Изменение моментов энергии при параллельном переносе осей. Изменение моментов инерции при параллельном переносе осей координат Главные оси инерции и главные моменты инерции

Главная / Ф. М. Достоевский


2. Статические моменты площади сечения относительно осей Oz и Оy (см 3 , м 3):

4. Центробежный момент инерции сечения относительно осей Oz и Oy (см 4 , м 4):

Так как , то

Осевые J z и J y и полярный J p моменты инерции всегда положительные, так как под знаком интеграла находятся координаты во второй степени. Статические моменты S z и S y , а также центробежный момент инерции J zy могут быть как положительными, так и отрицательными.

В сортаменте прокатной стали для уголков приводятся значения центробежных моментов по модулю. В расчет следует вводить их значения с учетом знака.

Для определения знака центробежного момента уголка (рис. 3.2) мысленно представим его в виде суммы трех интегралов, которые вычисляются отдельно для частей сечения, расположенных в четвертях системы координат. Очевидно, что для частей, расположенных в I и III четвертях будем иметь положительное значение этого интеграла, так как произведение zydA будет положительным, а интегралы, вычисляемые для частей, расположенных во II и IV четвертях будут отрицательными (произведение zydA будет отрицательным). Таким образом, для уголка на рис. 3.2,а значение центробежного момента инерции будет отрицательным.

Рассуждая подобным образом для сечения, имеющего хотя бы одну ось симметрии (рис. 3.2,б) можно прийти к заключению, что центробежный момент инерции J zy равен нулю, если одна из осей (Оz или Оy) является осью симметрии сечения. Действительно, для частей треугольника, расположенных в 1 и 2 четвертях центробежные моменты инерции будут отличаться только знаком. Тоже можно сказать относительно частей, которые находятся в III и IV четвертях.

Статические моменты. Определение центра тяжести

Вычислим статические моменты относительно осей Оz и Оy прямоугольника, показанного на рис. 3.3.

Рис 3.3. К вычислению статических моментов

Здесь: А – площадь сечения, y C и z C – координаты его центра тяжести. Центр тяжести прямоугольника находится на пересечении диагоналей.

Очевидно, что, если оси, относительно которых вычисляются статические моменты, проходят через центр тяжести фигуры, то его координаты равны нулю (z C = 0, y C = 0), и, в соответствии с формулой (3.6), статические моменты также будут равны нулю. Таким образом, центр тяжести сечения – это точка, обладающая следующим свойством: статический момент относительно любой оси, проходящей через нее , равен нулю .

Формулы (3.6) позволяют найти координаты центра тяжести z C и y C сечения сложной формы. Если сечение можно представить в виде n частей, для которых известны площади и положение центров тяжести, то вычисление координат центра тяжести всего сечения можно записать в виде:

. (3.7)

Изменение моментов инерции при параллельном переносе осей

Пусть известны моменты инерции J z , J y и J zy относительно осей Oyz . Необходимо определить моменты инерции J Z , J Y и J ZY относительно осей O 1 YZ , параллельных осям Oyz (рис. 3.4) и отстоящих от них на расстояния a (по горизонтали) и b (по вертикали)

Рис 3.4. Изменение моментов инерции при параллельном переносе осей

Координаты элементарной площадки dA связаны между собой следующими равенствами: Z = z + a ; Y = y + b .

Вычислим моменты инерции J Z , J Y и J ZY .


(3.8)

(3.9)

(3.10)

Если точка O пересечения осей Oyz совпадает с точкой С – центром тяжести сечения (рис. 3.5) статические моменты S z и S y становятся равными нулю, и формулы упрощаютсяY i и Z i нужно брать с учетом знаков. На осевые моменты инерции знаки координат не повлияют (координаты возводятся во вторую степень), а вот на центробежный момент инерции знак координаты окажет существенное влияние (произведение Z i Y i A i может оказаться отрицательным).

Часто при решении практических задач необходимо определять моменты инерции сечения относительно осей, различным образом ориентированных в его плоскости. При этом удобно использовать уже известные значения моментов инерции всего сечения (или отдельных составляющих его частей) относительно других осей, приводимые в технической литературе, специальных справочниках и таблицах, а также подсчитываемые по имеющимся формулам. Поэтому очень важно установить зависимости между моментами инерции одного и того же сечения относительно разных осей.

В самом общем случае переход от любой старой к любой новой системе координат может рассматриваться как два последовательных преобразования старой системы координат:

1) путем параллельного переноса осей координат в новое положение и

2) путем поворота их относительно нового начала координат. Рассмотрим первое из этих преобразований, т. е. параллельный перенос координатных осей.

Предположим, что моменты инерции данного сечения относительно старых осей (рис. 18.5) известны.

Возьмем новую систему координат оси которой параллельны прежним. Обозначим а и b координаты точки (т. е. нового начала координат) в старой системе координат

Рассмотрим элементарную площадку Координаты ее в старой системе координат равны у и . В новой системе они равны

Подставим эти значения координат в выражение осевого момента инерции относительно оси

В полученном выражении -момент инерции статический момент сечения относительно оси равен площади F сечения.

Следовательно,

Если ось z проходит через центр тяжести сечения, то статический момент и

Из формулы (25.5) видно, что момент инерции относительно любой оси, не проходящей через центр тяжести, больше момента инерции относительно оси, проходящей через центр тяжести, на величину которая всегда положительна. Следовательно, из всех моментов инерции относительно параллельных осей осевой момент инерции имеет наименьшее значение относительно оси, проходящей через центр тяжести сечения.

Момент инерции относительно оси [по аналогии с формулой (24.5)]

В частном случае, когда ось у проходит через центр тяжести сечения

Формулы (25.5) и (27.5) широко используются при вычислении осевых моментов инерции сложных (составных) сечений.

Подставим теперь значения в выражение центробежного момента инерции относительно осей


Если оси являются центральными, то оси моментов будут иметь вид:

15.Зависимость между моментами инерции при повороте осей :

J x 1 =J x cos 2 a + J y sin 2 a - J xy sin2a; J y 1 =J y cos 2 a + J x sin 2 a + J xy sin2a;

J x 1 y1 = (J x - J y)sin2a + J xy cos2a ;

Угол a>0, если переход от старой системы координат к новой происходит против час.стр. J y 1 + J x 1 = J y + J x

Экстремальные (максимальное и минимальное) значения моментов инерции называются главными моментами инерции . Оси, относительно которых осевые моменты инерции имеют экстремальные значения, называются главными осями инерции . Главные оси инерции взаимно перпендикулярны. Центробежные моменты инерции относительно главных осей = 0, т.е. главные оси инерции - оси, относительно которых центробежный момент инерции = 0. Если одна из осей совпадает или обе совпадают с осью симметрии, то они главные. Угол, определяющий положение главных осей: , если a 0 >0 Þ оси поворачиваются против час.стр. Ось максимума всегда составляет меньший угол с той из осей, относительно которой момент инерции имеет большее значение. Главные оси, проходящие через центр тяжести, называются главными центральными осями инерции . Моменты инерции относительно этих осей:

J max + J min = J x + J y . Центробежный момент инерции относительно главных центральных осей инерции равен 0. Если известны главные моменты инерции, то формулы перехода к повернутым осям:

J x 1 =J max cos 2 a + J min sin 2 a; J y 1 =J max cos 2 a + J min sin 2 a; J x 1 y1 = (J max - J min)sin2a;

Конечной целью вычисления геометрических характеристик сечения является определение главных центральных моментов инерции и положения главных центральных осей инерции. Радиус инерции - ; J x =F×i x 2 , J y =F×i y 2 .

Если J x и J y главные моменты инерции, то i x и i y - главные радиусы инерции . Эллипс, построенный на главных радиусах инерции как на полуосях, называется эллипсом инерции . При помощи эллипса инерции можно графически найти радиус инерции i x 1 для любой оси х 1 . Для этого надо провести касательную к эллипсу, параллельную оси х 1 , и измерить расстояние от этой оси до касательной. Зная радиус инерции, можно найти момент инерции сечения относительно оси х 1: . Для сечений, имеющих более двух осей симметрии (например: круг, квадрат, кольцо и др.) осевые моменты инерции относительно всех центральных осей равны между собой, J xy =0, эллипс инерции обращается в круг инерции.

Пусть z с , у с – центральные оси сечений, – моменты инерции сечения относительно этих осей. Определим моменты инерции сечения относительно новых осей z 1 , у 1 , параллельных центральным осям и смещенных относительно них на расстояния a и d . Пусть dA – элементарная площадка в окрестности точки М с координатами y и z в центральной системе координат. Из рис. 4.3 видно, что координаты точки С в новой системе координат будут равны, .

Определим момент инерции сечения относительно оси у 1 :

Рис.4.3
z c
y c
z 1
y 1
d
a
C
Очевидно, что первый интеграл дает, второй – , так как исходная система координат – центральная, а третий – площадь сечения А .

Таким образом,

Аналогично

Изменение моментов инерции сечения при повороте осей

Найдем зависимость между моментами инерции относительно осей y , z и моментами инерции относительно осей y 1 , z 1 , повернутых на угол a . Пусть J y > J z и положительный угол a отсчитывается от оси y против часовой стрелки. Пусть координаты точки М до поворота – y , z , после поворота – y 1 , z 1 (рис. 4.4).

Из рисунка следует:

Теперь определим моменты инерции относительно осей y 1 и z 1 :

Рис. 4.4
M
z
z 1
y 1
y
a
y
y 1
z 1
z
. (4.13)

Аналогично:

Сложив почленно уравнения (4.13) и (4.14), получим:

т.е. сумма моментов инерции относительно любых взаимно перпендикулярных осей остается постоянной и не изменяется при повороте системы координат.

Главные оси инерции и главные моменты инерции

С изменением угла поворота осей a каждая из величин и меняется, а сумма их остается неизменной. Следовательно, существует такое значение

a = a 0 , при котором моменты инерции достигают экстремальных значений, т.е. один из них достигает своего максимального значения, а другой – минимального. Для нахождения значения a 0 возьмем первую производную от (или) и приравняем ее нулю:

Покажем, что относительно полученных осей центробежный момент инерции равен нулю. Для этого приравняем правую часть уравнения (4.15) нулю: , откуда, т.е. получили ту же формулу для a 0 .

Оси, относительно которых центробежный момент инерции равен нулю, а осевые моменты инерции принимают экстремальные значения, называются главными осями. Если эти оси являются также и центральными, то они называются главными центральными осями. Осевые моменты инерции относительно главных осей называются главными моментами инерции.

Обозначим главные оси через y 0 и z 0 . Тогда

Если сечение имеет ось симметрии, то эта ось всегда является одной из главных центральных осей инерции сечения.

Пусть известны и Ix, Iy, Ixy. Параллельно осям хy проведем новую ось x 1 , y 1 .

И определим момент инерции того же сечения относительно новых осей.

X 1 = x-a ; y 1 =y-b

I x 1 = ∫ y 1 dA = ∫ (y-b) 2 dA = ∫ (y 2 - 2by + b 3)dA = ∫ y 2 dA – 2b ∫ ydA + b 2 ∫dA=

Ix – 2b Sx + b 2 A.

Если ось x проходит через центр тяжести сечения, то статический момент Sx =0.

I x 1 = Ix + b 2 A

Аналогично новой оси y 1 будем иметь формулу I y 1 = Iy + a 2 A

Центробежный момент инерции относительно новых осей

Ix 1 y 1 = Ixy – b Sx –a Sy + abA.

Если оси xy проходят через центр тяжести сечения, то Ix 1 y 1 = Ixy + abA

Если сечение симметрично, хотя бы одна из центральных осей совпадает с осью симметрии, то Ixy =0 , а значит Ix 1 y 1 = abA

Изменение моментов инерции при повороте осей.

Пусть известны осевые моменты инерции относительно осей xy.

Новую систему координат xy получим путем поворота старой системы на угол (a >0), если поворот против часовой стрелки.

Установим зависимость между старыми и новыми координатами площадки

y 1 =ab = ac – bc = ab- de

из треугольника acd:

ac/ad =cos α ac= ad*cos α

из треугольника oed:

de/od =sin α dc = od*sin α

Подставим эти значения в выражение для y

y 1 = ad cos α - od sin α = y cos α - x sin α .

Аналогично

x 1 = x cos α + y sin α .

Вычислим осевой момент инерции относительно новой оси x 1

Ix 1 = ∫y 1 2 dA = ∫ (y cos α - x sin α) 2 dA= ∫ (y 2 cos 2 α - 2xy sin α cos α + x 2 sin 2 α)dA= =cos 2 α ∫ y 2 dA – sin2 α ∫xy dA + sin 2 α ∫x 2 dA = Ix cos 2 α - Ixy sin2 α + Iy sin 2 α .

Аналогично Iy 1 = Ix sin 2 α - Ixy sin2 α + Iy cos 2 α .

Сложим левые и правые части полученных выражений:

Ix 1 + Iy 1 = Ix (sin 2 α + cos 2 α) + Iy (sin 2 α + cos 2 α) + Ixy (sin2 α - cos2 α).

Ix 1 + Iy 1 = Ix + Iy

Сумма осевых моментов инерции при повороте не меняется.

Определим центробежный момент инерции относительно новых осей. Представим значения x 1 ,y 1 .

Ix 1 y 1 = ∫x 1 y 1 dA = (Ix – Iy)/2*sin 2 α + Ixy cos 2 α .

Главные моменты и главные оси инерции.

Главными моментами инерции называют их экстремальные значения.

Оси, относительно которых получены экстремальные значения называются главными осями инерции. Они всегда взаимно перпендикулярны.

Центробежный момент инерции относительно главных осей всегда равен 0. Так как известно, что в сечении есть ось симметрии, то центробежный момент равен 0, значит ось симметрии является главной осью. Если взять первую производную от выражения I x 1 , затем приравнять её к “0”, то получим значение угла = соответствующего положению главных осей инерции.

tg2 α 0 = -

Если α 0 >0 ,то для определенного положения главных осей старую ось нужно повернуть против хода часовой стрелки. Одна из главных осей является max, а другая – min. При этом ось max всегда соответствует меньший угол с той случайной, осью относительно которой имеет больший осевой момент инерции. Экстремальные значения осевого момента инерции определяется по формуле:

Глава 2. Основные понятия сопротивления материалов. Задачи и методы.

При проектировании различных сооружений нужно решать различные вопросы прочности, жесткости, устойчивости.

Прочность – способность данного тела выдерживать различные нагрузки без разрушения.

Жесткость – способность конструкции воспринимать нагрузки без больших деформаций (перемещений). Предварительно допустимые значения деформации регламентируют строительные нормы и правила (СНИП).

Устойчивость

Рассмотрим сжатие гибкого стержня

Если нагрузку постепенно увеличивать, то сначала будет происходить укорочение стержня. При достижении силой F некоторой критической величины произойдет выпучивание стержня. - абсолютное укорочение.

При этом стержень не разрушается, но резко изменяет свою форму. Такое явление называется потерей устойчивости и приводит к разрушению.

Сопромат – это основы наук о прочности, жесткости, устойчивости инженерных конструкций. В сопромате используются методы теоретической механики, физики, математики. В отличии от теоретической механики сопромат учитывает изменение размеров и формы тел под действием нагрузки и температуры.



© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний