Как доказать что сечение параллелепипеда трапеция. Пусть прямая a перпендикулярна к плоскости

Главная / А. П. Чехов

\[{\Large{\text{Произвольная трапеция}}}\]

Определения

Трапеция – это выпуклый четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны.

Параллельные стороны трапеции называются её основаниями, а две другие стороны – боковыми сторонами.

Высота трапеции – это перпендикуляр, опущенный из любой точки одного основания к другому основанию.

Теоремы: свойства трапеции

1) Сумма углов при боковой стороне равна \(180^\circ\) .

2) Диагонали делят трапецию на четыре треугольника, два из которых подобны, а два другие – равновелики.

Доказательство

1) Т.к. \(AD\parallel BC\) , то углы \(\angle BAD\) и \(\angle ABC\) – односторонние при этих прямых и секущей \(AB\) , следовательно, \(\angle BAD +\angle ABC=180^\circ\) .

2) Т.к. \(AD\parallel BC\) и \(BD\) – секущая, то \(\angle DBC=\angle BDA\) как накрест лежащие.
Также \(\angle BOC=\angle AOD\) как вертикальные.
Следовательно, по двум углам \(\triangle BOC \sim \triangle AOD\) .

Докажем, что \(S_{\triangle AOB}=S_{\triangle COD}\) . Пусть \(h\) – высота трапеции. Тогда \(S_{\triangle ABD}=\frac12\cdot h\cdot AD=S_{\triangle ACD}\) . Тогда: \

Определение

Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.

Теорема

Средняя линия трапеции параллельна основаниям и равна их полусумме.


Доказательство*

1) Докажем параллельность.


Проведем через точку \(M\) прямую \(MN"\parallel AD\) (\(N"\in CD\) ). Тогда по теореме Фалеса (т.к. \(MN"\parallel AD\parallel BC, AM=MB\) ) точка \(N"\) - середина отрезка \(CD\) . Значит, точки \(N\) и \(N"\) совпадут.

2) Докажем формулу.

Проведем \(BB"\perp AD, CC"\perp AD\) . Пусть \(BB"\cap MN=M", CC"\cap MN=N"\) .


Тогда по теореме Фалеса \(M"\) и \(N"\) - середины отрезков \(BB"\) и \(CC"\) соответственно. Значит, \(MM"\) – средняя линия \(\triangle ABB"\) , \(NN"\) - средняя линия \(\triangle DCC"\) . Поэтому: \

Т.к. \(MN\parallel AD\parallel BC\) и \(BB", CC"\perp AD\) , то \(B"M"N"C"\) и \(BM"N"C\) – прямоугольники. По теореме Фалеса из \(MN\parallel AD\) и \(AM=MB\) следует, что \(B"M"=M"B\) . Значит, \(B"M"N"C"\) и \(BM"N"C\) – равные прямоугольники, следовательно, \(M"N"=B"C"=BC\) .

Таким образом:

\ \[=\dfrac12 \left(AB"+B"C"+BC+C"D\right)=\dfrac12\left(AD+BC\right)\]

Теорема: свойство произвольной трапеции

Середины оснований, точка пересечения диагоналей трапеции и точка пересечения продолжений боковых сторон лежат на одной прямой.


Доказательство*
С доказательством рекомендуется ознакомиться после изучения темы “Подобие треугольников”.

1) Докажем, что точки \(P\) , \(N\) и \(M\) лежат на одной прямой.


Проведем прямую \(PN\) (\(P\) – точка пересечения продолжений боковых сторон, \(N\) – середина \(BC\) ). Пусть она пересечет сторону \(AD\) в точке \(M\) . Докажем, что \(M\) – середина \(AD\) .

Рассмотрим \(\triangle BPN\) и \(\triangle APM\) . Они подобны по двум углам (\(\angle APM\) – общий, \(\angle PAM=\angle PBN\) как соответственные при \(AD\parallel BC\) и \(AB\) секущей). Значит: \[\dfrac{BN}{AM}=\dfrac{PN}{PM}\]

Рассмотрим \(\triangle CPN\) и \(\triangle DPM\) . Они подобны по двум углам (\(\angle DPM\) – общий, \(\angle PDM=\angle PCN\) как соответственные при \(AD\parallel BC\) и \(CD\) секущей). Значит: \[\dfrac{CN}{DM}=\dfrac{PN}{PM}\]

Отсюда \(\dfrac{BN}{AM}=\dfrac{CN}{DM}\) . Но \(BN=NC\) , следовательно, \(AM=DM\) .

2) Докажем, что точки \(N, O, M\) лежат на одной прямой.


Пусть \(N\) – середина \(BC\) , \(O\) – точка пересечения диагоналей. Проведем прямую \(NO\) , она пересечет сторону \(AD\) в точке \(M\) . Докажем, что \(M\) – середина \(AD\) .

\(\triangle BNO\sim \triangle DMO\) по двум углам (\(\angle OBN=\angle ODM\) как накрест лежащие при \(BC\parallel AD\) и \(BD\) секущей; \(\angle BON=\angle DOM\) как вертикальные). Значит: \[\dfrac{BN}{MD}=\dfrac{ON}{OM}\]

Аналогично \(\triangle CON\sim \triangle AOM\) . Значит: \[\dfrac{CN}{MA}=\dfrac{ON}{OM}\]

Отсюда \(\dfrac{BN}{MD}=\dfrac{CN}{MA}\) . Но \(BN=CN\) , следовательно, \(AM=MD\) .

\[{\Large{\text{Равнобедренная трапеция}}}\]

Определения

Трапеция называется прямоугольной, если один из ее углов – прямой.

Трапеция называется равнобедренной, если ее боковые стороны равны.

Теоремы: свойства равнобедренной трапеции

1) У равнобедренной трапеции углы при основании равны.

2) Диагонали равнобедренной трапеции равны.

3) Два треугольника, образованные диагоналями и основанием, являются равнобедренными.

Доказательство

1) Рассмотрим равнобедренную трапецию \(ABCD\) .

Из вершин \(B\) и \(C\) опустим на сторону \(AD\) перпендикуляры \(BM\) и \(CN\) соответственно. Так как \(BM\perp AD\) и \(CN\perp AD\) , то \(BM\parallel CN\) ; \(AD\parallel BC\) , тогда \(MBCN\) – параллелограмм, следовательно, \(BM = CN\) .

Рассмотрим прямоугольные треугольники \(ABM\) и \(CDN\) . Так как у них равны гипотенузы и катет \(BM\) равен катету \(CN\) , то эти треугольники равны, следовательно, \(\angle DAB = \angle CDA\) .

2)

Т.к. \(AB=CD, \angle A=\angle D, AD\) – общая, то по первому признаку . Следовательно, \(AC=BD\) .

3) Т.к. \(\triangle ABD=\triangle ACD\) , то \(\angle BDA=\angle CAD\) . Следовательно, треугольник \(\triangle AOD\) – равнобедренный. Аналогично доказывается, что и \(\triangle BOC\) – равнобедренный.

Теоремы: признаки равнобедренной трапеции

1) Если у трапеции углы при основании равны, то она равнобедренная.

2) Если у трапеции диагонали равны, то она равнобедренная.

Доказательство

Рассмотрим трапецию \(ABCD\) , такую что \(\angle A = \angle D\) .


Достроим трапецию до треугольника \(AED\) как показано на рисунке. Так как \(\angle 1 = \angle 2\) , то треугольник \(AED\) равнобедренный и \(AE = ED\) . Углы \(1\) и \(3\) равны как соответственные при параллельных прямых \(AD\) и \(BC\) и секущей \(AB\) . Аналогично равны углы \(2\) и \(4\) , но \(\angle 1 = \angle 2\) , тогда \(\angle 3 = \angle 1 = \angle 2 = \angle 4\) , следовательно, треугольник \(BEC\) тоже равнобедренный и \(BE = EC\) .

В итоге \(AB = AE - BE = DE - CE = CD\) , то есть \(AB = CD\) , что и требовалось доказать.

2) Пусть \(AC=BD\) . Т.к. \(\triangle AOD\sim \triangle BOC\) , то обозначим их коэффициент подобия за \(k\) . Тогда если \(BO=x\) , то \(OD=kx\) . Аналогично \(CO=y \Rightarrow AO=ky\) .


Т.к. \(AC=BD\) , то \(x+kx=y+ky \Rightarrow x=y\) . Значит \(\triangle AOD\) – равнобедренный и \(\angle OAD=\angle ODA\) .

Таким образом, по первому признаку \(\triangle ABD=\triangle ACD\) (\(AC=BD, \angle OAD=\angle ODA, AD\) – общая). Значит, \(AB=CD\) , чтд.


«Серия «МГУ - школе» основана в 1999 году Саакян С. М. Геометрия. Поурочные разработки. 10-11 классы: С12 Учебное пособие для общеобразоват. организаций / С. М. Саакян, В. Ф. Бутузов. - ...»

-- [ Страница 2 ] --

3. Обсудить устно решения задач 1, 2, 3, приведённые в учебнике.

В связи с необходимостью проводить постоянную работу по развитию устной речи учащихся следует требовать от них не только построения сечений в рассматриваемых задачах, но и устного рассказа о ходе построения с соответствующими обоснованиями.

Для краткости записи решений можно использовать известную символику.

Более сложные задачи на построение сечений тетраэдра и параллелепипеда, когда данные точки, через которые проводится сечение, лежат внутри граней, могут быть рассмотрены на факультативных занятиях и спец курсах.



Для классной и домашней работы можно использо вать задачи 74, 75, 79-87, дополнительные задачи к главе I.

Задача 105. Изобразите тетраэдр DABC и отметьте точки M и N на р брах BD и CD и внутреннюю точку K грани ABC. Постройте сечение тетраэдра плоскостью MNK.

Р е ш е н и е. Обозначим секущую плоскость буквой.

Тогда M, N, M CDB, N CDB, CDB = MN.

Возможны два случая: 10) MN BC = P; 20) MN BC.

Рассмотрим их раздельно.

10) Проводим прямую MN. P, K, P ABC, K ABC, ABC = PK. Проводим прямую PK. Пусть она пересе кает стороны AC и AB в точках E и F. Проводим отрез ки NE и MF. Искомое сечение - четыр хугольник MNEF (рис. 1.31).

20) Через точку K проводим EF BC. Проводим отрез ки NE и MF. Искомое сечение - четыр хугольник MNEF.

Задача 85. Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечение плоскостью BKL, где K - середина ребра AA1, а L - середина CC1.

Докажите, что построенное сечение - параллелограмм.

Р е ш е н и е. Проведем отрезок KL. Согласно аксиоме А2 он лежит в плоскости сечения.

Так как точки K и L - середины боковых р бер, то отрезок KL проходит через середину диагонали AC1, а по этому согласно свойству 20 параллелепипеда (п. 13) он проходит через середину диагонали BD1 (точка O на ри сунке 1.32).

B, O, следовательно, BD1. Искомое сечение - четырехугольник BLD1K. Так как его диагонали KL и BD1 точкой пересечения делятся пополам, то четыр х угольник BLD1K - параллелограмм.

–  –  –

1. Объясните, как построить сечение тетраэдра DABC плоскостью, проходящей через данные точки M, N, K.

2. В задачах 1-3 найдите периметр сечения, если M, N, K - середины р бер и каждое ребро тетраэдра равно a.

–  –  –

1. Объясните, как построить сечение куба плоско стью, проходящей через три данные точки, являющие ся либо вершинами куба, либо серединами его р бер (три данные точки на рисунках выделены).

2. В задачах 1-4 и 6 найдите периметр сечения, если ребро куба равно a. В задаче 5 докажите, что AE = 1 a.

–  –  –

1. Объясните, как построить сечение параллелепи педа плоскостью, проходящей через точки B, D и M, если M - середина ребра B1C1.

2. Докажите, что построенное сечение есть равно бедренная трапеция.

3. Найдите стороны трапеции.

Р е ш е н и е.

1) Пусть - секущая плоскость, ABCD = BD, BCC1B1 = BM, MN BD, сечение - трапеция BDNM.

2) BB1M = DD1N, BM = DN, трапеция BDNM рав нобедренная.

–  –  –

При решении задач, связанных с сечением тетраэдра некоторой плоскостью, часто оказывается полезной теорема Менелая, в некоторых других задачах - теорема Чевы. Поэтому в классах с углубл нным изучением математики изучение пункта 14 «Задачи на построение сечений» целесообразно совместить с изучением теорем Менелая и Чевы (пункты 95 и 96). Привед м пример такой задачи.

Задача 1. В тетраэдре ABCD на р брах AB, AD и BC взяты соответственно точки K, L и M так, что AK: KB = = 2: 3, AL = LD, BM: MC = 4: 5.

Постройте сечение тетраэдра плоскостью KLM и найдите, в каком отношении эта плоскость делит ребро CD.

Р е ш е н и е.

1) Провед м отрезки KL и KM, а затем продолжим отрезки KL и BD, лежащие в плоскости ABD, до пересечения в точке E (рис. 1.33). Точки E и M лежат в секущей плоскости KLM и также в плоскости BCD.

Проведя отрезок ME, получим точку N, в которой секущая плоскость KLM пересекается с ребром CD.

Четыр хугольник KLNM - искомое сечение.

2) Найд м отношение CN: ND. С этой целью применим теорему Менелая к треугольникам ABD и BCD. На сторонах AB и AD треугольника ABD лежат точки K и L, а на продолжении стороны BD - точка E, прич м точки K, L и E лежат на одной прямой. Поэтому согласно теореме Менелая имеет место равенство

AK BE DL


= 1.

KB ED LA

–  –  –

MC BE находим искомое отношение CN: ND = 15: 8.

С целью использования теоремы Менелая в задаче 105 учебника можно дать дополнительное задание:

Найдите отношение, в котором плоскость MNK делит ребро AB, если CN: ND = 2: 1, BM = MD и точка K - середина медианы AL треугольника ABC. (Ответ: 3: 2.) Аналогичное дополнительное задание можно дать в задаче 106:

Найдите отношение, в котором плоскость MNK делит ребро BC, если она делит ребро AB в отношении 1: 4 (считая от точки A), точка K - середина ребра CD, а точка N лежит на медиане DL треугольника ACD, при ч м DN: NL = 3: 2. (Ответ: 4: 3.) На применение теоремы Чевы можно рассмотреть сле дующую задачу:

Задача 2. На р брах AB, BC и CA тетраэдра ABCD от мечены точки C1, A1, B1 так, что AC1: C1B = 1: 2, BA1: A1C = 2: 3, CB1: B1A = 3: 1.

Докажите, что плоскости ADA1, BDB1 и CAC1 пересекаются по прямой.

–  –  –

1. Повторить основные вопросы темы «Параллельность прямых и плоскостей», заслушав ответы учащихся. Эти вопросы сформулированы в карточках к зач ту № 1.

2. Провести математический диктант № 1.1. Диктант привед н в дидактических материалах .

3. Рассмотреть решения некоторых задач из карточек к зач ту и из учебника.

Изучение темы «Параллельность прямых и плоскос тей» завершается проведением контрольной работы № 1.2 и зач та № 1 по данной теме.

–  –  –

Контрольная работа № 1.2 Вариант 1

10. Прямые a и b лежат в параллельных плоскостях и. Могут ли эти прямые быть: а) параллельными;

20. Через точку O, лежащую между параллельными плоскостями и, проведены прямые l и m. Прямая l пересекает плоскости и в точках A1 и A2 соответст венно, прямая m - в точках B1 и B2. Найдите длину от резка A2B2, если A1B1 = 12 см, B1O: OB2 = 3: 4.

3. Изобразите параллелепипед ABCDA1B1C1D1 и по стройте его сечение плоскостью, проходящей через точ ки M, N и K, являющиеся серединами р бер AB, BC и DD1.

Вариант 2

10. Прямые a и b лежат в пересекающихся плоскостях и. Могут ли эти прямые быть: а) параллельными;

б) скрещивающимися? Сделайте рисунок для каждого возможного случая.

20. Через точку O, не лежащую между параллельны ми плоскостями и, проведены прямые l и m. Прямая l пересекает плоскости и в точках A1 и A2 соответст венно, прямая m - в точках B1 и B2. Найдите длину от резка A1B1, если A2B2 = 15 см, OB1: OB2 = 3: 5.

3. Изобразите тетраэдр DABC и постройте его сечение плоскостью, проходящей через точки M и N, являющие ся серединами р бер DC и BC, и точку K, такую, что K DA, AK: KD = 1: 3.

О т в е т ы:

Вариант 2 Вариант 1

10. Рис. 1.35, a b, a b.

10. Рис. 1.34, a b, a b.

3. Сечение - трапеция.

3. Сечение - пятиугольник.

Рис. 1.34 Рис. 1.35

Урок № 24 Зач т № 1. Параллельность прямых и плоскостей Карточка 1

1. Сформулируйте аксиомы А1, А2 и А3 стереометрии.

Сформулируйте и докажите следствия из аксиом.

2. Докажите, что через любую точку пространства, не лежащую на данной прямой, проходит прямая, парал лельная данной, и притом только одна.

3. Плоскость пересекает стороны AB и AC треуголь ника ABC соответственно в точках B1 и C1. Известно, что BC, AB: B1B = 5: 3, AC = 15 см. Найдите AC1.

Карточка 2

1. Сформулируйте определение параллельных прямой и плоскости. Сформулируйте и докажите теорему, выра жающую признак параллельности прямой и плоскости.

2. Докажите, что если одна из двух параллельных прямых пересекает данную плоскость, то и другая пря мая пересекает эту плоскость.

3. Каждое ребро тетраэдра DABC равно 2 см. По стройте сечение тетраэдра плоскостью, проходящей через точки B, C и середину ребра AD. Вычислите периметр сечения.

Карточка 3

1. Сформулируйте определение скрещивающихся пря мых. Сформулируйте и докажите теорему, выражающую признак скрещивающихся прямых.

2. Докажите, что если две прямые параллельны третьей прямой, то они параллельны.

3. Постройте сечение параллелепипеда ABCDA1B1C1D1 плоскостью, проходящей через точки A, C и M, где M - середина ребра A1D1.

Карточка 4

1. Сформулируйте определение параллельных плоскос тей. Сформулируйте и докажите теорему, выражающую признак параллельности двух плоскостей.

2. Докажите, что через каждую из двух скрещиваю щихся прямых проходит плоскость, параллельная дру гой прямой, и притом только одна.

3. ABCDA1B1C1D1 - куб, ребро которого 4 см. Построй те сечение куба плоскостью, проходящей через точки A, D1 и M, где M - середина ребра BC. Вычислите пери метр сечения.

Карточка 5

1. Докажите, что противоположные грани паралле лепипеда параллельны и равны.

2. Докажите, что если стороны двух углов соответ ственно сонаправлены, то такие углы равны.

3. Параллельные плоскости и пересекают сторону AB угла BAC соответственно в точках A1 и A2, а сторону AC этого угла соответственно в точках B1 и B2. Найдите AA1, если A1A2 = 6 см, AB2: AB1 = 3: 2.

Карточка 6

1. Докажите, что диагонали параллелепипеда пересе каются в одной точке и делятся этой точкой пополам.

2. Докажите, что если две параллельные плоскос ти пересечены третьей, то линии их пересечения парал лельны.

3. Точка C лежит на отрезке AB. Через точку A про ведена плоскость, а через точки B и C - параллельные прямые, пересекающие эту плоскость соответственно в точках B1 и C1. Найдите длину отрезка BB1, если AC: CB = 4: 3, CC1 = 8 см.

1. Карточки к зач ту, содержащие основные вопросы теории и некоторые типичные задачи, даются учащимся заблаговременно (примерно за две недели до проведения зач та).

2. Готовясь к зач ту, учащиеся делают какие то запи си. Эти записи (возможно, в виде черновиков), свиде тельствующие о повторении учебного материала и подго товке к зач ту, учащиеся показывают учителю в день проведения зач та. Они могут быть использованы на зач те. При этом на основе беседы и дополнительных вопросов учитель выясняет глубину усвоения темы учащимися.

3. Зач т проводит учитель с помощью наиболее под готовленных учащихся - консультантов. Для этого класс нужно разделить на несколько групп, в каждой из которых 4-5 учеников. Один из них является помощни ком учителя в проведении зач та. По предыдущим уро кам и в начале зач та учитель должен убедиться в том, что консультанты сами на хорошем уровне владеют учеб ным материалом.

4. В течение урока учитель вед т опрос многих уча щихся. В конце урока он утверждает оценки, выставлен ные консультантами. В отдельных случаях после урока учитель может проверить записи учащихся, выполнен ные на уроке, и после этого выставить окончательную оценку по зач ту.

5. Итоговую оценку за полугодие учитель выставляет на основе текущих оценок за самостоятельные и конт рольные работы, а также устного ответа учащихся.

Решающая роль при этом принадлежит оценке по зач ту.

П Е Р П Е Н Д И К УЛ Я Р Н О С Т Ь П Р Я М Ы Х

И ПЛОСКОСТЕЙ

§ 1. ПЕРПЕНДИКУЛЯРНОСТЬ ПРЯМОЙ

И ПЛОСКОСТИ

–  –  –

Основные задачи урока Ввести понятие перпендикулярных прямых в простран стве, доказать лемму о перпендикулярности двух парал лельных прямых к третьей прямой, дать определение перпендикулярности прямой и плоскости, доказать теоре мы, в которых устанавливается связь между параллель ностью прямых и их перпендикулярностью к плоскости.

1. Напомнить понятие угла между двумя скрещиваю щимися прямыми, ввести понятие перпендикулярности двух прямых в пространстве. Отметить, что перпенди кулярные прямые могут пересекаться и могут быть скре щивающимися (см. рис. 43 учебника).

2. Доказать л е м м у: если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой.

Доказательство основано на использовании понятия угла между прямыми и может быть проведено самими учащимися с опорой на текст и рисунок 44 учебника.

3. Сформулировать определение перпендикулярности прямой и плоскости. Ввести обозначение a. Проил люстрировать понятие перпендикулярности прямой и плоскости с помощью рисунка 45 и примеров из жизни.

4. Доказать т е о р е м у: если одна из двух параллель ных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости.

Доказательство теоремы несложное. Оно основано на определении перпендикулярности прямой и плоскости и рассмотренной выше лемме и состоит из двух этапов:

1) x, x - произвольная прямая. Из условия a следует (по определению перпендикулярности прямой и плоскости), что a x;

2) так как a1 a (по условию) и a x, то (согласно лемме о перпендикулярности двух параллельных пря мых к третьей прямой) a1 x.

Итак, прямая a1 перпендикулярна к произвольной прямой x, лежащей в плоскости. А это означает, что a1.

5. Доказать о б р а т н у ю т е о р е м у: если две прямые перпендикулярны к плоскости, то они параллельны.

Доказательство проводится по учебнику (см. рис. 47, а, б). Повторить это доказательство можно на следующих уроках.

На первый взгляд может показаться странным, поче му эта теорема названа обратной предыдущей теореме.

Ведь в предыдущей теореме условие состояло в том, что a a1 и a, а заключением теоремы было: a1. В дан ной теореме условие состоит в том, что a и a1, а заключение - в том, что a a1.

Таким образом, с формальной точки зрения данная теорема не является обратной предыдущей, поскольку условие и заключение данной теоремы не совпадают со ответственно с заключением и условием предыдущей тео ремы. Тем не менее можно так сформулировать эти тео ремы, что каждая из них будет обратной другой.

Привед м эту формулировку.

Пусть прямая a перпендикулярна к плоскости. Тогда:

если a a1, то a1, и обратно:

если a1, то a a1.

6. Для классной и домашней работы можно исполь зовать задачи 116-118, 120.

Задача 116 а). Дан параллелепипед ABCDA1B1C1D1.

Докажите, что DC B1C1 и AB A1D1, если BAD = 90°.

Р е ш е н и е.

1) В параллелепипеде все грани - параллелограммы. Так как BAD = 90° (по условию), то грань ABCD - прямоуголь ник, поэтому AB AD и DC BC (рис. 2.1).

2) B1C1 BC (так как грань BB1C1C - параллелограмм) и BC DC. Отсюда по лемме о перпендикулярности двух па раллельных прямых к треть ей B1C1 DC. Рис. 2.1

3) Аналогично доказывает ся, что AB A1D1. Действитель но, A1D1 AD (так как AA1D1D - параллелограмм) и AB AD, по этому AB A1D1.

Задача 120. Через точку O пересечения диагоналей квад рата со стороной a проведена прямая OK, перпендикуляр ная к плоскости квадрата.

Найдите расстояние от точки K до вершин квадрата, если Рис. 2.2 OK = b.

Р е ш е н и е.

2) Треугольники KAO, KBO, KCO и KDO равны по двум катетам, откуда KA = KB = KC = KD (рис. 2.2).

KAO получаем AO = a 2. Так как KA =

–  –  –

Урок № 26 Тема урока: Признак перпендикулярности прямой и плоскости Основные задачи урока Изучить теорему, выражающую признак перпендику лярности прямой и плоскости; рассмотреть задачи на применение этой теоремы.

Примерный план проведения урока

1. Повторить теоретический материал предыдущего урока пут м опроса учащихся.

2. В качестве подготовительной работы к изучению нового материала решить задачу 119.

Задача 119. Прямая OA перпендикулярна к плоскос ти OBC, и точка O является серединой отрезка AD.

Докажите, что: а) AB = DB; б) AB = AC, если OB = OC;

в) OB = OC, если AB = AC.

Р е ш е н и е.

а) OA OBC по условию, следовательно, OA OB по определению перпендикулярности прямой к плоскости.

OA = OD по условию задачи, поэтому прямая OB являет ся серединным перпендикуля ром к отрезку AD, и, следова тельно, AB = DB (рис. 2.3).

б) Так как по условию OA OBC, то OA OC. Если OB = OC, то прямоугольные треугольники AOC и AOB равны по двум катетам, и, следовательно, равны их ги потенузы, т. е. AB = AC.

в) Если AB = AC, то прямо угольные треугольники AOC и Рис. 2.3 AOB равны по катету и гипотену зе, откуда следует, что OB = OC.

3. Доказать теорему, выражающую п р и з н а к п е р п е н д и к у л я р н о с т и п р я м о й и п л о с к о с т и: если прямая перпендикулярна к двум пересекающимся пря мым, лежащим в плоскости, то она перпендикулярна к этой плоскости.

В процессе доказательства теоремы выделяются сле дующие этапы:

1) Вначале рассматриваем случай, когда прямая a про ходит через точку O пересечения прямых p и q, лежа щих на плоскости. Доказываем, что прямая a перпен дикулярна к любой прямой, лежащей в плоскости и про ходящей через точку O.

2) Используя лемму о перпендикулярности двух па раллельных прямых к третьей, делаем вывод о перпен дикулярности прямой a к любой прямой, лежащей в плоскости. Это означает, что a.

3) Рассматриваем теперь случай, когда прямая a не проходит через точку O пересечения p и q. В этом слу чае проводим через точку O прямую a1, параллельную пря мой a. В силу упомянутой леммы a1 p и a1 q, и поэто му согласно доказанному в первом случае a1. Отсю да по первой теореме п. 16 следует, что a. Это завершает доказательство теоремы.

4. В связи с тем что доказательство теоремы состоит из нескольких этапов, можно предложить учащимся за писать план доказательства в соответствии с содержани ем слайда 2.1.

Слайд может быть использован при подведении ито гов данного урока и на следующем уроке.

5. Для классной и домашней работы можно использо вать задачи 121, 124, 126, 128.

Задача 128. Через точку O пересечения диагоналей параллелограмма ABCD проведена прямая OM так, что MA = MC, MB = MD. Докажите, что прямая OM перпен дикулярна к плоскости параллелограмма.

–  –  –

1. Сформулируйте определение перпендикулярно сти прямой и плоскости.

2. Теорема. Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.

–  –  –

Р е ш е н и е.

1) Так как MA = MC (по усло вию) и AO = OC (диагонали па раллелограмма точкой пересе чения делятся пополам), то отрезок MO - медиана равно бедренного треугольника AMC (рис. 2.4).

Следовательно, MO также высота этого треугольника, т. е.

2) Аналогично доказывается, Рис. 2.4 что MO BD.

3) Так как MO AC и MO BD, то по признаку пер пендикулярности прямой и плоскости MO ABCD.

Урок № 27 Тема урока: Теорема о прямой, перпендикулярной к плоскости Основные задачи урока Повторить доказательство теоремы, выражающей при знак перпендикулярности прямой и плоскости; рассмот реть теорему из п. 18: через любую точку пространства проходит прямая, перпендикулярная к данной плоско сти, и притом только одна.



Примерный план проведения урока

1. Повторить доказательство теоремы, выражающей признак перпендикулярности прямой и плоскости.

2. Проверить выборочно решения задач из домашней работы.

3. Сформулировать т е о р е м у: через любую точку пространства проходит прямая, перпендикулярная к данной плоскости, и притом только одна.

Наглядно утверждение теоремы представляется впол не очевидным, однако строгое ее доказательство не явля ется простым.

Учащимся, проявляющим повышенный интерес к ма тематике, можно предложить разобрать доказательство дома самим по учебнику. При этом следует обратить их внимание на то, что в первой части доказательства вво дится в рассмотрение плоскость, проходящая через данную точку M и перпендикулярная к данной прямой a.

Существование такой плоскости доказано в задаче с ре шением, привед нной в п. 17, а единственность такой плоскости доказана в задаче 133, которая также дана с решением. Таким образом, полное доказательство данной теоремы весьма громоздко, и поэтому учитель по своему усмотрению может изложить его с той или иной степе нью полноты в зависимости от уровня класса. Отдельные фрагменты доказательства (задача из п. 17, задача 133) можно рассмотреть на уроках № 28-30, посвящ нных повторению теории и решению задач по теме.

4. Провести фронтальный опрос учащихся, используя слайд 2.2.

–  –  –

5. Для классной и домашней работы можно исполь зовать задачи 122, 123, 125, 127.

Задача 122. Прямая CD перпендикулярна к плоско сти правильного треугольника ABC. Через центр O это го треугольника проведена прямая OK, параллельная прямой CD. Известно, что AB = 16 3 см, OK = 12 см, CD = 16 см. Найдите расстояния от точек D и K до вер шин A и B треугольника.

Р е ш е н и е.

1) По условию задачи OK CD, следовательно, OK ABC (рис. 2.5).

2) Точка O - центр правильного треугольника ABC, следовательно, OA = OB = OC = AB = 16 см.

–  –  –

Уроки № 28-30 Тема уроков: Решение задач на перпендикулярность прямой и плоскости. Повторение вопросов теории Основные задачи уроков Выработать навыки решения основных типов задач на перпендикулярность прямой и плоскости, повторить во просы теории.

1. Повторить вопросы теории в ходе опроса учащихся (пп. 15-18).

2. Решить выборочно задачи 129-137, использовать вопросы 1-9 к главе II.

3. Рассмотреть частично или полностью доказатель ство теоремы из п. 18.

4. Можно использовать задачи из дидактических ма териалов .

5. Можно провести математический диктант (№ 2 в дидактических материалах ).

6. Полезна работа на уроке со слайдом 2.3.

На уроке № 30 проводится самостоятельная работа.

Самостоятельная работа № 2.1 Вариант 1

10. Д а н о: AB, M и K - произвольные точки плос кости. Докажите, что AB MK.

2. Треугольник ABC правильный, точка O - его центр. Прямая OM перпендикулярна к плоскости ABC.

а)0 Докажите, что MA = MB = MC.

б) Найдите MA, если AB = 6 см, MO = 2 см.

–  –  –

Вариант 2

10. Д а н о: прямая MA перпендикулярна к плоскости треугольника ABC. Докажите, что MA BC.

2. Четыр хугольник ABCD - квадрат, точка O - его центр. Прямая OM перпендикулярна к плоскости квад рата.

а)0 Докажите, что MA = MB = MC = MD.

б) Найдите MA, если AB = 4 см, OM = 1 см.

Ответы:

В а р и а н т 1.

В а р и а н т 2.

Задача 129. Прямая AM перпендикулярна к плоскос ти квадрата ABCD, диагонали которого пересекаются в точке O. Докажите, что:

а) прямая BD перпендикулярна к плоскости AMO;

Р е ш е н и е.

а) MA ABCD, следовательно, MA BD по определе нию перпендикулярности прямой и плоскости, BD AC по свойству диагоналей квадрата (рис. 2.7).

Итак, BD AO и BD AM, следовательно, BD AMO по признаку перпендикулярности прямой и плоскости.

б) Так как BD MOA, то прямая BD перпендикуляр на к любой прямой, лежащей в плоскости MOA, в част ности BD MO.

Задача 134. Докажите, что все прямые, проходящие через данную точку M прямой a и перпендикулярные к этой прямой, лежат в плоскости, проходящей через точку M и перпендикулярной к прямой a.

Р е ш е н и е. Обозначим буквой плоскость, проходя щую через точку M прямой a и перпендикулярную к этой прямой, и рассмотрим произвольную прямую b, также про ходящую через точку M и перпендикулярную к прямой a.

Требуется доказать, что b (рис. 2.8). Допустим, что это не так. Тогда плоскость, проходящая через прямые a и b, пересекается с плоскостью по некоторой прямой b1, проходящей через точку M и отличной от прямой b. Так как a и b1, то a b1. Мы получили, что в плоскости через точку M проходят две прямые (b и b1), пер пендикулярные к прямой a, чего не может быть. Значит, предположение неверно и прямая b лежит в плоскости.

Рис. 2.7 Рис. 2.8

Задача 136. Докажите, что если точка X равноудалена от концов данного отрезка AB, то она лежит в плоскости, прохо дящей через середину отрезка AB и перпендикулярной к пря мой AB.

Р е ш е н и е. Обозначим бук вой плоскость, проходящую через середину O отрезка AB и Рис. 2.9 перпендикулярную к прямой AB (рис. 2.9). Пусть точка X равноудалена от концов отрезка AB, т. е. XA = XB. Требуется доказать, что X.

Если точка X лежит на прямой AB, то она совпадает с точкой O, и поэтому X.

Если точка X не лежит на прямой AB, то отрезок XO является медианой равнобедренного треугольника AXB и, следовательно, высотой этого треугольника, т. е.

Таким образом, прямая XO проходит через точку O прямой AB и перпендикулярна к прямой AB. Отсюда сле дует (см. задачу 134), что прямая XO лежит в плоскос ти, и поэтому X.

Задача 137. Докажите, что через каждую из двух взаимно перпендикулярных скрещивающихся прямых проходит плоскость, перпендикулярная к другой пря мой.

Р е ш е н и е. Пусть a и b - взаимно перпендикулярные скрещивающиеся прямые. Докажем, что через прямую a проходит плоскость, перпенди кулярная к прямой b.

1) Через произвольную точ ку O прямой a провед м пря мую b1, параллельную прямой b. Тогда a b1, так как по усло вию a b (рис. 2.10).

2) Обозначим буквой плос кость, проходящую через пере секающиеся прямые a и b1, и провед м через точку O прямую c, перпендикулярную к плоско сти. Тогда c b1, а так как b b1, то c b.

3) Обозначим буквой плос кость, проходящую через пере секающиеся прямые a и c. Так как b a (по условию) и b c, Рис. 2.10 то b (по признаку перпендикулярности прямой и плоскости). Итак, через прямую a проходит плоскость, перпендикулярная к прямой b.

Аналогично доказывается, что через прямую b про ходит плоскость, перпендикулярная к прямой a.

§ 2. ПЕРПЕНДИКУЛЯР И НАКЛОННЫЕ.

УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ

–  –  –

Основные задачи урока Ввести понятие расстояния от точки до плоскости, до казать теорему о тр х перпендикулярах, показать при менение этой теоремы при решении задач.

Примерный план проведения урока

1. Используя рисунок 51 учебника, ввести понятия перпендикуляра к плоскости, наклонной, проекции на клонной на плоскость. Рассматривая прямоугольный треугольник AMH (см. рис. 51), доказать, что перпен дикуляр, провед нный из данной точки к плоскости, меньше любой наклонной, провед нной из той же точки к этой плоскости. Длина перпендикуляра, провед нного из точки к плоскости, называется расстоянием от этой точки до плоскости.

2. Обратить внимание на замечания 1, 2, 3 в п. 19 учебника, в которых введены понятия расстояния между параллельными плоскостями, параллельными прямой и плос костью, скрещивающимися пря мыми. Полезно выполнить ри сунки и обосновать справедли вость утверждений, привед н ных в замечаниях.

З а м е ч а н и е 1. Если две плоскости параллельны, то все точки одной плоскости равно удалены от другой плоскости.

Пусть, A, M. Про ведем AA0 и MM0, тогда Рис. 2.11 AA0 MM0 (рис. 2.11), поэтому AA0 = MM0 (как отрезки параллельных прямых, заключ нные между параллель ными плоскостями).

Итак, расстояния от двух произвольных точек A и M плоскости до плоскости равны друг другу. То же са мое относится к расстояниям от точек плоскости до плоскости.

Расстояние от произвольной точки одной из парал лельных плоскостей до другой плоскости называется рас стоянием между параллельными плоскостями.

З а м е ч а н и е 2. Если прямая и плоскость параллель ны, то все точки прямой равноудалены от этой плоскости.

Доказательство утверждения приведено в решении за дачи 144, учащиеся могут прочитать его самостоятельно.

Можно предложить другой вариант доказательства.

Пусть a, A a, B a. Проведем AA1 и BB1 (рис. 2.12). Тогда AA1 BB1. Докажем, что AA1 = BB1.

Плоскость, проходящая через параллельные прямые AA1 и BB1, пересекается с плоскостью по прямой A1B1 и содержит прямую AB. Ясно, что AB A1B1 (если бы эти прямые пересекались, то прямая AB (т. е. прямая a) пересекалась бы с плоскостью, что противоречит усло вию a).

Итак, AA1 BB1 и AB A1B1. Следовательно, четыр х угольник ABB1A1 - параллелограмм, и поэтому AA1 = BB1.

Таким образом, расстояния от двух произвольных то чек A и B прямой a до параллельной ей плоскости рав ны между собой.

Если прямая и плоскость параллельны, то расстояни ем между прямой и плоскостью называется расстояние от произвольной точки прямой до этой плоскости.

З а м е ч а н и е 3. Если две прямые скрещивающиеся, то расстоянием между ними называется расстояние меж ду одной из них и плоскостью, проходящей через дру гую прямую параллельно первой прямой.

Целесообразно напомнить, как выполняется построе ние плоскости, содержащей одну из скрещивающихся прямых и параллельной другой прямой (рис. 2.13).

Рис. 2.12 Рис. 2.13

Пусть a b. Через произвольную точку M прямой b провед м прямую a1, параллельную a. Пересекающиеся прямые a1 и b определяют некоторую плоскость, па раллельную прямой a.

Из произвольной точки A прямой a проводим перпен дикуляр AA1 к плоскости. Длина этого перпендикуля ра и есть расстояние между скрещивающимися прямы ми a и b.

В дальнейшем в процессе решения задач можно пока зать, как построить общий перпендикуляр к двум дан ным скрещивающимся прямым a и b, т. е. отрезок, пер пендикулярный к прямым a и b, концы которого лежат на этих прямых.

3. Доказать теорему о тр х перпендикулярах и обрат ную ей теорему. При этом можно использовать рисунок 53 учебника или слайд 2.4.

–  –  –

4. Для классной и домашней работы можно использо вать задачи 138-145, 153.

Задача 143. Расстояние от точки M до каждой из вершин правильного треугольника ABC равно 4 см. Най дите расстояние от точки M до плоскости ABC, если AB = 6 см.

Р е ш е н и е.

1) По условию MA = MB = MC = 4. Пусть MO ABC (рис. 2.14), тогда OA = OB = OC (как проекции равных наклонных, см. задачу 139). Это означает, что точка O - центр окружности, описанной около треугольника ABC,

–  –  –

а OA - радиус этой окружности. Известно, что a3 = R 3, где a3 = AB, R = AO, поэтому AO = 6 = 2 3.

2) Из MAO получаем MO = MA2 – AO2, MO = 16 – 12 = 4 = 2.

О т в е т: 2 см.

Задача 145. Через вершину A прямоугольного тре угольника ABC с прямым углом C проведена прямая AD, перпендикулярная к плоскости треугольника.

а) Докажите, что треугольник CBD прямоугольный.

б) Найдите BD, если BC = a, DC = b.

Р е ш е н и е.

а) Отрезок AC - проекция наклонной DC на плос кость треугольника ABC (рис. 2.15). BC AC по условию, следовательно, BC DC по теореме о тр х перпендикуля рах и поэтому треугольник CBD прямоугольный.

б) BC = a, DC = b. Из BCD получаем BD = BC2 + CD2, BD = a2 + b2.

О т в е т: a2 + b2.

В дальнейшем в процессе решения задач важно обра тить внимание учащихся на обобщ нную теорему о тр х перпендикулярах, когда прямая a1 перпендикулярна к проекции наклонной, но не проходит через основание наклонной.

Урок № Тема урока: Угол между прямой и плоскостью Основные задачи урока Ввести понятие угла между прямой и плоскостью;

рассмотреть задачи, в которых используется это понятие.

Примерный план проведения урока

1. Проверить выборочно решение задач из домашней работы. Решения задач типа 138-142 и доказательство теоремы о тр х перпендикулярах можно обсудить устно, используя готовые рисунки и слайды.

2. Ввести понятие проекции точки на плоскость, про екции фигуры на плоскость. Доказать, что проекцией прямой на плоскость, не перпендикулярной к этой плос кости, является прямая. При этом используются рисун ки 54, 55 учебника.

3. Ввести определение угла между прямой и плоско стью.

4. Разобрать решение задачи 162, привед нное в учеб нике. Доказать, что угол между данной прямой и плос костью является наименьшим из всех углов, кото рые данная прямая образует с прямыми, провед нными в плоскости через точку пересечения прямой с плос костью.

Учащимся полезно сделать краткую запись доказа тельства, привед нного в слайде 2.5.

–  –  –

5. Для классной и домашней работы можно использо вать задачи 163-165, 146-148.

Задача 165. Из точки A, удал нной от плоскости на расстояние d, проведены к этой плоскости наклонные AB и AC под углом 30° к плоскости. Их проекции на пло скость образуют угол 120°. Найдите BC.

–  –  –

Уроки № 33-36 Тема уроков: Повторение теории. Решение задач на применение теоремы о тр х перпендикулярах, на угол между прямой и плоскостью Основные задачи уроков Повторить доказательство теоремы о тр х перпенди кулярах, понятие угла между прямой и плоскостью, за крепить навыки решения задач.

Примерный план проведения уроков

1. На каждом из уроков № 33-35 повторить вопро сы теории пут м опроса учащихся.

2. В процессе решения задач повторить соотношения между элементами прямоугольного треугольника, теоре мы синусов и косинусов.

3. Обратить особое внимание на решение некоторых типовых задач, которые будут использоваться в дальней шем при вычислении площадей поверхностей и объ мов многогранников. К таким задачам относятся, например, задачи 147, 151, 158, 161. Полезно использовать на уро ках привед нный ниже слайд 2.6, который предназначен для фронтальной работы с учащимися, обсуждения под ходов к решению задач из учебника.

4. На уроке № 36 целесообразно провести самостоя тельную работу контролирующего характера.

Самостоятельная работа № 2.2

Вариант 1 Из точки M провед н перпендикуляр MB, равный 4 см, к плоскости прямоугольника ABCD. Наклонные MA и MC образуют с плоскостью прямоугольника углы 45° и 30° соответственно.

а)0 Докажите, что треугольники MAD и MCD прямо угольные.

б)0 Найдите стороны прямоугольника.

в) Докажите, что треугольник BDC является проек цией треугольника MDC на плоскость прямоугольника, и найдите его площадь.

Вариант 2 Из точки M провед н перпендикуляр MD, равный 6 см, к плоскости квадрата ABCD. Наклонная MB образует с плоскостью квадрата угол 60°.

а)0 Докажите, что треугольники MAB и MCB прямо угольные.

б)0 Найдите сторону квадрата.

в) Докажите, что треугольник ABD является проек цией треугольника MAB на плоскость квадрата, и най дите его площадь.

Ответы:

б) AB = 4 см, BC = 4 3 см; в) 8 3 см2.

В а р и а н т 1.

б) 6 см; в) 3 см2.

В а р и а н т 2.

–  –  –

Задача 147. Из точки M провед н перпендикуляр MB к плоскости прямоугольника ABCD. Докажите, что тре угольники AMD и MCD прямоугольные.

Р е ш е н и е.

1) По условию задачи отрезок MB - перпендикуляр к плоскости прямоугольника, следовательно, отрезок AB есть проекция наклонной MA на плоскость прямоуголь ника (рис. 2.17). AD AB (так как ABCD - прямоуголь ник), следовательно, AD MA по теореме о тр х перпен дикулярах. Таким образом, угол MAD прямой и, значит, треугольник AMD прямоугольный.

2) Аналогично, так как DC BC, то DC MC и тре угольник MCD прямоугольный.

Задача 151. Прямая CD перпендикулярна к плоскости треугольника ABC. Докажите, что: а) треугольник ABC является проекцией треугольника ABD на плоскость ABC;

б) если CH - высота треугольника ABC, то DH - высо та треугольника ABD.

Р е ш е н и е.

а) По условию задачи отрезок DC - перпендикуляр к плоскости ABC, следовательно, точка C есть проекция точки D на плоскость ABC, отрезок CB - проекция на клонной DB, а отрезок CA - проекция наклонной DA на плоскость ABC (рис. 2.18).

Все точки отрезка AB лежат в плоскости ABC, поэто му проекцией отрезка AB на плоскость ABC является сам этот отрезок.

Итак, проекциями сторон треугольника ABD на плос кость ABC являются соответствующие стороны треуголь ника ABC.

Очевидно также, что проекция M1 любой внутренней точки M треугольника ABD лежит внутри треугольника ABC и обратно: любая внутренняя точка M1 треугольни ка ABC является проекцией на плоскость ABC некоторой внутренней точки M треугольника ABD. Это и означает, что треугольник ABC является проекцией треугольника ABD на плоскость ABC.

б) AB CH по условию, следовательно, AB DH по теореме о тр х перпендикулярах, т. е. DH - высота тре угольника ABD.

–  –  –

Задача 158. Через вершину B ромба ABCD проведена прямая BM, перпендикулярная к его плоскости. Найди те расстояние от точки M до прямых, содержащих сто роны ромба, если AB = 25 см, BAD = 60°, BM = 12,5 см.

Р е ш е н и е.

1) Проведем BK AD (рис. 2.19). Отрезок BK - про екция наклонной MK на плоскость ромба, AD BK, сле довательно, AD MK по теореме о тр х перпендикуля рах. Длина отрезка MK равна расстоянию от точки M до прямой AD.

Аналогично ME - расстояние от точки M до пря мой DC.

ABK получаем BK = AB sin 60°, BK = 25 3.

3) Треугольник MBK прямоугольный, так как MB ABC. Имеем

–  –  –

4) BK = BE (как высоты ромба). Прямоугольные тре угольники MBK и MBE равны по двум катетам, следо вательно, ME = MK = 25 см.

5) Расстояния от точки M до прямых AB и BC рав ны длине перпендикуляра MB, т. е. равны 12,5 см.

О т в е т: 25 см, 25 см, 12,5 см, 12,5 см.

Задача 161. Луч BA не лежит в плоскости неразв р нутого угла CBD. Докажите, что если ABC = ABD, причем ABC 90°, то проекцией луча BA на плоскость CBD является биссектриса угла CBD.

Р е ш е н и е.

1) Пусть AE CBD. В плоскости ABC провед м пер пендикуляр AM к прямой BC, а в плоскости ABD - пер пендикуляр AK к прямой BD. Так как ABC 90°, то точка M лежит на луче BC (а не на продолжении этого луча). Аналогично так как ABD 90°, то точка K ле жит на луче BD (рис. 2.20).

Так как BC AM, то BC EM (по теореме, обратной теореме о тр х перпендикулярах). Аналогично доказыва ется, что BD EK.

2) Прямоугольные треугольники ABK и ABM равны по гипотенузе (AB - общая гипотенуза) и острому углу (ABC = ABD), следовательно, BM = BK.

3) Прямоугольные треугольники BME и BKE равны по гипотенузе (BE - общая гипотенуза) и катету (BM = BK), следовательно, EM = EK.

4) Точка E равноудалена от сторон угла CBD, следо вательно, она лежит на биссектрисе этого угла, т. е. луч BE - биссектриса угла CBD.

§ 3. ДВУГРАННЫЙ УГОЛ.

ПЕРПЕНДИКУЛЯРНОСТЬ ПЛОСКОСТЕЙ

Урок № 37 Тема урока: Двугранный угол Основные задачи урока Ввести понятия двугранного угла и его линейного угла, рассмотреть задачи на применение этих понятий.

Примерный план проведения урока

1. Ввести понятие двугранного угла, используя рису нок 58 учебника.

2. Ввести понятие линейного угла двугранного угла.

Доказать, что все линейные углы двугранного угла рав ны друг другу (см. рис. 59, а, б).

3. Дать определение градусной меры двугранного угла.

Рассмотреть примеры острого, прямого и тупого двугран ных углов, используя рисунок 60 учебника. Прямой дву гранный угол можно показать на пересечении двух стен классной комнаты, а также стены и потолка или пола.

4. Для классной и домашней работы можно использо вать выборочно задачи 166-170.

Следует обратить внимание учащихся на обозначение двугранных углов. Двугранный угол с ребром AB, на раз ных гранях которого отмечены точки C и D, называется двугранным углом CABD.

Задача 167. В тетраэдре DABC все ребра равны, точка M - середина ребра AC. Докажите, что DMB - линейный угол двугранного угла BACD.

Рис. 2.21 Рис. 2.22

Р е ш е н и е. Медианы BM и DM являются одновремен но высотами правильных треугольников ABC и ADC (рис. 2.21). Поэтому BM AC и DM AC, и, следователь но, DMB является линейным углом двугранного угла при ребре AC основания пирамиды.

Задача 170. Из вершины B треугольника ABC, сторо на AC которого лежит в плоскости, провед н к этой плоскости перпендикуляр BB1. Найдите расстояние от точки B до прямой AC и до плоскости, если AB = 2 cм, BAC = 150° и двугранный угол BACB1 равен 45°.

Р е ш е н и е.

1) Треугольник BAC тупоугольный с тупым углом A, поэтому основание высоты BK, провед нной из вершины B, лежит на продолжении стороны AC. Расстояния от точ ки B до прямой AC и до плоскости равны соответствен но BK и BB1 (рис. 2.22).

2) Так как AC BK, то AC KB1 по теореме, обратной теореме о трех перпендикулярах. Следовательно, BKB1 - линейный угол двугранного угла BACB1. По условию задачи BKB1 = 45°.

3) Из BAK имеем A = 30°, BK = BA sin 30°, BK = 1.

–  –  –

Урок № 38 Тема урока: Признак перпендикулярности двух плоскостей Основные задачи урока Ввести понятие угла между плоскостями; дать опре деление перпендикулярных плоскостей; доказать теоре му, выражающую признак перпендикулярности двух плоскостей; показать применение этой теоремы при ре шении задач.

Примерный план проведения урока

1. Проверить выборочно решение задач из домашней работы. Желательно использовать слайды с готовыми чертежами.

2. Обратить внимание учащихся на то, что при пере сечении двух плоскостей образуются четыре двугранных угла. Если - величина того из четыр х углов, который не превосходит каждый из остальных, то говорят, что угол между пересекающимися плоскостями равен. Яс но, что 0° 90°. Если = 90°, то плоскости называются перпендикулярными. В этом случае каждый из четыр х двугранных углов, образованных пересекающимися плос костями, прямой.

3. Доказать теорему, выражающую признак перпен дикулярности двух плоскостей. Доказательство теоремы можно провести устно по тексту учебника, используя ри сунок 62. Привед нное в учебнике традиционное доказа тельство, как правило, успешно усваивается учащимися.

4. Важно обратить внимание учащихся на следующие два факта, часто используемые при решении задач:

а) Плоскость, перпендикулярная к ребру двугранного угла, перпендикулярна к его граням. (Это утверждение в несколько иной формулировке приведено в п. 23 учеб ника в виде следствия из теоремы.)

б) Перпендикуляр, провед нный из любой точки одной из двух взаимно перпендикулярных плоскостей к линии их пересечения, есть перпендикуляр к другой плоскости.

(Это утверждение доказано в привед нном в учебнике решении задачи 178.)

5. Для классной и домашней работы можно использо вать задачи 171-180.

Задача 171. Гипотенуза прямоугольного равнобедрен ного треугольника лежит в плоскости, а катет накло нен к этой плоскости под углом 30°. Найдите угол между плоскостью и плоскостью треугольника.

Р е ш е н и е.

1) Пусть ABC - данный треугольник, AB, CO. Тогда отрезок OB - проекция катета CB на плос кость. По условию задачи CBO = 30° (рис. 2.23).

2) Пусть в треугольнике COB CO = a, тогда CB = 2a.

3) Проведем CD AB, тогда AB DO по теореме, об ратной теореме о трех перпендикулярах, и CDO - ли нейный угол двугранного угла, образованного при пере сечении плоскости с плоскостью треугольника. Пусть

–  –  –

CDO = x. Это и есть искомый угол между плоскостью и плоскостью треугольника.

4) Из CDB получаем CBD = 45°, так как по усло вию треугольник ACB равнобедренный и прямоуголь

–  –  –

откуда = 45°, т. е. двугранный угол DABC равен 45°.

5) Так как BC DC и AC DC, то ACB - линейный угол двугранного угла BDCA.

Поскольку ACB = 60°, то двугранный угол BDCA ра вен 60°.

О т в е т: 90°, 45°, 60°.

Задача 174. Найдите двугранный угол ABCD тетраэд ра ABCD, если углы DAB, DAC и ACB прямые, AC = CB = 5, DB = 5 5.

Р е ш е н и е.

1) По условию задачи углы DAB и DAC прямые, следо вательно, DA AB и DA AC (рис. 2.25). Отсюда следует, что отрезок DA - перпендикуляр к плоскости ABC, и, следователь но, отрезок AC - проекция наклонной DC на плоскость ABC. Рис. 2.25

2) По условию задачи угол ACB прямой, т. е. BC AC, и, следовательно, BC DC по теореме о тр х перпенди кулярах. Таким образом, ACD - линейный угол дву гранного угла ABCD.

3) Из DCB: DC = DB2 – BC2, DC = 25 5 – 25 = 10.

4) Из DAC получаем ACD = x, cos x = AC, cos x = 5,

–  –  –

Основные задачи урока Ввести понятие прямоугольного параллелепипеда, рассмотреть свойства его граней, двугранных углов, диа гоналей.

Примерный план проведения урока

1. Сформулировать определение прямоугольного па раллелепипеда. Доказать, что все шесть граней прямо угольного параллелепипеда - прямоугольники.

2. Доказать, что все двугранные углы прямоугольно го параллелепипеда прямые.

3. Доказать т е о р е м у: квадрат диагонали прямо угольного параллелепипеда равен сумме квадратов тр х его измерений.

Обратить внимание на аналогию со свойством диаго нали прямоугольника. Можно отметить также, что эта теорема является одним из вариантов пространственной теоремы Пифагора.

Рассмотреть следствие из теоремы: диагонали прямо угольного параллелепипеда равны.

4. Для классной и домашней работы можно использо вать выборочно задачи 187-192.

Рис. 2.26 Рис. 2.27

Задача 191. Дан куб ABCDA1B1C1D1. Докажите, что плоскости ABC1 и A1B1D перпендикулярны.

Р е ш е н и е.

1) BC1 B1C по свойству диагоналей квадрата (рис. 2.26). DC BCC1, поэтому DC BC1, так как BC1 BCC1.

Таким образом, прямая BC1 перпендикулярна к двум пересекающимся прямым DC и CB1, лежащим в плоско сти A1B1D. Следовательно, прямая BC1 перпендикулярна к плоскости A1B1D по признаку перпендикулярности прямой и плоскости.

2) Плоскость ABC1 проходит через прямую BC1, пер пендикулярную к плоскости A1B1D, следовательно, ABC1 A1B1D по признаку перпендикулярности двух плос костей.

Задача 192. Найдите тангенс угла между диагональю куба и плоскостью одной из его граней.

Р е ш е н и е.

1) Пусть ребро куба ABCDA1B1C1D1 равно a. Тогда BD = a 2 (рис. 2.27). Так как D1D ABC, то прямая BD является проекцией прямой BD1 на плоскость грани ABCD, и поэтому угол между этими прямыми есть угол между диагональю BD1 и гранью ABCD. Таким образом, требу ется найти тангенс угла D1BD, величину которого обо значим.

2) Из D1DB получаем tg = 1, tg = a, tg = 2.

–  –  –

Урок № 40 Тема урока: Решение задач на прямоугольный параллелепипед Основные задачи урока Повторить свойства прямоугольного параллелепипеда, решить ряд задач на прямоугольный параллелепипед.

Примерный план проведения урока

1. Повторить вопросы теории пут м опроса учащихся.

2. Проверить выборочно решение задач из домашней работы, используя готовые чертежи, слайды.

3. Для классной и домашней работы можно использо вать задачи 193-196.

Задача 195. Найдите измерения прямоугольного па раллелепипеда ABCDA1B1C1D1, если AC1 = 12 см и диаго наль BD1 составляет с плоскостью грани AA1D1D угол 30°, а с ребром DD1 - угол 45°.

Р е ш е н и е.


Похожие работы:

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Институт наук о Земле Кафедра физической географии и экология Тюлькова Л.А ГЕОМОРФОЛОГИЯ учебно-методический комплекс. Рабочая программа для студентов направления 05.03.04 « Гидрометеорология», очной формы обучения Тюменский государственный университет Тюлькова Л.А. Геоморфология. Учебно-методический...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ КАЛИНИНГРАДСКОЙ ОБЛАСТИ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ КАЛИНИНГРАДСКОЙ ОБЛАСТИ ПРОФЕССИОНАЛЬНАЯ ОБРАЗОВАТЕЛЬНАЯ ОРГАНИЗАЦИЯ «ГУСЕВСКИЙ АГРОПРОМЫШЛЕННЫЙ КОЛЛЕДЖ» УТВЕРЖДАЮ Директор ГБУ КО ПОО ГАПК Л.В. Грубинов 15 августа 2014 года ОСНОВНАЯ ПРОФЕССИОНАЛЬНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ГОСУДАРСТВЕННОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ КАЛИНИНГРАДСКОЙ ОБЛАСТИ ПРОФЕССИОНАЛЬНАЯ ОБРАЗОВАТЕЛЬНАЯ ОРГАНИЗАЦИЯ«ГУСЕВСКИЙ АГРОПРОМЫШЛЕННЫЙ...»

«Тема: ОБРАЗОВАНИЕ в РФ. Общие положения. ВУЗ. ПТО. СШО.ДОУ Дата обновления: 24.02.2015 Аналитический обзор Утверждены рекомендации по актуализации федеральных стандартов высшего образования с целью учета в них положений соответствующих профессиональных стандартов рекомендации по актуализации действующих федеральных государственных Методические образовательных стандартов высшего образования с учетом принимаемых профессиональных стандартов (утв. Минобрнауки России 22.01.2015 N ДЛ-2/05вн)...»

« ОБУЧЕНИЯ) Фамилия Имя Отчество Курс_ факультет коммуникаций и права Группа № _ Результаты рецензирования (графа заполняется преподавателем) _ _ _ _ _ _Преподаватель _ Минск 2014 СОДЕРЖАНИЕ КРАТКИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ РАЗДЕЛ 1. ОБЩЕЕ УЧЕНИЕ О КРИМИНАЛИСТИКЕ ТЕМА 1.1 ПРЕДМЕТ, ИСТОРИЯ, СИСТЕМА, ОБЪЕКТЫ И ЗАДАЧИ. ИСТОРИЯ И МЕТОДОЛОГИЯ...»

«Содержание Аннотация...1. Цели самостоятельной работы студентов. 2. Задачи самостоятельной работы студентов..5 3.Рекомендации по самостоятельному изучению дисциплины..5 4. Виды самостоятельной работы студентов..5 5. Требования к минимуму содержания дисциплины согласно Федеральному государственному образовательному стандарту... 6.Содержание самостоятельной работы по темам дисциплины. 7.Задания для самостоятельной работы студентов 7.1.Тематика рефератов и творческих работ по дисциплине..8...»

«План информационнообразовательных семинаров и вебинаров Первое полугодие 2015-2016 учебный год Октябрь Участие бесплатное. Всем участникам (регистрация обязательна) выдаются 16 октября 2015 16.00–17.00 (время московское) сертификаты об участии в Вебинар «Методические принципы разработки заданий семинарах и вебинарах. Международного конкурса «ПОНИ® в гостях у Пифагора» для учеников 2-4 классов и критерии их оценивания». На вебинаре анализируются цели проведения интеллектуальных состязаний,...»

«РОССИЙСКАЯ ФЕДЕРАЦИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ Государственное образовательное учреждение высшего профессионального образования ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ «УТВЕРЖДАЮ»: Проректор по учебной работе Л.М. Волосникова 08.07. 2011г. Организация логопедической работы в дошкольных образовательных учреждениях Учебно-методический комплекс. Рабочая программа для студентов направления подготовки 050700.62 Специальное (дефектологическое) образование, профиль подготовки Логопедия, форма...»

«Государственное бюджетное профессиональное образовательное учреждение города Москвы «Первый Московский Образовательный Комплекс» Методические рекомендации по выполнению практических работ По профессиональному модулю ПМ 02. Конструирование швейных изделий МДК 02.02. Методы конструктивного моделирования швейных изделий, 3-й курс обучения 262019 Конструирование, моделирование и технология швейных изделий углубленная подготовка (наименование профиля подготовки) Москва ББК Г1 ОДОБРЕНЫ Разработаны на...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ УНИВЕРСИТЕТ ИТМО Е.П. Сучкова, М.С. Белозерова МЕТОДЫ ИССЛЕДОВАНИЯ МОЛОКА И МОЛОЧНЫХ ПРОДУКТОВ Учебно-методическое пособие Санкт-Петербург УДК 637.1/3 Сучкова Е.П., Белозерова М.С. Методы исследования молока и молочных продуктов: Учеб.-метод. пособие. – СПб.: Университет ИТМО; ИХиБТ, 2015. – 47 с. Приведены лабораторные работы по дисциплине «Методы исследования молока и молочных продуктов». Работы посвящены изучению современных методов...»

«Содержание 1. Общие положения..2. Характеристика направления подготовки..3. Характеристика профессиональной деятельности выпускников.3.1. Область профессиональной деятельности выпускника ОП ВО.3.2 Объекты профессиональной деятельности выпускника ОП ВО.3.3 Виды профессиональной деятельности выпускника ОП ВО.3.4 Обобщенные трудовые функции выпускников в соответствии с профессиональными стандартами..8 4. Результаты освоения образовательной программы.. 5. Структура образовательной программы...»

«ФЕДЕРАЛЬНАЯ СЛУЖБА ПО НАДЗОРУ В СФЕРЕ ЗАЩИТЫ ПРАВ ПОТРЕБИТЕЛЕЙ И БЛАГОПОЛУЧИЯ ЧЕЛОВЕКА ФБУН «Федеральный научный центр медико-профилактических технологий управления рисками здоровью населения» ФГБОУ ВПО «Пермский государственный национальный исследовательский университет» АКТУАЛЬНЫЕ НАПРАВЛЕНИЯ РАЗВИТИЯ СОЦИАЛЬНО-ГИГИЕНИЧЕСКОГО МОНИТОРИНГА И АНАЛИЗА РИСКА ЗДОРОВЬЮ Материалы Всероссийской научно-практической конференции с международным участием (15–17 мая 2013 г.) Под редакцией академика РАМН...»

«РАБОЧАЯ ПРОГРАММА ПО ПРЕДМЕТУ «ТЕХНОЛОГИЯ» ДЛЯ 1 КЛАССА «Ж» Составитель: учитель начальных классов Тамбовцева Наталья Сергеевна Москва, 2014-2015 учебный год Пояснительная записка. Рабочая программа по технологии построена на основе требований Федерального государственного стандарта начального общего образования по образовательной области «Технология» и разработана в соответствии с Примерной программой начального общего образования, рабочей программой Н.И. Роговцевой, С.В. Анащенкова...»

«М. С. Соловейчик Н. С. Кузьменко РУССКИЙ ЯЗЫК МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ к учебнику для 2 класса общеобразовательных организаций Пособие для учителя Издание 7-е, переработанное Смоленск Ассоциация XXI век УДК 372.881.116.11.046. ББК 74.268.1Рус С ОБРАТИТЕ ВНИМАНИЕ! Будьте осмотрительны при использовании методических пособий к учебнику, выпускаемых другими издательствами! Если кто-либо из авторов данного учебника не указан в качестве редактора, консультанта или рецензента, пособие может не...»

«СПЕЦИАЛИЗИРОВАННОЕ СТРУКТУРНОЕ ОБРАЗОВАТЕЛЬНОЕ ПОДРАЗДЕЛЕНИЕ ПОСОЛЬСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ В РЕСПУБЛИКЕ МАДАГАСКАР – ОСНОВНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА ПРИ ПОСОЛЬСТВЕ РОССИИ НА МАДАГАСКАРЕ РАБОЧАЯ ПРОГРАММА учебного курса (литература) 5 КЛАСС 2014-2015 учебный год учитель: Егорова И.В. Пояснительная записка Рабочая программа составлена в соответствии с нормативными документами и методическими материалами: Федеральным компонентом государственного образовательного стандарта основного общего...»

«Рассмотрено на заседании МО протокол № от 24.08.2015г. «Проверено» «Утверждаю» _ заместитель директора по УВР директор МБОУ «Лицей «МОК №2» Самофалова Ю.В._ Свердлов В.Я. Рабочая программа по внеурочной деятельности Курс «Школа развития речи» 2015-2016 учебный год Учитель Асоян О.И., Бавыкина И.Е., Леденёва Г.А., Ивашкина Н.В., Саввина О.Ю., Свердлова Л.В. Класс 4 «А», «Б», «В», «Г», «Д», «Е» Предмет «Курс «РЕЧЬ». Юным умникам и умницам. Школа развития речи» (34 часа; 1 час в неделю)...»

«Министерство образования и науки Российской Федерации Амурский государственный университет Е.В. Пшеничникова ОСНОВЫ ПРОЕКТИРОВАНИЯ ОДЕЖДЫ ДЛЯ ИНДИВИДУАЛЬНОГО ПОТРЕБИТЕЛЯ Учебное пособие Рекомендовано Дальневосточным региональным учебнометодическим центром (ДВ РУМЦ) в качестве учебного пособия для студентов, обучающихся по направлению подготовки бакалавров 262000.62 «Технология изделий легкой промышленности», 100100.62 «Сервис» вузов региона Благовещенск Издательство АмГУ ББК 37. 24-2 я 73 П 93...»

«ЗАЩИТА ДЕТЕЙ ОТ ДИСКРИМИНАЦИИ Междисциплинарное учебное пособие CREAN ЗАЩИТА ДЕТЕЙ ОТ ДИСКРИМИНАЦИИ ЗАЩИТА ДЕТЕЙ ОТ ДИСКРИМИНАЦИИ Междисциплинарное учебное пособие Под редакцией Дагмар Кутсар и Ханны Уорминг Редактор перевода на русский язык Заботкина Вера Ивановна д-р филол. наук, проф., Проректор по инновационным международным проектам Российский государственный гуманитарный университет Европейский консорциум университетов, предлагающих магистерские программы по правам ребенка в рамках...»

«Содержание Раздел 1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы.. 4 1.1 Перечень планируемых результатов обучения по дисциплине. 4 1.2 Планируемые результаты освоения образовательной программы. 4 Раздел 2. Место дисциплины в структуре образовательной программы. 6 Раздел 3. Объем дисциплины.. 6 Раздел 4. Структура и содержание дисциплины. 7 Раздел 5. Перечень учебно-методического обеспечения для...»

«СОДЕРЖАНИЕ Требования к результатам освоения дисциплины 1. 4 Место дисциплины в структуре ОПОП 2. 5 Структура и содержание дисциплины 3. 6 Структура дисциплины 3.1. 6 Содержание дисциплины 3.2. 7 Перечень учебно-методического обеспечения для самостоятельной работы 4. 9 обучающихся по дисциплине Образовательные технологии 5. 9 Формы контроля освоения дисциплины 6. 9 Перечень оценочных средств для текущего контроля освоения дисциплины 6.1. 9 Состав фонда оценочных средств для проведения...»
Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам , мы в течении 1-2 рабочих дней удалим его.



© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний