Механическая система. Внутренние и внешние силы

Главная / А. П. Чехов

Необходимо знать точку приложения и направление каждой силы. Важно уметь определить какие именно силы действуют на тело и в каком направлении. Сила обозначается как , измеряется в Ньютонах. Для того, чтобы различать силы, их обозначают следующим образом

Ниже представлены основные силы, действующие в природе. Придумывать не существующие силы при решении задач нельзя!

Сил в природе много. Здесь рассмотрены силы, которые рассматриваются в школьном курсе физики при изучении динамики. А также упомянуты другие силы, которые будут рассмотрены в других разделах.

Сила тяжести

На каждое тело, находящееся на планете, действует гравитация Земли . Сила, с которой Земля притягивает каждое тело, определяется по формуле

Точка приложения находится в центре тяжести тела. Сила тяжести всегда направлена вертикально вниз .


Сила трения

Познакомимся с силой трения. Эта сила возникает при движении тел и соприкосновении двух поверхностей. Возникает сила в результате того, что поверхности, если рассмотреть под микроскопом, не являются гладкими, как кажутся. Определяется сила трения по формуле:

Сила приложена в точке соприкосновения двух поверхностей. Направлена в сторону противоположную движению.

Сила реакции опоры

Представим очень тяжелый предмет, лежащий на столе. Стол прогибается под тяжестью предмета. Но согласно третьему закону Ньютона стол воздействует на предмет с точно такой же силой, что и предмет на стол. Сила направлена противоположно силе, с которой предмет давит на стол. То есть вверх. Эта сила называется реакцией опоры. Название силы "говорит" реагирует опора . Эта сила возникает всегда, когда есть воздействие на опору. Природа ее возникновения на молекулярном уровне. Предмет как бы деформировал привычное положение и связи молекул (внутри стола), они, в свою очередь, стремятся вернуться в свое первоначальное состояние, "сопротивляются".

Абсолютно любое тело, даже очень легкое (например,карандаш, лежащий на столе), на микроуровне деформирует опору. Поэтому возникает реакция опоры.

Специальной формулы для нахождения этой силы нет. Обозначают ее буквой , но эта сила просто отдельный вид силы упругости, поэтому она может быть обозначена и как

Сила приложена в точке соприкосновения предмета с опорой. Направлена перпендикулярно опоре.


Так как тело представляем в виде материальной точки, силу можно изображать с центра

Сила упругости

Это сила возникает в результате деформации (изменения первоначального состояния вещества). Например, когда растягиваем пружину, мы увеличиваем расстояние между молекулами материала пружины. Когда сжимаем пружину - уменьшаем. Когда перекручиваем или сдвигаем. Во всех этих примерах возникает сила, которая препятствует деформации - сила упругости.

Закон Гука


Сила упругости направлена противоположно деформации.

Так как тело представляем в виде материальной точки, силу можно изображать с центра

При последовательном соединении, например, пружин жесткость рассчитывается по формуле

При параллельном соединении жесткость

Жесткость образца. Модуль Юнга.

Модуль Юнга характеризует упругие свойства вещества. Это постоянная величина, зависящая только от материала, его физического состояния. Характеризует способность материала сопротивляться деформации растяжения или сжатия. Значение модуля Юнга табличное.

Подробнее о свойствах твердых тел .

Вес тела

Вес тела - это сила, с которой предмет воздействует на опору. Вы скажете, так это же сила тяжести! Путаница происходит в следующем: действительно часто вес тела равен силе тяжести, но это силы совершенно разные. Сила тяжести - сила, которая возникает в результате взаимодействия с Землей. Вес - результат взаимодействия с опорой. Сила тяжести приложена в центре тяжести предмета, вес же - сила, которая приложена на опору (не на предмет)!

Формулы определения веса нет. Обозначается эта силы буквой .

Сила реакции опоры или сила упругости возникает в ответ на воздействие предмета на подвес или опору, поэтому вес тела всегда численно одинаков силе упругости, но имеет противоположное направление.



Сила реакции опоры и вес - силы одной природы, согласно 3 закону Ньютона они равны и противоположно направлены. Вес - это сила, которая действует на опору, а не на тело. Сила тяжести действует на тело.

Вес тела может быть не равен силе тяжести. Может быть как больше, так и меньше, а может быть и такое, что вес равен нулю. Это состояние называется невесомостью . Невесомость - состояние, когда предмет не взаимодействует с опорой, например, состояние полета: сила тяжести есть, а вес равен нулю!



Определить направление ускорения возможно, если определить, куда направлена равнодействующая сила

Обратите внимание, вес - сила, измеряется в Ньютонах. Как верно ответить на вопрос: "Сколько ты весишь"? Мы отвечаем 50 кг, называя не вес, а свою массу! В этом примере, наш вес равен силе тяжести, то есть примерно 500Н!

Перегрузка - отношение веса к силе тяжести

Сила Архимеда

Сила возникает в результате взаимодействия тела с жидкость (газом), при его погружении в жидкость (или газ). Эта сила выталкивает тело из воды (газа). Поэтому направлена вертикально вверх (выталкивает). Определяется по формуле:

В воздухе силой Архимеда пренебрегаем.

Если сила Архимеда равна силе тяжести, тело плавает. Если сила Архимеда больше, то оно поднимается на поверхность жидкости, если меньше - тонет.



Электрические силы

Существуют силы электрического происхождения. Возникают при наличии электрического заряда. Эти силы, такие как сила Кулона , сила Ампера , сила Лоренца , подробно рассмотрены в разделе Электричество .

Схематичное обозначение действующих на тело сил

Часто тело моделируют материальной точкой . Поэтому на схемах различные точки приложения переносят в одну точку - в центр, а тело изображают схематично кругом или прямоугольником.

Для того, чтобы верно обозначить силы, необходимо перечислить все тела, с которыми исследуемое тело взаимодействует. Определить, что происходит в результате взаимодействия с каждым: трение, деформация, притяжение или может быть отталкивание. Определить вид силы, верно обозначить направление. Внимание! Количество сил будет совпадать с числом тел, с которыми происходит взаимодействие.

Главное запомнить

1) Силы и их природа;
2) Направление сил;
3) Уметь обозначить действующие силы

Различают внешнее (сухое) и внутреннее (вязкое) трение. Внешнее трение возникает между соприкасающимися твердыми поверхностями, внутреннее - между слоями жидкости или газа при их относительном движении. Существует три вида внешнего трения: трение покоя, трение скольжения и трение качения.

Трение качения определяется по формуле

Сила сопротивления возникает при движении тела в жидкости или в газе. Величина силы сопротивления зависит от размеров и формы тела, скорости его движения и свойств жидкости или газа. При небольших скоростях движения сила сопротивления пропорциональна скорости тела

При больших скоростях пропорциональна квадрату скорости

Рассмотрим взаимное притяжение предмета и Земли. Между ними, согласно закону гравитации возникает сила

А сейчас сравним закон гравитации и силу тяжести

Величина ускорения свободного падения зависит от массы Земли и ее радиуса! Таким образом, можно высчитать, с каким ускорением будут падать предметы на Луне или на любой другой планете, используя массу и радиус той планеты.

Расстояние от центра Земли до полюсов меньше, чем до экватора. Поэтому и ускорение свободного падения на экваторе немного меньше, чем на полюсах. Вместе с тем, следует отметить, что основной причиной зависимости ускорения свободного падения от широты местности, является факт вращения Земли вокруг своей оси.

При удалении от поверхности Земли сила земного тяготения и ускорения свободного падения изменяются обратно пропорционально квадрату расстояния до центра Земли.


Силы, действующие на любую точку механической системы, делятся на внутренние и внешние.

Fi – внутренняя сила

Fe – внешняя сила

Внутренними называются силы, с которыми точки, входящие в систему, действуют друг на друга.

Внешними называются силы, которые прикладываются к точкам извне, то есть от других точек или тел, не входящих в систему. Разделение сил на внутренние и внешние условное.

mg – внешняя сила

Fтр – внутренняя сила

Механическая система. Силы внешние и внутренние.

Механической системой материальных точек или тел называется такая их совокупность, в которой положение или движение каждой точки (или тела) зависит от положения и движения всех остальных.

Материальное абсолютно твердое тело мы также будем рассматривать как систему материальных точек, образующих это тело и связанных между собой так, что расстояния между ними не изменяются, все время остаются постоянными.

Классическим примером механической системы является солнечная система, в которой все тела связаны силами взаимного притяжения. Другим примером механической системы может служить любая машина или механизм, в которых все тела связаны шарнирами, стержнями, тросами, ремнями и т.п. (т.е. различными геометрическими связями). В этом случае на тела системы действуют силы взаимного давления или натяжения, передаваемые через связи.

Совокупность тел, между которыми нет никаких сил взаимодействия (например, группа летящих в воздухе самолетов), механическую систему не образует.

В соответствии со сказанным, силы, действующие на точки или тела системы, можно разделить на внешние и внутренние.

Внешними называются силы, действующие на точки системы со стороны точек или тел, не входящих в состав данной системы.

Внутренними называются силы, действующие на точки системы со стороны других точек или тел этой же системы. Будем обозначать внешние силы символом - , а внутренние - .

Как внешние, так и внутренние силы могут быть в свою очередь или активными, или реакциями связей.

Реакции связей или просто – реакции, это силы которые ограничивают движение точек системы (их координаты, скорость и др.). В статике это были силы заменяющие связи. В динамике для них вводится более общее определение.

Активными или задаваемыми силами называются все остальные силы, все кроме реакций.

Необходимость этой классификации сил выяснится в следующих главах.

Разделение сил на внешние и внутренние является условным и зависит от того, движение какой системы тел мы рассматриваем. Например, если рассматривать движение всей солнечной системы в целом, то сила притяжения Земли к Солнцу будет внутренней; при изучении же движения Земли по её орбите вокруг Солнца та же сила будет рассматриваться как внешняя.


Внутренние силы обладают следующими свойствами:

1. Геометрическая сумма (главный вектор) всех внутренних силF12 и F21 системы равняется нулю. В самом деле, по третьему закону динамики любые две точки системы (рис.31) действуют друг на друга с равными по модулю и противоположно направленными силами и, сумма которых равна нулю. Так как аналогичный результат имеет место для любой пары точек системы, то

2. Сумма моментов (главный момент) всех внутренних сил системы относительно любого центра или оси равняется нулю. Действительно, если взять произвольный центр О, то из рис.18 видно, что . Аналогичный результат получится при вычислении моментов относительно оси. Следовательно, и для всей системы будет:

Из доказанных свойств не следует однако, что внутренние силы взаимно уравновешиваются и не влияют на движение системы, так как эти силы приложены к разным материальным точкам или телам и могут вызывать взаимные перемещения этих точек или тел. Уравновешенными внутренние силы будут тогда, когда рассматриваемая система представляет собою абсолютно твердое тело.

30Теорема о движении центра масс.

Масса системы равняется алгебраической сумме масс всех точек или тел системыВ однородном поле тяжести, для которого, вес любой частицы тела пропорционален ее массе. Поэтому распределение масс в теле можно определить по положению его центра тяжести – геометрической точки С, координаты которой называют центром масс или центром инерции механической системы

Теорема о движении центра масс механической системы : центр масс механической системы движется как материальная точка, масса которой равняется массе системы, и к которой приложены все внешние силы, действующие на систему

Выводы:

Механическую систему или твердое тело можно рассматривать как материальную точку в зависимости от характера ее движения, а не от ее размеров.

Внутренние силы не учитываются теоремой о движении центра масс.

Теорема о движении центра масс не характеризует вращательное движение механической системы, а только поступательное

Закон о сохранении движения центра масс системы:

1. Если сумма внешних сил (главный вектор) постоянно равен нулю, то центр масс механической системы находится в покое или движется равномерно и прямолинейно.

2. Если сумма проекций всех внешних сил на какую-нибудь ось равняется нулю, то проекция скорости центра масс системы на эту же ось величина постоянная.

Уравнение и выражает теорему о движении центра масс системы : произведение массы системы на ускорение ее центра масс равно геометрической сумме всех действующих на систему внешних сил. Сравнивая с уравнением движения материальной точки, получаем другое выражение теоремы: центр масс системы движется как материальная точка, масса которой равна массе всей системы и к которой приложены все внешние силы, действующие на систему.

Если выражение (2) поместить в (3) , с учётом того что, получим:

(4’) – выражает теорему о движении центра масс системы: центр масс системы движется как материальная точка, на которую действуют все силы системы.

Выводы:

1. Внутренние силы не оказывают влияния на движение центра масс системы.

2. Если , движение центра масс системы происходит с постоянной скоростью.

3. , то движение центра масс системы в проекции на ось происходит с постоянной скоростью.

Эти уравнения представляют собою дифференциальные уравнения движения центра масс в проекциях на оси декартовой системы координат.

Значение доказанной теоремы состоит в следующем.

1) Теорема дает обоснование методам динамики точки. Из уравнений видно, что решения, которые мы получаем, рассматривая данное тело как материальную точку, определяют закон движения центра масс этого тела, т.е. имеют вполне конкретный смысл.

В частности, если тело движется поступательно, то его движение полностью определяется движением центра масс. Таким образом, поступательно движущееся тело можно всегда рассматривать как материальную точку с массой, равной массе тела. В остальных случаях тело можно рассматривать как материальную точку лишь тогда, когда практически для определения положения тела достаточно знать положение его центра масс.

2) Теорема позволяет при определении закона движения центра масс любой системы исключать из рассмотрения все наперед неизвестные внутренние силы. В этом состоит ее практическая ценность.

Так движение автомобиля по горизонтальной плоскости может происходить только под действием внешних сил, сил трения, действующих на колеса со стороны дороги. И торможение автомобиля тоже возможно только этими силами, а не трением между тормозными колодками и тормозным барабаном. Если дорога гладкая, то как бы не затормаживали колеса, они будут скользить и не остановят автомобиль.

Или после взрыва летящего снаряда (под действием внутренних сил) части, осколки его, разлетятся так, что центр масс их будет двигаться по прежней траектории.

Теоремой о движении центра масс механической системы следует пользоваться для решения задач механики, в которых требуется:

По силам, приложенным к механической системе (чаще всего к твердому телу), определить закон движения центра масс;

По заданному закону движения тел, входящих в механическую систему, найти реакции внешних связей;

По заданному взаимному движению тел, входящих в механическую систему, определить закон движения этих тел относительно некоторой неподвижной системы отсчета.

С помощью этой теоремы можно составить одно из уравнений движения механической системы с несколькими степенями свободы.

При решении задач часто используются следствия из теоремы о движении центра масс механической системы.

Следствие 1. Если главный вектор внешних сил, приложенных к механической системе, равен нулю, то центр масс системы находится в покое или движется равномерно и прямолинейно. Так как ускорение центра масс равно нулю, .

Следствие 2. Если проекция главного вектора внешних сил на какую-нибудь ось равна нулю, то центр масс системы или не изменяет своего положения относительно данной оси, или движется относительно нее равномерно.

Например, если на тело начнут действовать две силы, образующие пару сил (рис.38), то центр масс С его будет двигаться по прежней траектории. А само тело будет вращаться вокруг центра масс. И неважно, где приложена пара сил.

Деформация, прочность и жесткость. Сопротивление материалов представляет собой часть механики, в которой рассматриваются вопросы расчета элементов конструкций на прочность, жесткость и устойчивость.

Сопротивление материалов опирается на знания теоретической механики. Но если объектом теоретической механики является абсолютно твердое тело, то в сопротивлении материалов рассматриваются деформируемые твердые тела.

На практике реальные части машин и сооружений подвергаются воздействию разного рода сил. Под действием этих сил происходит деформация тел, т.е. изменение взаимного расположения частиц материала. Если силы достаточно велики, возможно разрушение тела.

Способность тела воспринимать нагрузки без разрушения и больших деформаций называют соответственно прочностью и жесткостью.

Некоторые состояния равновесия тел и конструкций оказываются неустойчивыми, т.е. такими, при которых незначительные механические воздействия, как правило, случайного характера, могут привести к существенным отклонениям от этих состояний. Если же отклонения также невелики, то такие состояния равновесия называют устойчивыми.

Внешние силы. К внешним силам, действующим на конструкцию, относятся активные силы (нагрузки) и реакции внешних связей. Различают несколько видов нагрузок.

Сосредоточенная сила, приложенная в точке. Ее вводят вместо реальных сил, действующих на небольшой участок поверхности элемента конструкции, размерами которого можно пренебречь.

Распределенные силы. Например, силы давления жидкости на дно сосуда относятся к распределенным по поверхности нагрузкам и измеряются в единицах а силы веса - к нагрузке, распределенной по объему и измеряемой в . В ряде случаев вводят нагрузку, распределенную по линии, интенсивность которой измеряется в

Одним из вариантов нагрузок является сосредоточенный момент (пара сил).

Внутренние силы в стержне. Наиболее распространенным элементом конструкций является стержень, поэтому в сопротивлении материалов ему уделяют главное внимание.

Продольная ось и поперечное сечение - основные геометрические элементы стержня. Принимается, что поперечные сечения стержня

перпендикулярны продольной оси, а продольная ось проходит через центры тяжести поперечных сечений.

Внутренними силами стержня называют силы взаимодействия между его отдельными частями, возникающие под действием внешних сил (предполагается, что в отсутствие внешних сил внутренние силы равны нулю).

Рассмотрим стержень, находящийся в равновесии под действием некоторой системы внешних сил (рис. 1, а). Мысленно проведем произвольное поперечное сечение, которое делит стержень на две части Л и П. На правую часть П стержня со стороны левой части Л действует система распределенных по поверхности поперечного сечения сил - внутренних сил по отношению к стержню в целом. Эту систему сил можно привести к главному вектору и главному моменту М, взяв центр тяжести сечения - точку О - в качестве центра приведения.

Внутренние силовые факторы. Выберем систему координат, расположив оси х, у в поперечном сечении, а ось перпендикулярно ему, и разложим и М на составляющие по этим осям: (рис. 1, б).

Эти шесть величин называются внутренними силовыми факторами стержня (или внутренними усилиями) в рассматриваемом сечении. Каждое из этих усилий имеет свое название, соответствующее его направлению или определенному виду деформации стержня, который вызывается этим усилием. Силы называются поперечными (перерезывающими) силами, а -нормальной (продольной) силой. Моменты называются изгибающими моментами, а крутящим моментом.

Внешними называют силы, действующие на тело со стороны точек или тел, не входящих в данное тело или систему. Внутренними называют силы, с которыми точки данного тела действуют друг на друга.

Разрушение или даже просто выход из строя конструкционного элемента возможны лишь при возрастании внутренних усилий и при переходе их через некоторый предельный барьер. Высоту этого барьера удобно отсчитать от того уровня, который отвечает отсутствию внешних сил. По существу нужно принять во внимание лишь дополнительные внутренние усилия, возникающие только при наличии внешних сил. Эти дополнительные внутренние силы называют в механике просто внутренними усилиями в узком, механическом смысле.

Определяются внутренние усилия с помощью «метода сечений», в основе которого лежит достаточно очевидное утверждение: если тело в целом находится в равновесии, то и любая выделен из него часть также находится в этом состоянии

Рисунок 2.1.5

Рассмотрим стержень, находящийся в равновесии под действием системы внешних сил, рис. 2.1.5, а. Сечением АВ мысленно разделим его на две части, рис. 2.1.5, б. К каждому из сечений АВ левой и правой частей приложим систему усилий, соответствующую внутренним усилиям, действующим в реальном теле, рис. 1.7, в. Таким образом, с использованием метода сечений внутренние силы переводятся во внешние по отношению к каждой из отсеченных частей тела, что позволяет определять их из условий равновесия каждой из этих частей в отдельности.

Сечение АВ может быть ориентировало любым образом, но более удобным для дальнейших рассуждений оказывается поперечное сечение, перпендикулярное продольной оси стержня.

Введем обозначения:

главные векторы и главные моменты внешних и внутренних сил, приложенных к левой отсеченной части. С учетом введенных обозначений условия равновесия этого тела можно записать в виде:

0, + =0 (2.1.1)

Аналогичные выражения могут быть составлены и для правой отсеченной части стержня. После несложных преобразований можно получить:

=- , =- (2.1.1)

что может быть истолковано как следствие известного закона механики: действие всегда сопровождается равным и противоположно направленным противодействием.

В случае решения задачи о динамическом воздействии на стержень можно обратиться к известному принципу Даламбера, согласно которому к внешним силам присоединяются силы инерции, что вновь сводит задачу к уравнениям равновесия. Следовательно, процедура метода сечений остается

Величины и не зависят от ориентации сечения АВ (см. рис. 2.1.5). Однако в практических расчетах наиболее удобным представляется использование поперечного сечения. В этом случае нормаль к сечению совпадает с продольной осью стержня. Далее главный вектор и главный момент внутренних сил обычно представляют в виде их проекций на ортогональные оси координат, причем одна из осей (например, ось х) совмещается с упомянутой нормалью см. рис. 2.1.6.

Рисунок 2.1.6

Разложим векторы , , , по осям координат, рис. 2.1.6, а-г. Компоненты главного вектора и главного момента имеют общепринятые названия. Усилие N x нормальное к плоскости сечения, называют нормальной (продольной) силой, а Q x и Q y - поперечными (перерезывающими) силами. Моменты относительно осей у и z , т. e. M y и М z будут изгибающими а момент относительно продольной оси х , т.е. М х - крутящим.

Компоненты главного момента внутренних сил в сопротивлении материалов чаще всего отображают так, как дано на рис. 2.1.6, д и е.

Векторные уравнения равновесия могут быть представлены в виде проекции на оси координат:

Таким образом, каждый компонент главного вектора для главного момента внутренних сил подсчитывается как сумма проекций всех внешних сил на соответствующую ось или как сумма моментов всех внешних сил относительно этой оси (с учетом принятого правила знаков), расположенных по одну сторону от сечения.

Проекция вектора на ось координат, являясь величиной скалярной, может быть как положительной, так и отрицательной. Это зависит от того, совпадает направление проекции с положительным или отрицательным направлением оси соответственно. Для внутренних усилий это правило соблюдается лишь для случая, когда нормаль х является внешней, как это имело место для левой отсеченной части на рис. 2.1.6. В ситуации, когда нормаль х является внутренней, см. правую отсеченную часть на рис. 2.1.6, знак внутреннего усилия принимается положительным при совпадении его направления с отрицательным направлением оси. На рис. 2.1.6 все проекции внутренних усилий N x , Q x , Q y , М х, M y и М z (как относящиеся к левой, так и относящиеся к правой отсеченным частям) изображены положительными.

ВНЕШНИЕ И ВНУТРЕННИЕ СИЛЫ . В механике внешними силами по отношению к данной системе материальных точек (т. е. такой совокупности материальных точек, в которой движение каждой точки зависит от положений или движений всех остальных точек) называются те силы, которые представляют собой действие на эту систему других тел (других систем материальных точек), не включенных нами в состав данной системы. Внутренними силами являются силы взаимодействия между отдельными материальными точками данной системы. Подразделение сил на внешние и внутренние является совершенно условным: при изменении заданного состава системы некоторые силы, ранее бывшие внешними, могут стать внутренними, и обратно. Так, например, при рассмотрении движения системы, состоящей из земли и ее спутника луны, силы взаимодействия между этими телами будут внутренними силами для этой системы, а силы притяжения солнца, остальных планет, их спутников и всех звезд будут внешними силами по отношению к указанной системе. Но если изменить состав системы и рассматривать движение солнца и всех планет как движение одной общей системы, то внешними силами будут только силы притяжений, оказываемых звездами; все же силы взаимодействия между планетами, их спутниками и солнцем становятся для этой системы силами внутренними.

Точно так же, если при движении паровоза выделим поршень парового цилиндра как отдельную систему материальных точек, подлежащую нашему рассмотрению, то давление пара на поршень по отношению к нему явится внешней силой, и то же давление пара будет одной из внутренних сил, если будем рассматривать движение всего паровоза в целом; в этом случае внешними силами по отношению ко всему паровозу, принятому за одну систему, будут: трение между рельсами и колесами паровоза, сила тяжести паровоза, реакция рельсов и сопротивление воздуха; внутренними силами будут все силы взаимодействия между частями паровоза, например, силы взаимодействия между паром и поршнем цилиндра, между ползуном и его параллелями, между шатуном и пальцем кривошипа, и т. п. Как видим, по существу нет различия между внешними и внутренними силами, относительное же различие между ними определяется лишь в зависимости от того, какие тела мы включаем в рассматриваемую систему и какие считаем не входящими в состав системы. Однако указанное относительное различие сил имеет весьма существенное значение при исследовании движения данной системы; по третьему закону Ньютона (о равенстве действия и противодействия), внутренние силы взаимодействия между каждыми двумя материальными точками системы равны по величине и направлены по одной и той же прямой в противоположные стороны; благодаря этому при разрешении различных вопросов о движении системы материальных точек возможно исключить все внутренние силы из уравнений движения системы и тем самым сделать возможным самое исследование о движении всей системы. Этот метод исключения внутренних, в большинстве случаев неизвестных, сил связи имеет существенное значение при выводах различных законов механики системы.



© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний