Кси распределение. Распределения Пирсона (хи – квадрат), Стьюдента и Фишера

Главная / А. П. Чехов

Количественное изучение биологических явлений обязательно требует создания гипотез, с по­мощью которых можно объяснить эти явления. Чтобы проверить ту или иную гипотезу ставят се­рию специальных опытов и полученные фактические данные сопоставляют с теоретически ожи­даемыми согласно данной гипотезе. Если есть совпадениеэто может быть достаточным ос­но­ванием для принятия гипотезы. Если же опытные данные плохо согласуются с теоретически ожи­даемыми, возникает большое сомнение в правильности предложенной гипотезы.

Степень соответствия фактических данных ожидаемым (гипотетическим) измеряется критерием со­от­ветствия хи-квадрат:

 фактически наблюдаемое значение признака вi- той;теоретически ожидаемое число или признак (показатель) для данной группы,k число групп данных.

Критерий был предложен К.Пирсоном в 1900 г. и иногда его называют критерием Пирсона.

Задача. Среди 164 детей, наследовавших от одного из родителей фактор, а от другогофактор, оказалось 46 детей с фактором, 50с фактором, 68с тем и другим,. Рассчитать ожидаемые частоты при отношении 1:2:1 между группами и определить степень соответствия эмпирических данных с помощью критерия Пирсона.

Решение: Отношение наблюдаемых частот 46:68:50, теоретически ожидаемых 41:82:41.

Зададимся уровнем значимости равным 0,05. Табличное значение критерия Пирсона для этого уровня значимости при числе степеней свободы, равном оказалось равным 5,99. Следовательно гипотезу о соответствии экспериментальных данных теоретическим можно принять, так как, .

Отметим, что при вычислении критерия хи-квадрат мы уже не ставим условия о непременной нор­маль­ности распределения. Критерий хи-квадрат может использоваться для любых распределений, ко­­то­рые мы вольны сами выбирать в своих предположениях. В этом есть некоторая уни­вер­саль­ность этого критерия.

Еще одно приложение критерия Пирсона это сравнение эмпирического распределения с нор­мальным распределением Гаусса. При этом он может быть отнесен к группе критериев про­вер­ки нормальности распределения. Единственным ограничением является тот факт, что общее число зна­чений (вариант) при пользовании этим критерием должно быть достаточно велико (не менее 40), и число значений в отдельных классах (интервалах) должно быть не менее 5. В противном случае следует объединять соседние интервалы. Число степенй свободы при проверке нор­маль­нос­ти распределения должно вычисляться как:.

    1. Критерий Фишера.

Этот параметрический критерий служит для проверки нулевой гипотезы о равенстве дис­пер­сий нормально распределенных генеральных совокупностей.

Или.

При малых объемах выборок применение критерия Стьюдента может быть корректным только при условии равенства дисперсий. Поэтому прежде чем проводить проверку равенства выборочных средних значений, необходимо убедиться в правомочности использования критерия Стьюдента.

где N 1 , N 2 объемы выборок, 1 , 2 числа степеней свободы для этих выборок.

При пользовании таблицами следует обратить внимание, что число степеней свободы для выборки с большей по величине дисперсией выбирается как номер столбца таблицы, а для меньшей по величине дисперсии как номер строки таблицы.

Для уровня значимости по таблицам математической статистики находим табличное значение. Если, то гипотеза о равенстве дисперсий отклоняется для выбранного уровня значимости.

Пример. Изучали влияние кобальта на массу тела кроликов. Опыт проводился на двух группах животных: опытной и контрольной. Опытные получали добавку к рациону в виде водного раствора хлористого кобальта. За время опыта прибавки в весе составили в граммах:

Контроль

Распределения Пирсона (хи – квадрат), Стьюдента и Фишера

С помощью нормального распределения определяются три распределения, которые в настоящее время часто используются при статистической обработке данных. В дальнейших разделах книги много раз встречаются эти распределения.

Распределение Пирсона (хи - квадрат) – распределение случайной величины

где случайные величины X 1 , X 2 ,…, X n независимы и имеют одно и тоже распределение N (0,1). При этом число слагаемых, т.е. n , называется «числом степеней свободы» распределения хи – квадрат.

Распределение хи-квадрат используют при оценивании дисперсии (с помощью доверительного интервала), при проверке гипотез согласия, однородности, независимости, прежде всего для качественных (категоризованных) переменных, принимающих конечное число значений, и во многих других задачах статистического анализа данных .

Распределение t Стьюдента – это распределение случайной величины

где случайные величины U и X независимы, U имеет распределение стандартное нормальное распределение N (0,1), а X – распределение хи – квадрат с n степенями свободы. При этом n называется «числом степеней свободы» распределения Стьюдента.

Распределение Стьюдента было введено в 1908 г. английским статистиком В. Госсетом, работавшем на фабрике, выпускающей пиво. Вероятностно-статистические методы использовались для принятия экономических и технических решений на этой фабрике, поэтому ее руководство запрещало В. Госсету публиковать научные статьи под своим именем. Таким способом охранялась коммерческая тайна, «ноу-хау» в виде вероятностно-статистических методов, разработанных В. Госсетом. Однако он имел возможность публиковаться под псевдонимом «Стьюдент». История Госсета - Стьюдента показывает, что еще сто лет назад менеджерам Великобритании была очевидна большая экономическая эффективность вероятностно-статистических методов.

В настоящее время распределение Стьюдента – одно из наиболее известных распределений среди используемых при анализе реальных данных. Его применяют при оценивании математического ожидания, прогнозного значения и других характеристик с помощью доверительных интервалов, по проверке гипотез о значениях математических ожиданий, коэффициентов регрессионной зависимости, гипотез однородности выборок и т.д. .

Распределение Фишера – это распределение случайной величины

где случайные величины Х 1 и Х 2 независимы и имеют распределения хи – квадрат с числом степеней свободы k 1 и k 2 соответственно. При этом пара (k 1 , k 2 ) – пара «чисел степеней свободы» распределения Фишера, а именно, k 1 – число степеней свободы числителя, а k 2 – число степеней свободы знаменателя. Распределение случайной величины F названо в честь великого английского статистика Р.Фишера (1890-1962), активно использовавшего его в своих работах.

Распределение Фишера используют при проверке гипотез об адекватности модели в регрессионном анализе, о равенстве дисперсий и в других задачах прикладной статистики .

Выражения для функций распределения хи - квадрат, Стьюдента и Фишера, их плотностей и характеристик, а также таблицы, необходимые для их практического использования, можно найти в специальной литературе (см., например, ).

Пусть U 1 , U 2 , ..,U k - независимые стандартные нормальные величины. Распределение случайной величины K = U 1 2 +U 2 2 + .. + U k 2 называется распределением «хи-квадрат» с k степенями свободы (пишут K~χ 2 (k)). Это унимодальное распределение с положительной асимметрией и следующими характеристиками: мода M=k-2 математическое ожидание m=k дисперсия D=2k (рис.). При достаточно большом значении параметра k распределение χ 2 (k) имеет приближенно нормальное распределение с параметрами

При решении задач математической статистики используются критические точки χ 2 (k) зависящие от заданной вероятности α и числа степеней свободы k (приложение 2). Критическая точка Χ 2 кр =Χ 2 (k; α) является границей области, правее которой лежит 100- α % площади под кривой плотности распределения. Вероятность того, что значение случайной величины K~χ 2 (k)при испытаниях попадет правее точки χ 2 (k) не превышает α P(K≥χ 2 kp)≤ α). Например, для случайной величины K~χ 2 (20) зададим вероятность α=0.05. По таблице критических точек распределения «хи-квадрат» (таблицы) находим χ 2 kp = χ 2 (20;0.05)=31.4. Значит, вероятность этой случайной величине K принять значение, большее 31.4, меньше 0.05 (рис.).

Рис. График плотности распределения χ 2 (k)при различных значениях числа степеней свободы k

Критические точки χ 2 (k) используются в следующих калькуляторах:

  1. Проверка наличия мультиколлинеарности (о мультиколлинеарности).
Проверка гипотезы при помощи Хи-квадрат даст ответ исключительно на вопрос «имеется ли связь?», для проверки направления связи необходимо дальнейшее исследование. Более того, критерий Хи-квадрат дает определенную ошибку при работе с низкочастотными данными.

Поэтому для проверки направления связи выбирается корреляционный анализ, в частности проверка гипотезы при помощи коэффициента корреляции Пирсона с дальнейшей проверкой на достоверность при помощи t-критерия.

Для любого значения уровня значимости α Χ 2 можно найти с помощью функции MS Excel : =ХИ2ОБР(α;степеней свободы)

n-1 .995 .990 .975 .950 .900 .750 .500 .250 .100 .050 .025 .010 .005
1 0.00004 0.00016 0.00098 0.00393 0.01579 0.10153 0.45494 1.32330 2.70554 3.84146 5.02389 6.63490 7.87944
2 0.01003 0.02010 0.05064 0.10259 0.21072 0.57536 1.38629 2.77259 4.60517 5.99146 7.37776 9.21034 10.59663
3 0.07172 0.11483 0.21580 0.35185 0.58437 1.21253 2.36597 4.10834 6.25139 7.81473 9.34840 11.34487 12.83816
4 0.20699 0.29711 0.48442 0.71072 1.06362 1.92256 3.35669 5.38527 7.77944 9.48773 11.14329 13.27670 14.86026
5 0.41174 0.55430 0.83121 1.14548 1.61031 2.67460 4.35146 6.62568 9.23636 11.07050 12.83250 15.08627 16.74960
6 0.67573 0.87209 1.23734 1.63538 2.20413 3.45460 5.34812 7.84080 10.64464 12.59159 14.44938 16.81189 18.54758
7 0.98926 1.23904 1.68987 2.16735 2.83311 4.25485 6.34581 9.03715 12.01704 14.06714 16.01276 18.47531 20.27774
8 1.34441 1.64650 2.17973 2.73264 3.48954 5.07064 7.34412 10.21885 13.36157 15.50731 17.53455 20.09024 21.95495
9 1.73493 2.08790 2.70039 3.32511 4.16816 5.89883 8.34283 11.38875 14.68366 16.91898 19.02277 21.66599 23.58935
10 2.15586 2.55821 3.24697 3.94030 4.86518 6.73720 9.34182 12.54886 15.98718 18.30704 20.48318 23.20925 25.18818
11 2.60322 3.05348 3.81575 4.57481 5.57778 7.58414 10.34100 13.70069 17.27501 19.67514 21.92005 24.72497 26.75685
12 3.07382 3.57057 4.40379 5.22603 6.30380 8.43842 11.34032 14.84540 18.54935 21.02607 23.33666 26.21697 28.29952
13 3.56503 4.10692 5.00875 5.89186 7.04150 9.29907 12.33976 15.98391 19.81193 22.36203 24.73560 27.68825 29.81947
14 4.07467 4.66043 5.62873 6.57063 7.78953 10.16531 13.33927 17.11693 21.06414 23.68479 26.11895 29.14124 31.31935
15 4.60092 5.22935 6.26214 7.26094 8.54676 11.03654 14.33886 18.24509 22.30713 24.99579 27.48839 30.57791 32.80132
16 5.14221 5.81221 6.90766 7.96165 9.31224 11.91222 15.33850 19.36886 23.54183 26.29623 28.84535 31.99993 34.26719
17 5.69722 6.40776 7.56419 8.67176 10.08519 12.79193 16.33818 20.48868 24.76904 27.58711 30.19101 33.40866 35.71847
18 6.26480 7.01491 8.23075 9.39046 10.86494 13.67529 17.33790 21.60489 25.98942 28.86930 31.52638 34.80531 37.15645
19 6.84397 7.63273 8.90652 10.11701 11.65091 14.56200 18.33765 22.71781 27.20357 30.14353 32.85233 36.19087 38.58226
20 7.43384 8.26040 9.59078 10.85081 12.44261 15.45177 19.33743 23.82769 28.41198 31.41043 34.16961 37.56623 39.99685
21 8.03365 8.89720 10.28290 11.59131 13.23960 16.34438 20.33723 24.93478 29.61509 32.67057 35.47888 38.93217 41.40106
22 8.64272 9.54249 10.98232 12.33801 14.04149 17.23962 21.33704 26.03927 30.81328 33.92444 36.78071 40.28936 42.79565
23 9.26042 10.19572 11.68855 13.09051 14.84796 18.13730 22.33688 27.14134 32.00690 35.17246 38.07563 41.63840 44.18128
24 9.88623 10.85636 12.40115 13.84843 15.65868 19.03725 23.33673 28.24115 33.19624 36.41503 39.36408 42.97982 45.55851
25 10.51965 11.52398 13.11972 14.61141 16.47341 19.93934 24.33659 29.33885 34.38159 37.65248 40.64647 44.31410 46.92789
26 11.16024 12.19815 13.84390 15.37916 17.29188 20.84343 25.33646 30.43457 35.56317 38.88514 41.92317 45.64168 48.28988
27 11.80759 12.87850 14.57338 16.15140 18.11390 21.74940 26.33634 31.52841 36.74122 40.11327 43.19451 46.96294 49.64492
28 12.46134 13.56471 15.30786 16.92788 18.93924 22.65716 27.33623 32.62049 37.91592 41.33714 44.46079 48.27824 50.99338
29 13.12115 14.25645 16.04707 17.70837 19.76774 23.56659 28.33613 33.71091 39.08747 42.55697 45.72229 49.58788 52.33562
30 13.78672 14.95346 16.79077 18.49266 20.59923 24.47761 29.33603 34.79974 40.25602 43.77297 46.97924 50.89218 53.67196
Число степеней свободы k Уровень значимости a
0,01 0,025 0.05 0,95 0,975 0.99
1 6.6 5.0 3.8 0.0039 0.00098 0.00016
2 9.2 7.4 6.0 0.103 0.051 0.020
3 11.3 9.4 7.8 0.352 0.216 0.115
4 13.3 11.1 9.5 0.711 0.484 0.297
5 15.1 12.8 11.1 1.15 0.831 0.554
6 16.8 14.4 12.6 1.64 1.24 0.872
7 18.5 16.0 14.1 2.17 1.69 1.24
8 20.1 17.5 15.5 2.73 2.18 1.65
9 21.7 19.0 16.9 3.33 2.70 2.09
10 23.2 20.5 18.3 3.94 3.25 2.56
11 24.7 21.9 19.7 4.57 3.82 3.05
12 26.2 23.3 21 .0 5.23 4.40 3.57
13 27.7 24.7 22.4 5.89 5.01 4.11
14 29.1 26.1 23.7 6.57 5.63 4.66
15 30.6 27.5 25.0 7.26 6.26 5.23
16 32.0 28.8 26.3 7.96 6.91 5.81
17 33.4 30.2 27.6 8.67 7.56 6.41
18 34.8 31.5 28.9 9.39 8.23 7.01
19 36.2 32.9 30.1 10.1 8.91 7.63
20 37.6 34.2 31.4 10.9 9.59 8.26
21 38.9 35.5 32.7 11.6 10.3 8.90
22 40.3 36.8 33.9 12.3 11.0 9.54
23 41.6 38.1 35.2 13.1 11.7 10.2
24 43.0 39.4 36.4 13.8 12.4 10.9
25 44.3 40.6 37.7 14.6 13.1 11.5
26 45.6 41.9 38.9 15.4 13.8 12.2
27 47.0 43.2 40.1 16.2 14.6 12.9
28 48.3 44.5 41.3 16.9 15.3 13.6
29 49.6 45.7 42.6 17.7 16.0 14.3
30 50.9 47.0 43.8 18.5 16.8 15.0

Распределение "хи-квадрат"

С помощью нормального распределения определяются три распределения, которые в настоящее время часто используются при статистической обработке данных. Это распределения Пирсона ("хи - квадрат"), Стьюдента и Фишера.

Мы остановимся на распределении ("хи - квадрат"). Впервые это распределение было исследовано астрономом Ф.Хельмертом в 1876 году. В связи с гауссовской теорией ошибок он исследовал суммы квадратов n независимых стандартно нормально распределенных случайных величин. Позднее Карл Пирсон (Karl Pearson) дал имя данной функции распределения "хи - квадрат". И сейчас распределение носит его имя.

Благодаря тесной связи с нормальным распределением, ч2-распределение играет важную роль в теории вероятностей и математической статистике. ч2-распределение, и многие другие распределения, которые определяются посредством ч2-распределения (например - распределение Стьюдента), описывают выборочные распределения различных функций от нормально распределенных результатов наблюдений и используются для построения доверительных интервалов и статистических критериев.

Распределение Пирсона (хи - квадрат) - распределение случайной величины где X1, X2,…, Xn - нормальные независимые случайные величины, причем математическое ожидание каждой из них равно нулю, а среднее квадратическое отклонение - единице.

Сумма квадратов

распределена по закону ("хи - квадрат").

При этом число слагаемых, т.е. n, называется "числом степеней свободы" распределения хи - квадрат. C увеличением числа степеней свободы распределение медленно приближается к нормальному.

Плотность этого распределения


Итак, распределение ч2 зависит от одного параметра n - числа степеней свободы.

Функция распределения ч2 имеет вид:

если ч2?0. (2.7.)

На Рисунок 1 изображен график плотности вероятности и функции ч2 - распределения для разных степеней свободы.

Рисунок 1 Зависимость плотности вероятности ц (x) в распределении ч2 (хи - квадрат) при разном числе степеней свободы.

Моменты распределения "хи-квадрат":

Распределение "хи-квадрат" используют при оценивании дисперсии (с помощью доверительного интервала), при проверке гипотез согласия, однородности, независимости, прежде всего для качественных (категоризованных) переменных, принимающих конечное число значений, и во многих других задачах статистического анализа данных.

"Хи-квадрат" в задачах статистического анализа данных

Статистические методы анализа данных применяются практически во всех областях деятельности человека. Их используют всегда, когда необходимо получить и обосновать какие-либо суждения о группе (объектов или субъектов) с некоторой внутренней неоднородностью.

Современный этап развития статистических методов можно отсчитывать с 1900 г., когда англичанин К. Пирсон основал журнал "Biometrika". Первая треть ХХ в. прошла под знаком параметрической статистики. Изучались методы, основанные на анализе данных из параметрических семейств распределений, описываемых кривыми семейства Пирсона. Наиболее популярным было нормальное распределение. Для проверки гипотез использовались критерии Пирсона, Стьюдента, Фишера. Были предложены метод максимального правдоподобия, дисперсионный анализ, сформулированы основные идеи планирования эксперимента.

Распределение "хи-квадрат" является одним из наиболее широко используемых в статистике для проверки статистических гипотез. На основе распределения "хи-квадрат" построен один из наиболее мощных критериев согласия - критерий "хи-квадрата" Пирсона.

Критерием согласия называют критерий проверки гипотезы о предполагаемом законе неизвестного распределения.

Критерий ч2 ("хи-квадрат") используется для проверки гипотезы различных распределений. В этом заключается его достоинство.

Расчетная формула критерия равна

где m и m" - соответственно эмпирические и теоретические частоты

рассматриваемого распределения;

n - число степеней свободы.

Для проверки нам необходимо сравнивать эмпирические (наблюдаемые) и теоретические (вычисленные в предположении нормального распределения) частоты.

При полном совпадении эмпирических частот с частотами, вычисленными или ожидаемыми S (Э - Т) = 0 и критерий ч2 тоже будет равен нулю. Если же S (Э - Т) не равно нулю это укажет на несоответствие вычисленных частот эмпирическим частотам ряда. В таких случаях необходимо оценить значимость критерия ч2, который теоретически может изменяться от нуля до бесконечности. Это производится путем сравнения фактически полученной величины ч2ф с его критическим значением (ч2st).Нулевая гипотеза, т. е. предположение, что расхождение между эмпирическими и теоретическими или ожидаемыми частотами носит случайный характер, опровергается, если ч2ф больше или равно ч2st для принятого уровня значимости (a) и числа степеней свободы (n).

Распределение вероятных значений случайной величины ч2 непрерывно и ассиметрично. Оно зависит от числа степеней свободы (n) и приближается к нормальному распределению по мере увеличения числа наблюдений. Поэтому применение критерия ч2 к оценке дискретных распределений сопряжено с некоторыми погрешностями, которые сказываются на его величине, особенно на малочисленных выборках. Для получения более точных оценок выборка, распределяемая в вариационный ряд, должна иметь не менее 50 вариантов. Правильное применение критерия ч2 требует также, чтобы частоты вариантов в крайних классах не были бы меньше 5; если их меньше 5, то они объединяются с частотами соседних классов, чтобы в сумме составляли величину большую или равную 5. Соответственно объединению частот уменьшается и число классов (N). Число степеней свободы устанавливается по вторичному числу классов с учетом числа ограничений свободы вариации.

Так как точность определения критерия ч2 в значительной степени зависит от точности расчета теоретических частот (Т), для получения разности между эмпирическими и вычисленными частотами следует использовать неокругленные теоретические частоты.

В качестве примера возьмем исследование, опубликованное на сайте, который посвящен применению статистических методов в гуманитарных науках.

Критерий "Хи-квадрат" позволяет сравнивать распределения частот вне зависимости от того, распределены они нормально или нет.

Под частотой понимается количество появлений какого-либо события. Обычно, с частотой появления события имеют дело, когда переменные измерены в шкале наименований и другой их характеристики, кроме частоты подобрать невозможно или проблематично. Другими словами, когда переменная имеет качественные характеристики. Так же многие исследователи склонны переводить баллы теста в уровни (высокий, средний, низкий) и строить таблицы распределений баллов, чтобы узнать количество человек по этим уровням. Чтобы доказать, что в одном из уровней (в одной из категорий) количество человек действительно больше (меньше) так же используется коэффициент Хи-квадрат.

Разберем самый простой пример.

Среди младших подростков был проведён тест для выявления самооценки. Баллы теста были переведены в три уровня: высокий, средний, низкий. Частоты распределились следующим образом:

Высокий (В) 27 чел.

Средний (С) 12 чел.

Низкий (Н) 11 чел.

Очевидно, что детей с высокой самооценкой большинство, однако это нужно доказать статистически. Для этого используем критерий Хи-квадрат.

Наша задача проверить, отличаются ли полученные эмпирические данные от теоретически равновероятных. Для этого необходимо найти теоретические частоты. В нашем случае, теоретические частоты - это равновероятные частоты, которые находятся путём сложения всех частот и деления на количество категорий.

В нашем случае:

(В + С + Н)/3 = (27+12+11)/3 = 16,6

Формула для расчета критерия хи-квадрат:

ч2 = ?(Э - Т)? / Т

Строим таблицу:

Эмпирич. (Э)

Теоретич. (Т)

Находим сумму последнего столбца:

Теперь нужно найти критическое значение критерия по таблице критических значений (Таблица 1 в приложении). Для этого нам понадобится число степеней свободы (n).

n = (R - 1) * (C - 1)

где R - количество строк в таблице, C - количество столбцов.

В нашем случае только один столбец (имеются в виду исходные эмпирические частоты) и три строки (категории), поэтому формула изменяется - исключаем столбцы.

n = (R - 1) = 3-1 = 2

Для вероятности ошибки p?0,05 и n = 2 критическое значение ч2 = 5,99.

Полученное эмпирическое значение больше критического - различия частот достоверны (ч2= 9,64; p?0,05).

Как видим, расчет критерия очень прост и не занимает много времени. Практическая ценность критерия хи-квадрат огромна. Этот метод оказывается наиболее ценным при анализе ответов на вопросы анкет.

Разберем более сложный пример.

К примеру, психолог хочет узнать, действительно ли то, что учителя более предвзято относятся к мальчикам, чем к девочкам. Т.е. более склонны хвалить девочек. Для этого психологом были проанализированы характеристики учеников, написанные учителями, на предмет частоты встречаемости трех слов: "активный", "старательный", "дисциплинированный", синонимы слов так же подсчитывались. Данные о частоте встречаемости слов были занесены в таблицу:

Для обработки полученных данных используем критерий хи-квадрат.

Для этого построим таблицу распределения эмпирических частот, т.е. тех частот, которые мы наблюдаем:

Теоретически, мы ожидаем, что частоты распределятся равновероятно, т.е. частота распределится пропорционально между мальчиками и девочками. Построим таблицу теоретических частот. Для этого умножим сумму по строке на сумму по столбцу и разделим получившееся число на общую сумму (s).

Итоговая таблица для вычислений будет выглядеть так:

ч2 = ?(Э - Т)? / Т

n = (R - 1), где R - количество строк в таблице.

В нашем случае хи-квадрат = 4,21; n = 2.

По таблице критических значений критерия находим: при n = 2 и уровне ошибки 0,05 критическое значение ч2 = 5,99.

Полученное значение меньше критического, а значит принимается нулевая гипотеза.

Вывод: учителя не придают значение полу ребенка при написании ему характеристики.

Приложение

Критические точки распределения ч2

23. Понятие распределения хи-квадрат и Стьюдента, и графический вид

1) Распределение (хи-квадрат) с n степенями свободы - это распределение суммы квадратов n независимых стандартных нормальных случайных величин.

Распределение (хи – квадрат) – распределение случайной величины (причем математическое ожидание каждой из них равно 0, а среднее квадратическое отклонение-1)

где случайные величины независимы и имеют одно и тоже распределение . При этом число слагаемых, т.е. , называется "числом степеней свободы" распределения хи-квадрат. Число хи-квадрат опредляется одни параметром-числом степеней свободы. С увеличением числа степеней свободы распределение медленно приближается к нормальному.

Тогда сумма их квадратов

является случайной величиной, распределенной по так называемому закону «хи-квадрат» с k = n степенями свободы; если же слагаемые связаны каким-либо соотношением (например, ), то число степеней свободы k = n – 1.

Плотность этого распределения

Здесь - гамма-функция; в частности, Г(п + 1) = п! .

Следовательно, распределение «хи-квадрат» определяется одним параметром – числом степеней свободы k.

Замечание 1. С увеличением числа степеней свободы распределение «хи-квадрат» постепенно приближается к нормальному.

Замечание 2. С помощью распределения «хи-квадрат» определяются многие другие распреде-ления, встречающиеся на практике, например, распределение случайной величины - длины случайного вектора (Х1, Х2,…, Хп), координаты которого независимы и распределены по нормальному закону.

Впервые χ2-распределение было рассмотрено Р.Хельмертом (1876) и К.Пирсоном (1900).

Мат.ожид.=n; D=2n

2) Распределение Стьюдента

Рассмотрим две независимые случайные величины: Z, имеющую нормальное распределение и нормированную (то есть М(Z) = 0, σ(Z) = 1), и V, распределенную по закону «хи-квадрат» с k степенями свободы. Тогда величина

имеет распределение, называемое t – распределением или распределением Стьюдента с k степенями свободы. При этом k называется "числом степеней свободы" распределения Стьюдента.

С возрастанием числа степеней свободы распределение Стьюдента быстро приближается к нормальному.

Это распределение было введено в 1908 г. английским статистиком В. Госсетом, работавшем на фабрике, выпускающей пиво. Вероятностно-статистические методы использовались для принятия экономических и технических решений на этой фабрике, поэтому ее руководство запрещало В. Госсету публиковать научные статьи под своим именем. Таким способом охранялась коммерческая тайна, "ноу-хау" в виде вероятностно-статистических методов, разработанных В. Госсетом. Однако он имел возможность публиковаться под псевдонимом "Стьюдент". История Госсета – Стьюдента показывает, что еще сто лет назад менеджерам Великобритании была очевидна большая экономическая эффективность вероятностно-статистических методов принятия решений.



© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний