Момент инерции для чайников: определение, формулы, примеры решения задач. Момент инерции Момент инерции частицы

Главная / Оскар Уайльд

Момент инерции - скалярная (в общем случае - тензорная) физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).

Единица измерения СИ: кг·м².

Обозначение: I или J .

2. Физический смысл момента инерции. Произведение момента инерции тела на его угловое ускорение равно сумме моментов всех сил, приложенных к телу. Сравните. Вращательное движение. Поступательное движение. Момент инерции представляет собой меру инерции тела во вращательном движении

Например, момент инерции диска относительно оси О" в соответствии с теоремой Штейнера:

Теорема Штейнера: Момент инерции I относительно произвольной оси равен сумме момента инерции I0 относительно оси, параллельной данной и проходящей через центр масс тела, и произведения массы тела m на квадрат расстояния d между осями:

18. Момент импульса твердого тела. Вектор угловой скорости и вектор момента импульса. Гироскопический эффект. Угловая скорость прецессии

Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц, из которых состоит тело относительно оси. Учитывая, что , получим .

Если сумма моментов сил, действующих на тело, вращающееся вокруг неподвижной оси, равна нулю, то момент импульса сохраняется (закон сохранения момента импульса) : . Производная момента импульса твердого тела по времени равна сумме моментов всех сил, действующих на тело:.

угловую скорость как вектор, величина которого численно равна угловой скорости, и направленный вдоль оси вращения, причем, если смотреть с конца этого вектора, то вращение направлено против часовой стрелки . Исторически сложилось 2 , что положительным направлением вращения считается вращение «против часовой стрелки», хотя, конечно, выбор этого направления абсолютно условен.  Для определения направления вектора угловой скорости можно также воспользоваться «правилом буравчика» (которое также называется «правилом правого винта») − если направление движения ручки буравчика (или штопора) совместить с направлением вращения, то направление движения всего буравчика совпадет с направлением вектора угловой скорости.

Вращающееся тело (колесо мотоцикла) стремиться сохранять положение оси вращения в пространстве неизменным.(гироскопический эффект) Поэтому возможно движение на 2-х колёсах, но не возможно стояние на двух колёсах Этот эфект используется в корабельных и танковых системах наведения орудий. (корабль качается на волнах, а орудие смотрит в одну точку) В навигации и др.

Наблюдать прецессию достаточно просто. Нужно запустить волчок и подождать, пока он начнёт замедляться. Первоначально ось вращения волчка вертикальна. Затем его верхняя точка постепенно опускается и движется по расходящейся спирали. Это и есть прецессия оси волчка.

Главное свойство прецессии - безынерционность: как только сила, вызывающая прецессию волчка, пропадёт, прецессия прекратится, а волчок займёт неподвижное положение в пространстве. В примере с волчком этого не произойдет, поскольку в нём вызывающая прецессию сила - гравитация Земли - действует постоянно.

19. Идеальная и вязкая жидкость. Гидростатика несжимаемой жидкости. Стационарное движение идеальной жидкости. Уравнение Бирнулли .

Идеальной жидкостью назвается воображаемая несжимаемая жидкость , в которой отсутствуют вязкость, внутреннее трение и теплопроводность . Так как в ней отсуствует внутреннее трение, то нет касательных напряжений между двумя соседними слоями жидкости.

вязкая жидкость характеризуется наличием сил трения, которые возникают при ее движении. вязкой наз. жидкость , в которой при движении кроме нормальных напряжений наблюдаются и касательные напряжения

Рассматриваемые в Г. ур-ния относит. равновесия несжимаемой жидкости в поле сил тяжести (относительно стенок сосуда, совершающего движение по нек-рому известному закону, напр. поступательное или вращательное) дают возможность решать задачи о форме свободной поверхности и о плескании жидкости в движущихся сосудах - в цистернах для перевозки жидкостей, топливных баках самолётов и ракет и т. п., а также в условиях частичной или полной невесомости на космич. летат. аппаратах. При определении формы свободной поверхности жидкости, заключённой в сосуде, кроме сил гидростатич. давления, сил инерции и силы тяжести необходимо учитывать поверхностное натяжение жидкости. В случае вращения сосуда вокруг вертик. оси с пост. угл. скоростью свободная поверхность принимает форму параболоида вращения, а в сосуде, движущемся параллельно горизонтальной плоскости поступательно и прямолинейно с пост. ускорением а , свободной поверхностью жидкости является плоскость, наклонённая к горизонтальной плоскости под углом

ФИЗИЧЕСКОГО МАЯТНИКА

Цель работы : определить момент инерции физического маятника в виде стержня с грузами по периоду собственных колебаний.

Оборудование : маятник, секундомер.

ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ

Момент инерции твердого тела – это мера инертности тела при его вращательном движении. В этом смысле он является аналогом массы тела, которая является мерой инертности тела при поступательном движении. Согласно определению, момент инерции тела равен сумме произведений масс частиц тела m i на квадраты их расстояний до оси вращения r i 2:

, или .(1)

Момент инерции зависит не только от массы, но и от ее распределения относительно оси вращения. Как видно, инертность при вращении тела тем больше, чем дальше от оси расположены частицы тела.

Существуют различные экспериментальные методы определения момента инерции тел. В работе предлагается метод определения момента инерции по периоду собственных колебаний исследуемого тела как физического маятника. Физический маятник – это тело произвольной формы, точка подвеса которого расположена выше центра тяжести. Если в поле тяжести маятник отклонить от положения равновесия и отпустить, то под действием силы тяжести маятник стремится к положению равновесия, но, достигнув его, по инерции продолжает движение и отклоняется в противоположную сторону. Затем процесс движения повторяется в обратном направлении. В итоге маятник будет совершать вращательные собственные колебания.

Для вывода формулы момента инерции маятника через период собственных колебаний применим основной закон динамики вращательного движения : угловое ускорение тела прямо пропорционально моменту силы и обратно пропорционально моменту инерции тела относительно оси вращения:



Момент силы по определению равен произведению силы на плечо силы. Плечо силы – это перпендикуляр, опущенный из оси вращения на линию действия силы. Для маятника (рис. 1а) плечо силы тяжести равно d = а sina, где а – расстояние между осью вращения и центром масс маятника. При малых колебаниях маятника угол отклонения a сравнительно мал, а синусы малых углов с достаточной точностью равны самим углам. Тогда момент силы тяжести можно определить по формуле М = −mgа∙a . Знак минус обусловлен тем, что момент силы тяжести противодействует отклонению маятника.

Так как угловое ускорение – это вторая производная от угла поворота по времени, то основной закон динамики вращательного движения (1) принимает вид

. (3)

Это дифференциальное уравнение второго порядка. Его решением должна быть функция, превращающая при подстановке уравнение в тождество. Как видно из уравнения (3), для этого функция решения и ее вторая производная должны иметь одинаковый вид. В математике такой функцией может быть функция косинуса, синуса

a = a 0 sin(w t + j ), (4)

при условии, если циклическая частота равна . Циклическая частота связана с периодом колебаний , то есть временем одного колебания, соотношением T = 2p /w. Отсюда

Период колебаний Т и расстояние от оси вращения до центра тяжестимаятника а измерить можно. Тогда из (5) момент инерции маятника относительно оси вращения С может быть определен экспериментально по формуле

. (6)

Маятник, момент инерции которого определяется в работе, представляет собой стержень с надетыми на него двумя дисками. Теоретически момент инерции маятника можно определить как сумму моментов инерции отдельных частей. Момент инерции дисков можно рассчитать по формуле момента инерции материальной точки, так как они невелики по сравнению с расстоянием до оси вращения: , . Момент инерции стержня относительно оси, находящейся на расстоянии b от середины стержня, можно определить по теореме Штейнера . В итоге суммарный момент инерции маятника можно теоретически рассчитать по формуле

. (7)

Здесь m 1 , m 2 и m 0 – массы первого, второго дисков и стержня, l 1 , l 2 – расстояния от середин дисков до оси вращения, l 0 – длина стержня.

Расстояние от точки подвеса до центра тяжести маятника а , необходимое для экспериментального определения момента инерции в формуле (6), можно определить, используя понятие центра тяжести. Центр тяжести тела – это точка, к которой приложена равнодействующая сила тяжести. Поэтому если маятник положить горизонтально на опору, расположенную под центром тяжести, то маятник будет в равновесии. Затем достаточно измерить расстояние от оси С до опоры.

Но можно определить расстояние а расчетом. Из условия равновесия маятника на опоре (рис. 1б) следует, что момент результирующей силы тяжести относительно оси С (m 1 +m 2 + m 0)равен сумме моментов сил тяжести грузов и стержня m 1 gl 1 + m 2 gl 2 + m 0 gb . Откуда получим

. (8)

ВЫПОЛНЕНИЕ РАБОТЫ

1. Взвешиванием на весах определить массы дисков и стержня. Расположить на стержне и закрепить диски. Измерить расстояния от оси вращения до середин дисков l 1 , l 2 и до середины стержня b , длину стержня l 0 по сантиметровым делениям на стержне. Результаты измерений записать в табл. 1.

Таблица 1

2.Включить электронный блок в сеть 220 В.

Измерить период колебаний. Для этого отвести маятник от положения равновесия на небольшой угол и отпустить. Нажать кнопку Пуск секундомера. Чтобы измерить время t , например, десяти колебаний, следует после девятого колебания нажать кнопку Стоп. Период равен
Т = t/ 10. Записать результат в табл. 2, нажать кнопку Сброс . Опыт повторить не менее трех раз при других углах отклонения маятника.

Выключить установку.

4. Произвести расчеты в системе СИ. Определить среднее значение <Т > периода колебаний. Определить расстояние а от оси до центра тяжести маятника по формуле (8), или положить маятник на опору так, чтобы он находился в равновесии, и по делениям на стержне измерить расстояние а .

а , м Т 1 , с Т 2 , с Т 3 , с <T >,с , кг∙м 2 J теор, кг∙м 2

Таблица 2

5. Определить среднее экспериментальное значение момента инерции маятника <J экс > по формуле (6) по среднему значению периода колебаний <T >.

6. Определить теоретическое значение момента инерции маятника J теор по формуле (7).

7. Сделать вывод, сравнив теоретическое и экспериментальное значения момента инерции маятника. Оценить погрешность измерения D J = – J теор .

8. Записать результат в виде J эксп = < J > ±D J .

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Дайте определение физического маятника, объясните, почему возможны собственные колебания маятника.

2. Запишите основной закон динамики вращательного движения для физического маятника.

Момент инерции - это мера инертности тела относительно оси при вращательном движении (реальном или воображаемом) вокруг этой оси3. Момент инерции количественно равен сумме моментов инерции частиц тела - произведений масс частиц на квадраты их расстояний от оси вращения: J=Smr 2

Когда частицы тела находятся дальше от оси вращения, то угловое ускорение тела под действием того же момента силы меньше ; если частицы ближе к оси, то угловое ускоре­ние больше . Значит, если приблизить тело (все в целом или его части) к оси, то легче вызвать угловое ускорение, легче разогнать тело во вращении, легче и остановить его. Этим пользуются при движении вокруг оси.

Найдя опытным путем момент инерции тела, можно рассчитать радиус инерции, на величине которого отражается рас­пределение частиц в теле относительно данной оси.

Радиус инерции - это сравнительная мера инертности данного тела относительно его разных осей. Он измеряется корнем квад­ратным из отношения момента инерции относительно данной оси

к массе тела:R=ÖJ/m

Количественное определение моментов инерции в биомеханике не всегда достаточно точно. Но для понимания физических основ дви­женийчеловека учитывать эту характеристику необходимо.

СИЛОВЫЕ ХАРАКТЕРИСТИКИ

Сила

Сила - это мера механического воздействия одного тела на дру­гое. Численно она определяется произведением массы тела на его ускорение, вызванное приложением этой силы: F=ma;

Таким образом, измерение силы, как и измерение массы, основано на 2-м законе Ньютона. Поскольку этот закон раскрывает зависимости в поступательном движении, то и сила как вектор определяется только в случае такого простейшего вида движения по массе и ускорению,

Источники сил. Уже указывалось, что ускорение зависит от систе­мы отсчета. Поэтому и сила, определяемая по ускорению, тоже зависит от системы отсчета. В инерциальной системе отсчета источником силы для данного тела всегда слу­жит другое материальное тело. Коль скоро взаимо­действуют два материальных объекта, то в этих условиях проявляется 3-й закон Ньютона3.

Если на одно тело действует другое тело, то оно изменяет движение первого. Но и первое тело в этом взаимодействии также изменяет дви­жение другого. Обе силы приложены к разным объектам, каждая про­являет соответствующий эффект. Их нельзя заменить одной равнодей­ствующей, поскольку они приложены к разным объектам. Именно по­этому они друг друга и не уравновешивают.

В неинерциальной системе отсчета рассматривают кроме взаи­модействий двух тел еще особые силы инерции («фиктивные»), для ко­торых 3-й закон Ньютона не применим.

Измерение сил . Применяется статическое измерение силы, т. е. измерение при помощи уравновешивающей силы (когда ускорение равно нулю), и динамическое - по ускорению, сообщаемому телу ее приложе­нием.

При статическом действии силы на данное тело (М) действуют два тела (А и В); всего имеется три материальных объекта (рис. 23, а). Силы F а и f в, приложенные к телу М, равны по величине и противоположны по направлению, они взаимно уравновешиваются. Их равнодействующая равна нулю. Ускорение, вызванное ими, также равно нулю. Скорость не изменяется (остается постоянной - равно­мерное движение или отно­сительная неподвижность).

Силу fa, дейст­вующую статиче­ски, можно изме­рить уравновеши­вающей ее силой f в.

Рассмотрим три случая про­явления статического действия силы, когда все тела неподвижны -

а)гимнаст в висе на перекладине; опорная реакция уравновешивает силу тяжести тела (G);

б) уравновешенное тело движется перпендикулярно уравновешенной силе тяжести - конькобежец скользит по льду; опорная реакция уравновешивает силу тяжести тела (G); последняя прямо не влияет на скорость скольжения;

в) уравновешенное тело по инерции движется по направлению дей­ствия уравновешенной силы; горнолыжник скользит с постоянной скоростью по склону; силы сопротивления (воздуха и трения лыж по снегу - Q) уравновешивают скатывающую составляющую силы тяжести (G). Во всех трех случаях вне зависимости от состояния покоя или направления движения тела урав­новешенная сила не изменяет движения; скорости в направлении ее действия по­стоянны.

Следует подчеркнуть, что во всех случаях статическое действие силы вызывает деформацию тела.

При динамическом действии силы на данное тело М действует неуравновешенная сила. В задачах по теоретической меха­нике часто рассматривается лишь эта одна движущая сила, как мера действия лишь одного движущего тела.

Движущая сила - это сила, которая совпа­дает с направлением движения (попутная) или образует с ним острый угол и при этом может совершать положительную работу (увеличивать энергию тела).

Однако в реальных условиях движений человека всегда сущест­вует среда (воздух или вода), действуют опора и другие внешние тела (снаряды, инвентарь, партнеры, противники и др.). Все они могут оказывать тормозящее действие. Более того, ни одного реального дви­жения без участия тормозя­щих сил просто не бывает.

Тормозящая сила на­правлена противопо­ложно направлению движения (встречная) или образует с ним тупой угол. Она может совер­шать отрицательную работу (уменьшать энергию тела).

Часть движущей силы, равная по величине тормозящей уравновешивает последнюю - это уравновешивающая сила (Fyp).

Избыток же движущей силы над тормозящей - ускоряющая сила (Fуск) - вызывает ус­корение тела с массой m согласно 2-му закону Ньютона (Fy=ma).

Следовательно, скорость не остается постоянной, а изменяется, т. е. возникает ускорение. Это и есть динамическое дейст­вие силы F.

Силу F уск, действующую динамически, мож­но измерить по массе тела и его ускорению.

Классификация сил. Силы, которые, изучают при анализе движений человека, в зависимости от общих признаков делятся на группы. По способу взаимодействия тел все силы делятся на д и с т а н т н ы е, возникающие на расстоянии без непосредственного соприкосновения тел, и контактные, которые возникают лишь при соприкосновении тел.

К дистантным силам в механике относят силы всемирного тяготе­ния, из которых в биомеханике изучаются силы земного тяготения, проявляющиеся в силах тяжести . Контактные силы включают упругие силы и силы трения .

По влиянию на движение различают силы а к т и в н ы е (или задаваемые) и реакции связи . Напоминаем, что связи -это огра­ничения движения объекта, осуществляемые другими телами . Сила, с которой связь противодействует движению, и представляет собою реакцию связи. Она заранее неизвестна и зависит от действия на тело других сил и движения самого тела.

Реакции связи сами по себе не вызывают движения, они только противодействуют активным силам или уравновешивают их. Если же реакции связи не уравновешивают активных сил, тогда и начинается движение под действием последних.

По источнику возникновения относительно системы (например, тела человека) силы различают в н е ш н и е, вызванные действием тел внешних относительно системы, и внутренние, вызванные взаи­модействиями внутри системы. Это деление необходимо при определе­нии возможностей действия тех или иных сил. Одну и ту же силу сле­дует считать внешней или внутренней в зависимости от того, относи­тельно какого объекта мы ее рассматри­ваем.

По способу приложениясилы в меха­нике делят на сосредоточенные , приложенные к телу в одной точке, и распределенные . Последние делят на поверхностные и объемные.

По характеру силы бываютпостоянные и переменные. В качестве примера постоянной силы можно назвать силу тяжести (в данном пункте Земли). Одна и та же сила может изменяться в зависи­мости от нескольких условий. Практически в движении человека по­стоянные силы почти не встречаются. Все силы переменные. Они меняют­ся в зависимости от времени (мышца с течением времени изменяет си­лу тяги), расстояния (в разных пунктах Земли даже «постоянная сила» тяжести различна), скорости (сопротивление среды зависит от относи­тельной скорости тела и среды).

Поскольку в биомеханике особенно важно взаимодействие тела человека с внешним окружением, вызываемое движениями частей те­ла, далее будут подробно рассмотрены силы внешние и внутренние относительно системы (тела человека). Взаимодействие физических объектов - главная причина изменения движений. Поэтому мере взаимодействия - силе - в биомеханике уделяетсяособое вни­мание.

Момент силы

Момент силы - это мера механического воздействия, способ­ного поворачивать тело (мера вращающего действия силы). Он численно определяется произведением модуля силы на ее плечо (расстояние от центра момента1 до линии действия силы):

Момент силы имеет знак плюс, если сила сообщает вращение про­тив часовой стрелки, и минус при обратном его направлении.

Вращающая способность силы проявляет­ся в создании, изменении или прекращении вращательного движения.

Полярный момент силы (момент силы относительно точки) может быть определен для любой силы относительно этой точки (О) (центр момента). Если расстояние от линии действия силы до избранной точки равно нулю, то и момент силы равен нулю. Сле­довательно, расположенная таким образом сила не обладает вращаю­щей способностью относительно этого центра. Площадь прямоуголь­ника (Fd) численно равна модулю момента силы.

Когда несколько моментов силы приложено к одному телу, их мож­но привести к одному моменту - главному моменту.

Для определения вектора момен­та силы1 надо знать: а) м о д у л ь момента (произведение модуля силы на ее плечо); б) плос­кость поворота (проходит через линию действия силы и центр момента) и в)направление поворота в этой плоскости.

Осевой момент силы (моментсилы относительно оси) может быть определен для любой силы, кроме совпадающей с осью, ей параллельной или ее пересекающей. Иначе говоря, сила и ось не должны лежать в одной плоскости.

Применяют статическое измерение моментасилы,если его уравновешивает лежащий в той же плоскости равный ему по модулю и противоположный по направлению момент другой силы отно­сительно того же центра момента (например, при равновесии рычага). Моменты сил тяжести звеньев относительно их проксимальных суста­вов называют статическими моментами звеньев .

Применяют динамическое измерение момента силы, если известны момент инерции тела относительно оси вращения и его угловое ускорение. Как и силы, моменты сил относительно центра мо­гут быть движущими и тормозящими , а стало быть, и уравновешивающими, ускоряющими и замедляю­щими . Момент силы может быть и отклоняющим - откло­няет в пространстве плоскость поворота.

При всех ускорениях возникают силы инерции: при нормальных ус­корениях - центробежные силы инерции, при касательных ускорениях (положительных или отрицательных) - касательные силы инерции. Центробежная сила инерции направлена по радиусу вращения и не имеет момента относительно центра вращения. Касательная же сила инерции приложена для твердого звена в центре его качаний. Таким образом, имеется момент силы инерции относительно оси вращения.

Действие силы

ОПРЕДЕЛЕНИЕ

Мерой инертности вращающегося тела является момент инерции (J) относительно оси, вокруг которой происходит вращение.

Это скалярная (в общем случае тензорная) физическая величина, которая равна произведению масс материальных точек () на которые следует провести разбиение рассматриваемого тела, на квадраты расстояний () от них до оси вращения:

где r - функция положения материальной точки в пространстве; - плотность тела; -объем элемента тела.

Для однородного тела выражение (2) можно представить как:

Момент инерции в международной системе единиц измеряется в:

Величина J входит в основные законы, при помощи которых описывают вращение твердого тела.

В общем случае величина момента инерции зависит от направления оси вращения, а так как в процессе движения вектор обычно изменяет свое направление относительно тела, то момент инерции следует рассматривать как функцию времени. Исключением является момент инерции тела, вращающегося вокруг неподвижной оси. В таком случае момент инерции остается постоянным.

Теорема Штейнера

Теорема Штейнера дает возможность вычислить момент инерции тела относительно произвольной оси вращения, когда является известным момент инерции рассматриваемого тела по отношению к оси, проходящей через центр масс этого тела и эти оси являются параллельными. В математическом виде теорема Штейнера представляется как:

где - момент инерции тела относительно оси вращения, проходящей через центр масс тела; m - масса, рассматриваемого тела; a- расстояние между осями. Обязательно следует помнить, что оси должны быть параллельны. Из выражения (4) следует, что:

Некоторые выражения для вычисления моментов инерции тела

При вращении вокруг оси материальная точка имеет момент инерции равный:

где m - масса точки; r - расстояние от точки до оси вращения.

Для однородного тонкого стержня массой m и длиной l J относительно оси, проходящей через его центр масс (ось перпендикулярна стержню), равен:

Тонкое кольцо, с массой вращающееся около оси, которая проходит через его центр, перпендикулярно плоскости кольца, то момент инерции вычисляется как:

где R - радиус кольца.

Круглый однородный диск, радиуса R и массы m имеет J относительно оси, проходящей через его центр и перпендикулярной плоскости диска, равный:

Для однородного шара

где m - масса шара; R - радиус шара. Шар вращается около оси, которая проходит через его центр.

Если осями вращения являются оси прямоугольной декартовой системы координат, то для непрерывного тела моменты инерции можно вычислить как:

где - координаты бесконечно малого элемента тела.

Примеры решения задач

ПРИМЕР 1

Задание Два шарика, которые можно считать точечными, скреплены тонким невесомым стержнем. Длина стержня l. Каков момент инерции данной системы, по отношению к оси, которая проходит перпендикулярно стержню через центр масс. Массы точек одинаковы и равны m.
Решение Найдем момент инерции одного шарика () относительно оси, находящейся от него на расстоянии :

Момент инерции второго шарика будет равен :

Суммарный момент инерции системы равен сумме:

Ответ

ПРИМЕР 2

Задание Каков момент инерции физического маятника относительно оси, которая проходит через точку O (рис.1)? Ось перепендикулярна плоскости рисунка. Считайте, что физический маятник состоит из тонкого стержня длины l, имеющего массу m и диска массы . Диск прикреплен к нижнему концу стержня и имеет радиус равный

Решение Момент инерции нашего маятника (J) будет равен сумме момента инерции стержня (), вращающегося относительно оси, проходящей через точку О и диска (), вращающегося вокруг той же оси:

ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ СИСТЕМЫ ТЕЛ

С ПОМОЩЬЮ МАЯТНИКА ОБЕРБЕКА.

Цель работы – определить момент инерции системы четырех одинаковых грузов массы m двумя способами: 1) экспериментально с помощью маятника Обербека, 2) теоретически, считая грузы материальными точками. Сравнить полученные результаты.

Приборы и принадлежности : маятник Обербека, секундомер, масштабная линейка, набор грузов, штангенциркуль.

Теоретическое введение

Момент инерции – физическая величина, характеризующая инертность тела при вращательном движении.

Моментом инерции материальной точки относительно оси вращения называется произведение массы этой точки на квадрат ее расстояния до оси (см. рис. 1)

Моментом инерции произвольного тела относительно оси называется сумма моментов инерции материальных точек из которых состоит тело, относительно этой оси (см. рис. 2)

Для однородных тел правильной геометрической формы можно заменить суммирование интегрированием.

,

где dm = ρdV (ρ – плотность вещества, dV – элемент объема)

Таким образом получены формулы некоторых тел массой m относительно оси, проходящей через центр тяжести:

а) стержня длиной относительно оси, перпендикулярной стержню

,

б) обруча (а также тонкостенного цилиндра) относительно оси, перпендикулярной плоскости обруча и проходящей через его центр тяжести (совпадающей с осью цилиндра)

,

где – радиус обруча (цилиндра)

в) диска (сплошного цилиндра) относительно оси, перпендикулярной плоскости диска и проходящей через его центр тяжести (совпадающей с осью цилиндра)


,

где – радиус диска (цилиндра)

г) шара радиуса R относительно оси произвольного направления, проходящей через его центр тяжести

.

Момент инерции тела зависит: 1) от формы и размеров тела, 2) от массы и распределения масс, 3) от положения оси относительно тела.

Теорема Штейнера о параллельных осях записывается как:

,

где – момент инерции тела массой m относительно произвольной оси, – момент инерции этого тела относительно оси, проходящей через центр тяжести тела параллельно произвольной оси, – расстояние между осями.

Описание установки.

Маятник Обербека представляет собой крестовину, состоящую из шкива и четырех равноплечих стержней, закрепленных на горизонтальной оси (см. рис.2). На стержнях на равных расстояниях от оси вращения насажены четыре одинаковых груза массы m каждый. При помощи груза m 1 , прикрепленного к концу шнура, намотанного на один из шкивов, вся система может быть приведена во вращательное движение. Для отсчета высоты падения h груза m 1 имеется вертикальная шкала.

Запишем второй закон Ньютона для падающего груза в векторной форме

(1)

где
- сила тяжести;
- сила натяжения шнура (см. рис. 1);

- линейное ускорение, с которым падает груз m 1 вниз.

Принимая направление движения груза за положительное, перепишем уравнение (I) в скалярной форме

(2)

откуда получим выражение для силы натяжения шнура

Линейное ускорение a находится из формулы пути равноускоренного движения без начальной скорости

(4)

где h – высота падения груза m 1 ; t – время падения.

Сила натяжения нити F нат вызывает ускоренное вращение крестовины. Основной закон вращательного движения крестовины с учетом сил трения запишется так:

M M тр = I i , (5)

где М – момент силы натяжения; M тр - момент сил трения; I - момент инерции крестовины; i - угловое ускорение, с которым вращается крестовина. Величина момента сил трения M тр по сравнению с величиной вращающего момента М невелика, и, следовательно, ею можно пренебречь.

Из уравнения (5) с учетом сделанного замечания получаем оконча-тельную формулу для расчета момента инерции крестовины

(6)

где r - радиус шкива. Угловое ускорение i определяется по формуле

(7)

Подставляя (3) и (7) в (6), получаем окончательную формулу для расчета момента инерции крестовины

(8)

Порядок выполнения работы .

Экспериментальное определение момента инерции системы 4 х грузов.

1. Снять со стержней грузы m .

2. Намотать в один слой шнур на шкив, установив груз m 1 на заранее выбран-ной высоте h . Отпустив крестовину, замерить время падения t о груза с помо-щью секундомера. Опыт повторить пять раз (при одной и той же высоте паде-ния h ).

3. Закрепить на концах стержней грузы m .

4. Выполнить операции, указанные в пункте 2, измеряя секундомером время падения t . Опыт повторить пять раз.

5. С помощью штангенциркуля измерить диаметр шкива d в пяти разных положениях.

6. Результаты измерений занести в таблицу. Найти приближенные значения и по методу Стьюдента оценить абсолютные погрешности измерения величин t о, t и d .

а) крестовина без грузов (a о ),

б) крестовина с грузами ).

8. По формуле (8) вычислить момент инерции крестовины без грузов (I o ) и с грузами (I), используя приближенные значения m 1, R , g и полученные значения а и а о.

    Вычислить погрешности измерений по формулам:

(9)

(10)

Таблица 1

Результаты измерений и вычислений

Часть II .

1. Теоретически найти момент инерции системы 4 х грузов массы m, находящихся на расстоянии R от оси вращения (считая грузы материальными точками)

(11)

2. Сравнить результаты эксперимента и расчетов. Вычисть относительную погрешность

(12)

и сделать вывод о том, как велико расхождение полученных результатов.

Контрольные вопросы.

1. Что называется моментом инерции материальной точки и произвольного тела?

2. От чего зависит момент инерции тела относительно оси вращения?

3. Приведите примеры формул момента инерции тел. Как они получены?

4. Теорема Штейнера о параллельных осях и ее практическое использование.

5. Вывод формулы для расчета момента инерции крестовины с грузами и без грузов.

Литература

1. Савельев И. В. Курс общей физики: Учебн. пособие для втузов: в 3 т. Т.1: Механика. Молекулярная физика. - 3-е изд., испр. - М.: Наука, 1986. – 432с.

2. Детлаф А. А. , Яворский Б. М. Курс физики: Учебн. пособие для втузов. - М.: Высшая школа, 1989. - 607 с. - предм. указ.: с. 588-603.

3. Зисман Г. А., Тодес О. М.. Курс общей физики для втузов: в 3 т. Т. 1: Механика, молекулярная физика, колебания и волны - 4-е изд., стереотип. - М.: Наука, 1974. - 340 с.

4. Методические указания к выполнению лабораторных работ по разделу “Механика“.- Иваново, ИХТИ, 1989 г. (под редакцией Биргера Б.Н.).



© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний