Мощность сил приложенных к твердому телу. Работа и мощность силы, приложенной к твердому телу

Главная / Оскар Уайльд

Вычисляя сумму элементарных работ двух внутренних сил F 1 J и F 2 J ,

получаем

F1 J dS1 cos(P1 J ,υ 1 ) + F2 J dS2 cos(P2 J ,υ 2 ) = F1 ′ M1 M1 ′ − F1 M 2 M 2 ′

т.к. каждой внутренней силе соответствует другая, равная ей по модулю и противоположная по направлению, то сумма элементарных работ всех внутренних сил тоже равна нулю.

δ A J = ∑ δ A i J = 0

Конечное перемещение является совокупностью элементарных переме-

щений, поэтому AJ = 0, т.е. сумма работ внутренних сил твердого тела на любом его перемещении равна нулю.

2.5.2. Работа внешних сил, приложенных к поступательно движущемуся телу

К каждой точке тела приложены внешние и внутренние силы (рис. 18). Так как работа внутренних сил на любом перемещении равна нулю, то следует вычислить работу лишь внешних сил F 1 E , F 2 E … F n E . При поступательном

движении траектории всех точек идентичны, а вектора элементарных перемещений геометрически равны, т.е.

dri = dr = drc .

Элементарная работа силы F i E

δ A iE = F i E dr c .

Элементарная работа всех внешних сил

δ AE = ∑ δ Ai E = ∑ F i E drc = drc ∑ Fi E = R E dr c ,

где R E - главный вектор внешних сил.

Работа на конечном перемещении

AE = ∫ R E drc .

Работа сил при поступательном перемещении твердого тела равна работе главного вектора внешних сил на элементарном перемещении центра масс.

2.5.3. Работа внешних сил, приложенных к вращающемуся телу

Предположим, что к твердому телу, вращающемуся вокруг неподвижной оси Z , приложены внешние силы F 1 E , F 2 E … F i E … F n E (рис. 19).

Вычислим работу одной силы F i E , приложенной к точке M i , описывающей окружность радиуса R i . Разложим силу F i E на три составляющие, направленные по естественным осям траектории точки M i .

E F 1

F ib

F in

Mi dSi

F iτ

Z M1 (x1 ,y1, z1 )

M2 (x2 ,y2 , z2 )

При элементарном повороте тела на угол d ϕ точка M i описывает дугу dS i = R i d ϕ . На этом перемещении работу составляет только касательная составляющая силы, а работа перпендикулярных к вектору скорости составляющих силы F in E и F ib E равна нулю.

δ A i E = F i τ E dS i = F i τ E R i d ϕ = M i E τ d ϕ = M iz E d ϕ , т.к. моменты нормальной и бинормальной составляющих силы F i E относительно оси Z равны нулю эле-

ментарная работа всех сил, приложенных к твердому телу

δ AE = ∑ δ Ai E = ∑ M iz E dϕ = dϕ ∑ Miz E = M z E dϕ .

Таким образом, элементарная работа внешних сил, приложенных к вращающемуся твердому телу равна

δ AE = M z E dϕ .

При конечном повороте тела работа внешних сила равна

AE = ∫ M z E dϕ .

Если главный момент внешних сил M z E = const , то работа внешних сил на конечном перемещении равна A = M z E (ϕ 2 − ϕ 1 ) .

Работа при вращательном движении твердого тела равна работе главного момента внешних сил относительно оси вращения на элементарном угловом перемещении.

2.6. Работа силы тяжести

Пусть точка массой m перемещается под действием силы тяжести из положения M 1 (x 1 , y 1 ,z 1 ) в положение M 2 (x 2 , y 2 ,z 2 ) (рис. 20).

Элементарная работа силы вычисляется как скалярное произведение вектора силы F (X ,Y ,Z ) на вектор элементарного перемещения dr (dx,dy,dz )

δ A = F dr = Xdx + Ydy + Zdz ,

где X ,Y ,Z - проекции силы F ,

dx,dy,dz - проекции вектора перемещения dr на оси x, y,z . При движении под действием силы тяжести

А= ± mgh .

Если точка опускается (независимо от вида траектории), т.е. z 2 < z 1 , работа силы тяжести положительна, если точка поднимается, работа силы тя-

жести отрицательна. Если точка перемещается горизонтально (z 2 = z 1 ) , работа силы тяжести равна 0.

3. ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ

Рассмотрим материальную точку M массой m , движущуюся под дей-

ствием сил

F 2 … F n (рис. 21) со скоростью υ

Модуль которой равен

υ = dS , где S - дуговая координата.

Проекция ускорения на касательную равна a τ =

Учитывая, что скорость υ

Сложная функция времени, т.е. υ = f (S (t )) ,

a τ = d υ

D υ

= υ d υ .

Основное уравнение динамики в проекции на касательную имеет вид

maτ = ∑ Fi τ

υd υ

= ∑ F i τ .

Умножим обе части уравнения на dS и проинтегрируем обе части равенства в пределах, соответствующих начальному и конечному положениям

точки M 1

и M 2

mυ dυ = dS∑ Fi τ

m ∫ υ d υ = ∑ ∫ F i τ dS , откуда

mυ 2

= ∑ A i .

mυ 2

Половина произведения массы материальной точки на квадрат скорости

называется кинетической энергией точки.

mυ 2 2

− кинетическая энергия точки после перемещения,

− кинетическая энергия точки до перемещения,

mυ 2

V i 2

Практическая работа на тему: «Работа и мощность при вращательном движении»

Цель работы: закрепить изучение материал по теме, научиться решать задачи.

Ход работы:

    Изучить материал по теме.

    Записать краткую теорию.

    Решить задачи.

    Оформить работу.

    Ответить на контрольные вопросы.

    Написать вывод.

Краткая теория:

Работа постоянной силы, приложенной к вращающемуся телу

Представим себе диск, вращающийся вокруг неподвижной оси под действием постоянной силы F (рис. 6) , точка приложения которой перемещается вместе с диском. Разложим силу F на три взаимно-перпендикулярные составляющие: F 1 – окружная сила, F 2 – осевая сила, F 3 – радиальная сила.

При повороте диска на бесконечно малый угол сила F совершит элементарную работу, которая на основании теоремы о работе равнодействующей будет равна сумме работ составляющих.

Очевидно, что работа составляющих F 2 и F 3 будет равна нулю, так как векторы этих сил перпендикулярны бесконечно малому перемещению ds точки приложения М , поэтому элементарная работа силы F равна работе ее составляющей F 1 :

dW = F 1 ds = F 1 Rdφ .

При повороте диска на конечный угол φ работа силы F равна

W = ∫ F 1 Rdφ = F 1 R ∫ dφ = F 1 ,

где угол φ выражается в радианах.

Так как моменты составляющих F 2 и F 3 относительно оси z равны нулю, то на основании момент силы F относительно оси z равен:

М z (F) = F 1 R .

Момент силы, приложенной к диску, относительно оси вращения называется вращающим моментом, и, согласно стандарту ИСО , обозначается буквой Т :

Т = М z (F) , следовательно, W = Tφ .

Работа постоянной силы, приложенной к вращающемуся телу, равна произведению вращающего момента на угловое перемещение .

Пример решения задачи

Задача: рабочий вращает рукоятку лебедки силой F = 200 Н , перпендикулярной радиусу вращения.
Найти работу, затраченную в течение времени
t = 25 секунд , если длина рукоятки r = 0,4 м , а ее угловая скорость ω = π/3 рад/с .

Решение.
Прежде всего определим угловое перемещение
φ рукоятки лебедки за 25 секунд :

φ = ωt = (π/3)×25 = 26,18 рад.

W = Tφ = Frφ = 200×0,4×26,18 ≈ 2100 Дж ≈ 2,1 кДж .

Мощность силы, приложенной к равномерно вращающемуся телу, равна произведению вращающего момента на угловую скорость .

Если работа совершается силой, приложенной к равномерно вращающемуся телу, то мощность в этом случае может быть определена по формуле:

P = W/t = Tφ/t или P = Tω .

Вариант №1

    На двух шнурах одинаковой длины, равной 0,8 м, подвешены два свинцовых шара массами 0,5 и 1 кг. Шары соприкасается между собой. Шар меньшей массы отвели в сторону так, что шнур отклонился на угол α= 60°, и отпустили. На какую высоту поднимутся оба шара после столкновения? Удар считать центральным и неупругим. Определить энергию, израсходованную на деформацию шаров при ударе.

    Маховик массой 4 кг свободно вращается вокруг горизонтальной оси, проходящей через его центр, с частотой 720 мин-1. Массу маховика можно считать распределенной по его ободу радиусом 40 см. Через 30 с под действием тормозящего мо­мента маховик остановился. Найти тормозящий момент и число оборотов, которое делает маховик до полной остановки.

    Тело массой m=1,0 кг падает с высоты h=20 м. Пренебрегая сопротивлением воздуха найти среднюю мощность, развиваемую силой тяжести на пути h, и мгновенную мощность на высоте h/2.

Вариант №2

    Маховик вращается по закону, выражаемому уравнением, где А = 2 рад, В = 32 рад/с, С = -4 рад/с2. Найти среднюю мощность N , развиваемую силами, действующими на маховик при его вращении, до остановки, если момент инерции I = 100 кг·м 2 .

    Тело массы m вращается на горизонтальной поверхности по окружности радиуса r=100мм. Найти работу силы трения при повороте тела на угол α=30. Коэффициент трения между телом и поверхностью равен k=0,2.

    Первый шар массой m1 = 2 кг движется со скоростью, величина которой v1 = 3 м/с. Второй шар массой m2 = 8 кг движется со скоростью, величина которой v2 = 1 м/с. Найти скорость v 1 первого шара и скорость v 2 второго шара сразу после удара, если: а) шары движутся навстречу друг другу; б) первый шар догоняет второй. Удар считать центральным и абсолютно упругим.

Элементарной работой силы на перемещении (рис. 3.22) называется скалярное произведение силы на элементарное перемещение точки ее приложения:

где a – угол между направлениями векторов и

Так как то можно записать еще одно выражение элементарной работы:

Для элементарной работы можно записать еще несколько выражений:

Из формул элементарной работы следует, что эта величина может быть положительной (угол a острый), отрицательной (угол a тупой) или равна нулю (угол a прямой).

Полная работа сил . Для определения полной работы силы на перемещении от точки M 0 до М разобьем это перемещение на n перемещений, каждое из которых в пределе переходит в элементарное. Тогда работа силы А :

где dA k – работа на k -м элементарном перемещении.

Записанная сумма является интегральной и может быть заменена криволинейным интегралом, взятым вдоль кривой на перемещении M 0 М. Тогда

или

где момент времени t =0 соответствует точке M 0 , а момент времени t – точке М .

Из определения элементарной и полной работы следует:

1) работа равнодействующей силы на каком–либо перемещении равна алгебраической сумме работ составляющих сил на этом перемещении;

2) работа сил на полном перемещении равна сумме работ этой же силы на составляющих перемещениях, на которые любым образом разбито все перемещение.

Мощность силы. Мощностью силы называют работу за единицу времени:

или с учетом, что

Мощность силы – это величина, равная скалярному произведению силы на скорость точки ее приложения.

Таким образом, при постоянной мощности увеличение скорости ведет к уменьшению силы и наоборот. Единицей измерения мощности является Ватт : 1Вт=1 Дж/с.

Если сила приложена к телу, вращающемуся вокруг неподвижной оси, то ее мощность равна

Аналогично определяется и мощность пары сил.

3.3.4.3. Примеры вычисления работы силы

Полная работа силы –

где h – высота, на которую опустилась точка.

Таким образом, работа силы тяжести положительная, когда точка опускается, и отрицательная, когда точка поднимается. Работа силы тяжести не зависит от формы траектории между точками M 0 и M 1 .

Работа линейной силы упругости. Линейной силой упругости называют силу, действующую по закону Гука (рис. 3.24):

где – радиус-вектор, проведенный из точки равновесия, где сила равна нулю, до рассматриваемой точки М ; с постоянный коэффициент жесткости.

Работа силы на перемещении от точки M 0 до точки M 1 определим по формуле

Выполняя интегрирование, получаем

(3.27)

Рис. 3.25

По формуле (3.27) вычисляют работу линейной силы упругости пружин при перемещении по любому пути из точки M 0 , в которой ее начальная деформация равна в точку M 1 , где деформация соответственно равна В новых обозначениях формула (3.27) принимает вид

Работа силы, приложенной к вращающемуся твердому телу . При вращении твердого тела вокруг неподвижной оси скорость точки М можно вычислить по формуле Эйлера, см. рис. 3.25:

Тогда элементарную работу силы определим по формуле

Используя свойство смешанного векторного произведения
получим

Так как – момент силы относительно точки О . Учитывая, что – момент силы относительно оси вращения Oz и ωdt =d φ, окончательно получаем:

dA =M z d φ.

Элементарная работа силы, приложенной к какой–либо точке тела, вращающегося вокруг неподвижной оси, равна произведению момента силы относительно оси вращения на дифференциал угла поворота тела.

Полная работа:

В частном случае, когда , работу определяют по формуле

где j – угол поворота тела, на котором вычисляют работу силы.

Рис. 3.26

Работа внутренних сил твердого тела . Докажем, что работа внутренних сил твердого тела равна нулю при любом его перемещении. Достаточно доказать, что сумма элементарных работ всех внутренних сил равна нулю. Рассмотрим две любые точки тела M 1 и M 2 (рис. 3.26). Так как внутренние силы есть силы взаимодействия точек тела, то:

Введем единичный вектор направленный по силе Тогда

Сумма элементарных работ сил и равна

Раскрывая скалярные произведения векторов в скобках, получаем

Так как в кинематике доказано, что проекции скоростей любых двух точек твердого тела на направление прямой линии, соединяющей эти точки, равны друг другу при любом движении твердого тела, то в полученном выражении в скобках стоит разность одинаковых величин, т.е. величина, равная нулю.

3.3.4.4. Теорема об изменении кинетической энергии точки

Для материальной точки массой m , движущейся под действием силы основной закон динамики можно представить в виде

Умножая обе части этого соотношения скалярно на дифференциал радиус-вектора точки имеем

или

Учитывая, что – элементарная работа силы,

(3.28)

Формула (3.28) выражает теорему об изменении кинетической энергии для точки в дифференциальной форме.

Дифференциал кинетической энергии точки равен элементарной работе силы, действующей на точку.

Если обе части равенства (3.28) проинтегрировать от точки M 0 до точки М (см. рис. 3.22), получаем теорему об изменении кинетической энергии точки в конечной форме:

Изменение кинетической энергии точки на каком–либо перемещении равно работе силы, действующей на точку на том же перемещении.

3.4.4.5. Теорема об изменении кинетической энергии системы

Для каждой точки системы можно выразить теорему об изменении кинетической энергии в форме:

Суммируя правые и левые части этих соотношений по всем точкам системы и вынося знак дифференциала за знак суммы, получаем:

или

где – кинетическая энергия системы; – элементарная работа внешних и внутренних сил соответственно.

Формула (3.29) выражает теорему об изменении кинетической энергии системы в дифференциальной форме.

Дифференциал от кинетической энергии системы равен сумме элементарных работ всех внешних и внутренних сил, действующих на систему.

Если обе части (3.29) проинтегрировать между двумя положениями системы – начальным и конечным, в которых кинетическая энергия равна T 0 и Т , то, изменяя порядок суммирования и интегрирования, имеем:

или

где – работа внешней силы для точки системы M k при ее перемещении из начального положения в конечное положение M k ; – работа внутренней силы, действующей на точку M k .

Формула (3.30) выражает теорему об изменении кинетической энергии системы в конечной или интегральной форме.

Изменение кинетической энергии системы при ее перемещении из одного положения в другое равно сумме работ всех внешних и внутренних сил, действующих на систему, на соответствующих перемещениях точек системы при том же перемещении системы.

Теорема: работа силы тяжести не зависит от вида траектории и равна произведению модуля силы на вертикальное перемещение точки ее приложения .

Пусть материальная точка М движется под действием силы тяжести G и за какой-то промежуток времени перемещается из положения М 1 в положение М 2 , пройдя путь s (рис. 4) .
На траектории точки М выделим бесконечно малый участокds , который можно считать прямолинейным, и из его концов проведем прямые, параллельные осям координат, одна из которых вертикальна, а другая горизонтальна.
Из заштрихованного треугольника получим, что

dy = ds cos α .

Элементарная работа силы G на пути ds равна:

dW = F ds cos α .

Полная работа силы тяжести G на пути s равна

W = ∫ Gds cos α = ∫ Gdy = G ∫ dy = Gh .

Итак, работа силы тяжести равна произведению силы на вертикальное перемещение точки ее приложения:

Теорема доказана.

Пример решения задачи по определению работы силы тяжести

Задача: Однородный прямоугольный массив АВСD массой m = 4080 кг имеет размеры, указанные на рис. 5 .
Определить работу, которую необходимо выполнить для опрокидывания массива вокруг ребра D .

Решение.
Очевидно, что искомая работа будет равна работе сопротивления, совершаемой силой тяжести массива, при этом вертикальное перемещение центра тяжести массива при опрокидывании через ребро D является путем, который определяет величину работы силы тяжести.

Для начала определим силу тяжести массива: G = mg = 4080×9,81 = 40 000 Н = 40 кН .

Для определения вертикального перемещения h центра тяжести прямоугольного однородного массива (он находится в точке пересечения диагоналей прямоугольника), используем теорему Пифагора, исходя из которой:

КО 1 = ОD – КD = √(ОК 2 + КD 2) – КD = √(3 2 +4 2) - 4 = 1 м .



На основании теоремы о работе силы тяжести определим искомую работу, необходимую для опрокидывания массива:

W = G×КО 1 = 40 000×1 = 40 000 Дж = 40 кДж.

Задача решена.

Работа постоянной силы, приложенной к вращающемуся телу

Представим себе диск, вращающийся вокруг неподвижной оси под действием постоянной силы F (рис. 6) , точка приложения которой перемещается вместе с диском. Разложим силу F на три взаимно-перпендикулярные составляющие: F 1 – окружная сила, F 2 – осевая сила, F 3 – радиальная сила.

При повороте диска на бесконечно малый угол силаF совершит элементарную работу, которая на основании теоремы о работе равнодействующей будет равна сумме работ составляющих.

Очевидно, что работа составляющих F 2 и F 3 будет равна нулю, так как векторы этих сил перпендикулярны бесконечно малому перемещению ds точки приложения М , поэтому элементарная работа силы F равна работе ее составляющей F 1 :

dW = F 1 ds = F 1 Rdφ .

При повороте диска на конечный угол φ работа силы F равна

W = ∫ F 1 Rdφ = F 1 R ∫ dφ = F 1 Rφ ,

где угол φ выражается в радианах.

Так как моменты составляющих F 2 и F 3 относительно оси z равны нулю, то на основании теоремы Вариньона момент силы F относительно оси z равен:

М z (F) = F 1 R .

Момент силы, приложенной к диску, относительно оси вращения называется вращающим моментом, и, согласно стандарту ИСО , обозначается буквой Т :

Т = М z (F) , следовательно, W = Tφ .

Работа постоянной силы, приложенной к вращающемуся телу, равна произведению вращающего момента на угловое перемещение .

Пример решения задачи

Задача: рабочий вращает рукоятку лебедки силой F = 200 Н , перпендикулярной радиусу вращения.
Найти работу, затраченную в течение времени t = 25 секунд , если длина рукоятки r = 0,4 м , а ее угловая скорость ω = π/3 рад/с .

Решение.
Прежде всего определим угловое перемещение φ рукоятки лебедки за 25 секунд :

φ = ωt = (π/3)×25 = 26,18 рад.

W = Tφ = Frφ = 200×0,4×26,18 ≈ 2100 Дж ≈ 2,1 кДж .

Мощность

Работа, совершаемая какой-либо силой, может быть за различные промежутки времени, т. е. с разной скоростью. Чтобы охарактеризовать, насколько быстро совершается работа, в механике существует понятиемощности , которую обычно обозначают буквой P .

Рассмотрим формулы для определения работы и мощности силы, приложенной в какой-либо точке твердого тела, совершающего поступательное или вращательное движение.

1. Работа и мощность силы, приложенной к твердому телу, совершающему поступательное движение.

Рассмотрим твердое тело, совершающее поступательное движение по отношению к инерциальной системе отсчета под действием силы , приложенной в произвольной точке (рис. 24).

В случае поступательного движения твердого тела все его точки движутся со скоростями одинаковыми по величине и направлению. Обозначим скорость тела .

Используя формулу (4.31), получим

где - дифференциал радиус-вектора произвольной точки твердого тела .

Рис. 24. Поступательное движение твердого тела под действием силы

Поделив (4.49) на dt , получим выражение для определения мощности силы, действующей на тело, совершающее поступательное движение:

где - угол между векторами силы скорости .

То есть мощность силы при поступательном движении твердого тела определяется как скалярное произведение вектора силы на вектор скорости твердого тела .

Интегрируя (4.49) на каком-либо конечном перемещении точки M из начального положения М 0 в положение М 1 , получим полную работу силы, действующей на тело на этом перемещении

2. Работа и мощность силы, приложенной к твердому телу, совершающему вращательное движение.

Рассмотрим вращение твердого тела вокруг неподвижной вертикальной оси Oz под действием силы , приложенной в произвольной точке этого тела М (рис. 25).

Рис. 25. Вращение твердого тела вокруг неподвижной оси

Положение точки М в осях Oxyz определяется радиус-вектором . Скорость точки М направлена по касательной к траектории движения (окружность с центром на оси вращения). Вектор этой скорости можно определить по векторной формуле Эйлера, известной из курса кинематики твердого тела

где - вектор угловой скорости вращения твердого тела.

Используя формулу (4.32), получим

Меняя в круговом порядке сомножители в смешанном векторном произведении, получим

где - векторный момент силы , относительно центра O .

Угол между векторами момента и угловой скорости .

Учитывая, что:

1. - момент силы , относительно оси вращения Oz.

2. и следовательно ,

окончательно получим

Таким образом, элементарная работа силы, приложенной в какой-либо точке твердого тела, вращающегося вокруг неподвижной оси, равна произведению момента этой силы относительно оси вращения на дифференциал угла поворота тела.

Для определения полной работы силы при повороте тела на угол φ, проинтегрировав выражение (4.53), получим

В случае когда , полную работу можно определить по формуле

где φ – угол поворота тела, на котором определяют работу силы.

Если направление момента и угловой скорости совпадают, то работа силы считается положительной, в противном случае – отрицательной.

Определим мощность силы при вращении твердого тела вокруг оси. Используя формулу (4.40), получим

То есть мощность силы, приложенной к вращающемуся твердому телу, определяется как произведение момента силы относительно оси вращения на угловую скорость тела . Знак мощности определяется аналогично знаку работы.



© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний