 для крепления бифилярного подвеса 4. Маятник представляет собой диск 5, закрепленный на оси 6, подвешенной на бифилярном подвесе.

На диск 5 крепятся сменные кольца 7. Маятник со сменными кольцами фиксируется в верхнем исходном положении с помощью электромагнита. На вертикальной стойке 8 нанесена миллиметровая шкала, имеющая пределы 0 - 420 мм. Фотодатчик 9 выдает электрические сигналы на миллисекундомер 10 с цифровой индикацией времени.



Порядок выполнения работы

1. Подготовить маятник к работе. Для этого установить с помощью устройства 3 необходимую длину бифилярного подвеса таким образом, чтобы край среза сменного кольца маятника находился на 4-5 мм ниже оптической оси фотодатчика 9.

При этом ось маятника должна занять горизонтальное положение.

2. Подключить фотодатчик к разъему ВХОД на миллисекундомере.

3. Подготовить миллисекундомер к работе:

Включить в сеть шнур питания миллисекундомера;

Нажать кнопку СЕТЬ на лицевой панели миллисекундомера, при этом должны загореться цифровые индикаторы и лампочка фотоэлектрического датчика;

Нажать кнопку СБРОС на передней панели миллисекундомера.

4. Вращая маятник, зафиксировать его в верхнем положении с помощью электромагнита. Необходимо следить за тем, чтобы нить наматывалась на ось виток к витку.

5. Нажать кнопку ПУСК на миллисекундомере. При этом электромагнит и маятник обесточиваются, маятник приходит в движение, начинается отсчет времени. В момент пересечения маятником оптической оси фотодатчика счет времени прекращается.

6. Определить время t движения маятника по миллисекундомеру.

7. По миллиметровой шкале, пользуясь указателем кронштейна 2, определить пройденное маятником расстояние h .

8. Провести пять опытов с одним и тем же кольцом, не изменяя высоту падения.

Таблица измерений

m , г d , мм Dd си . мм t , с Dt си , с h , см Dh си , см g м/с 2

9. С помощью штангенциркуля провести однократное измерение диаметра d оси.



10. Результаты измерений и погрешности измерительных приборов занести в таблицу.

11. Произвести математическую обработку результатов измерений, найти момент инерции маятника J и его погрешность DJ .

Контрольные вопросы

1. Виды движения твердого тела. Какое движение называется поступательным? вращательным?

2. Какие величины являются мерой инертности при поступательном и вращательном движении? Дайте их определение.

3. Сформулируйте теорему Штейнера.

4. Какие физические величины являются мерой воздействия при поступательном и вращательном движении?

5. Сформулируйте законы динамики поступательного и вращательного движения.

6. Ускорение при поступательном и вращательном движении. Угловое ускорение. Связь между линейными и угловыми кинематическими величинами.

7. Выведите расчетную формулу.

Законы сохранения

Лабораторная работа 3-1

Московский государственный университет

путей сообщения РФ (МИИТ)

Кафедра «Физика-2»

Группа____________________________ К работе допущен____________________

(Дата, подпись преподавателя)

Студент ___________________________ Работа выполнена___________________

(ФИО студента) (Дата, подпись преподавателя)

Преподаватель_____ _________________ Отчёт принят_______________________ (Дата, подпись преподавателя)

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №_______5 ____

ИЗУЧЕНИЕ СВОБОДНЫХ КОЛЕБАНИЙ

ФИЗИЧЕСКОГО МАЯТНИКА

1. Цель работы :

Определение момента инерции физического маятника по периоду его малых колебании и приведенной длине.

2. Настенный кронштейн, с подушками для опорных призм физического маятника .


1 – призма 1

2 – призма 2

3 – груз, закрепленный на шкале

4 – подвижный груз.

М – кронштейн

А – физ. маятник

С, D – грузы

B1, B2 – призмы

d1, d2 – расстояние до центра масс

3. Основные теоретические положения к данной работе (основополагающие утверждения: формулы, схематические рисунки):

Физическим маятником называется любое тело, совершающее колебания под действием силы тяжести вокруг горизонтальной оси, не проходящей через центр инерции тела. Всегда можно подобрать математический маятник, синхронный данному физическому, т. е. такой математический маятник, период колебаний которого равен периоду колебаний физического маятника. Длина такого математического маятника называется приведенной длиной физического маятника.

Выведем формулу периода колебаний физического маятника. На рис. 4 точка О - обозначает горизонтальную ось вращения, точка В - центр тяжести физического маятника. Следует отметить, что в однородном поле сил тяжести центр инерции тела и его центр тяжести совпадают.

Относительно оси вращения сила тяжести создает вращающий момент, стремящийся возвратить маятник в положение равновесия. Численное значение этого момента определяется соотношением

(1)

где m - масса физического маятника, d - кратчайшее расстояние от оси вращения до центра тяжести маятника, -угловое перемещение тела, отсчитываемое от положения равновесия. При малых угловое перемещение можно рассматривать как вектор, лежащий на оси вращения, направление которого связано с направлением поворота тела из положения равновесия в заданное правилом правого винта.

Учитывая, что векторы и антипараллельны, следует величинам проекций вращающего момента и углового перемещения на ось вращения приписать противоположные знаки. Тогда формула (1) примет вид

. (1а)

При малых углах можно принять , если выражено в радианах, и записать формулу (1а) следующим образом

. (2)

Используем основной закон динамики вращательного движения тела относительно неподвижной оси, записав его в проекциях на ось вращения:

(3)

где J - момент инерции тела относительно оси вращения, а-угловое ускорение, причем .

Подставляя в формулу (3) момент силы из формулы (2), получим уравнение движения маятника

. (4)

Решение полученного дифференциального уравнения второго порядка с постоянными коэффициентами можно записать в виде

где , а и -постоянные, определяемые начальными условиями.

Величины и называют соответственно амплитудой и фазой колебания, а a 0 -начальной фазой. Уравнение (5) является уравнением гармонического колебательного движения, а величина w 0 собственной циклической частотой колебания. По истечении времени фаза получает приращение, а тело возвращается в исходное положение с сохранением направления движения. Величина

T 0 называется собственным периодом колебания. Таким образом, период колебания физического маятника определяется формулой

(6)

Известно, что период колебаний математического маятника записывается в виде

.

Сравнивая эту формулу с формулой (6), делаем вывод, что математический маятник будет иметь тот же период колебаний, что и данный физический, если длина математического маятника

. (7)

Это и есть формула приведенной длины физического маятника.

Прибор, используемый в данной работе, представляет собой настенный кронштейн, на котором смонтированы подушки для опорных призм физического маятника. На том же кронштейне подвешен математический маятник, длину которого можно изменять, наматывая нить на соответствующий барабанчик. Физический маятник представляет собой цилиндрический стержень (рис. 5), на котором жестко закреплены две призмы 1 и 2. На стержне находятся также два тяжелых груза 3 и 4 в форме чечевиц, один из которых (3) закреплен, а другой может перемещаться по шкале и закрепляться в нужном положении. Расстояние между опорными призмами равно 0,730 м. Масса маятника m = 10,55 кг (Δm =0,01 кг).



© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний