Знание законов физики позволяет нам жить лучше. Применение законов физики в повседневной жизни

Главная / Михаил Булгаков

Ученые с планеты Земля используют массу инструментов, пытаясь описать то, как работает природа и вселенная в целом. Что они приходят к законам и теориям. В чем разница? Научный закон можно зачастую свести к математическому утверждению, вроде E = mc²; это утверждение базируется на эмпирических данных и его истинность, как правило, ограничивается определенным набором условий. В случае E = mc² - скорость света в вакууме.

Научная теория зачастую стремится синтезировать ряд фактов или наблюдений за конкретными явлениями. И в целом (но не всегда) выходит четкое и проверяемое утверждение относительно того, как функционирует природа. Совсем не обязательно сводить научную теорию к уравнению, но она на самом деле представляет собой нечто фундаментальное о работе природы.

Как законы, так и теории зависят от основных элементов научного метода, например, создании гипотез, проведения экспериментов, нахождения (или не нахождения) эмпирических данных и заключение выводов. В конце концов, ученые должны быть в состоянии повторить результаты, если эксперименту суждено стать основой для общепринятного закона или теории.

В этой статье мы рассмотрим десять научных законов и теорий, которые вы можете освежить в памяти, даже если вы, к примеру, не так часто обращаетесь к сканирующему электронному микроскопу. Начнем со взрыва и закончим неопределенностью.

Если и стоит знать хотя бы одну научную теорию, то пусть она объяснит, как вселенная достигла нынешнего своего состояния (или не достигла, ). На основании исследований, проведенных Эдвином Хабблом, Жоржем Леметром и Альбертом Эйнштейном, теория Большого Взрыва постулирует, что Вселенная началась 14 миллиардов лет назад с массивного расширения. В какой-то момент Вселенная была заключена в одной точке и охватывала всю материю нынешней вселенной. Это движение продолжается и по сей день, а сама вселенная постоянно расширяется.

Теория Большого Взрыва получила широкую поддержку в научных кругах после того, как Арно Пензиас и Роберт Уилсон обнаружили космический микроволновый фон в 1965 году. С помощью радиотелескопов два астронома обнаружили космический шум, или статику, которая не рассеивается со временем. В сотрудничестве с принстонским исследователем Робертом Дике, пара ученых подтвердила гипотезу Дике о том, что первоначальный Большой Взрыв оставил после себя излучение низкого уровня, которое можно обнаружить по всей Вселенной.

Закон космического расширения Хаббла

Давайте на секунду задержим Эдвина Хаббла. В то время как в 1920-х годах бушевала Великая депрессия, Хаббл выступал с новаторским астрономическим исследованием. Он не только доказал, что были и другие галактики помимо Млечного Пути, но также обнаружил, что эти галактики несутся прочь от нашей собственной, и это движение он назвал разбеганием.

Для того, чтобы количественно оценить скорость этого галактического движения, Хаббл предложил закон космического расширения, он же закон Хаббла. Уравнение выглядит так: скорость = H0 x расстояние. Скорость представляет собой скорость разбегания галактик; H0 - это постоянная Хаббла, или параметр, который показывает скорость расширения вселенной; расстояние - это расстояние одной галактики до той, с которой происходит сравнение.

Постоянная Хаббла рассчитывалась при разных значениях в течение достаточно долгого времени, однако в настоящее время она замерла на точке 70 км/с на мегапарсек. Для нас это не так важно. Важно то, что закон представляет собой удобный способ измерения скорости галактики относительно нашей собственной. И еще важно то, что закон установил, что Вселенная состоит из многих галактик, движение которых прослеживается до Большого Взрыва.

Законы планетарного движения Кеплера

На протяжении веков ученые сражались друг с другом и с религиозными лидерами за орбиты планет, особенно за то, вращаются ли они вокруг Солнца. В 16 веке Коперник выдвинул свою спорную концепцию гелиоцентрической Солнечной системы, в которой планеты вращаются вокруг Солнца, а не Земли. Однако только с Иоганном Кеплером, который опирался на работы Тихо Браге и других астрономов, появилась четкая научная основа для движения планет.

Три закона планетарного движения Кеплера, сложившиеся в начале 17 века, описывают движение планет вокруг Солнца. Первый закон, который иногда называют законом орбит, утверждает, что планеты вращаются вокруг Солнца по эллиптической орбите. Второй закон, закон площадей, говорит, что линия, соединяющая планету с солнцем, образует равные площади через равные промежутки времени. Другими словами, если вы измеряете площадь, созданную нарисованной линией от Земли от Солнца, и отслеживаете движение Земли на протяжении 30 дней, площадь будет одинаковой, вне зависимости от положения Земли касательно начала отсчета.

Третий закон, закон периодов, позволяет установить четкую взаимосвязь между орбитальным периодом планеты и расстоянием до Солнца. Благодаря этому закону, мы знаем, что планета, которая относительно близка к Солнцу, вроде Венеры, имеет гораздо более краткий орбитальный период, чем далекие планеты, вроде Нептуна.

Универсальный закон тяготения

Сегодня это может быть в порядке вещей, но более чем 300 лет назад сэр Исаак Ньютон предложил революционную идею: два любых объекта, независимо от их массы, оказывают гравитационное притяжение друг на друга. Этот закон представлен уравнением, с которым многие школьники сталкиваются в старших классах физико-математического профиля.

F = G × [(m1m2)/r²]

F - это гравитационная сила между двумя объектами, измеряемая в ньютонах. M1 и M2 - это массы двух объектов, в то время как r - это расстояние между ними. G - это гравитационная постоянная, в настоящее время рассчитанная как 6,67384(80)·10 −11 или Н·м²·кг −2 .

Преимущество универсального закона тяготения в том, что он позволяет вычислить гравитационное притяжение между двумя любыми объектами. Эта способность крайне полезна, когда ученые, например, запускают спутник на орбиту или определяют курс Луны.

Законы Ньютона

Раз уж мы заговорили об одном из величайших ученых, когда-либо живущих на Земле, давайте поговорим о других знаменитых законах Ньютона. Его три закона движения составляют существенную часть современной физики. И как и многие другие законы физики, они элегантны в своей простоте.

Первый из трех законов утверждает, что объект в движении остается в движении, если на него не действует внешняя сила. Для шарика, который катится по полу, внешней силой может быть трение между шаром и полом, или же мальчик, который бьет по шарику в другом направлении.

Второй закон устанавливает связь между массой объекта (m) и его ускорением (a) в виде уравнения F = m x a. F представляет собой силу, измеряемую в ньютонах. Также это вектор, то есть у него есть направленный компонент. Благодаря ускорению, мяч, который катится по полу, обладает особым вектором в направлении его движения, и это учитывается при расчете силы.

Третий закон довольно содержательный и должен быть вам знаком: для каждого действия есть равное противодействие. То есть для каждой силы, приложенной к объекту на поверхности, объект отталкивается с такой же силой.

Законы термодинамики

Британский физик и писатель Ч. П. Сноу однажды сказал, что неученый, который не знал второго закона термодинамики, был как ученый, который никогда не читал Шекспира. Нынче известное заявление Сноу подчеркивало важность термодинамики и необходимость даже людям, далеким от науки, знать его.

Термодинамика - это наука о том, как энергия работает в системе, будь то двигатель или ядро Земли. Ее можно свести к нескольким базовым законам, которые Сноу обозначил следующим образом:

  • Вы не можете выиграть.
  • Вы не избежите убытков.
  • Вы не можете выйти из игры.

Давайте немного разберемся с этим. Говоря, что вы не можете выиграть, Сноу имел в виду то, что поскольку материя и энергия сохраняются, вы не можете получить одно, не потеряв второе (то есть E=mc²). Также это означает, что для работы двигателя вам нужно поставлять тепло, однако в отсутствии идеально замкнутой системы некоторое количество тепла неизбежно будет уходить в открытый мир, что приведет ко второму закону.

Второй закон - убытки неизбежны - означает, что в связи с возрастающей энтропией, вы не можете вернуться к прежнему энергетическому состоянию. Энергия, сконцентрированная в одном месте, всегда будет стремиться к местам более низкой концентрации.

Наконец, третий закон - вы не можете выйти из игры - относится , самой низкой теоретически возможной температуре - минус 273,15 градуса Цельсия. Когда система достигает абсолютного нуля, движение молекул останавливается, а значит энтропия достигнет самого низкого значения и не будет даже кинетической энергии. Но в реальном мире достичь абсолютного нуля невозможно - только очень близко к нему подойти.

Сила Архимеда

После того как древний грек Архимед открыл свой принцип плавучести, он якобы крикнул «Эврика!» (Нашел!) и побежал голышом по Сиракузам. Так гласит легенда. Открытие было вот настолько важным. Также легенда гласит, что Архимед обнаружил принцип, когда заметил, что вода в ванной поднимается при погружении в него тела.

Согласно принципу плавучести Архимеда, сила, действующая на погруженный или частично погруженный объект, равна массе жидкости, которую смещает объект. Этот принцип имеет важнейшее значение в расчетах плотности, а также проектировании подлодок и других океанических судов.

Эвoлюция и естественный отбор

Теперь, когда мы установили некоторые из основных понятий о том, с чего началась Вселенная и как физические законы влияют на нашу повседневную жизнь, давайте обратим внимание на человеческую форму и выясним, как мы дошли до такого. По мнению большинства ученых, вся жизнь на Земле имеет общего предка. Но для того, чтобы образовалась такая огромная разница между всеми живыми организмами, некоторые из них должны были превратиться в отдельный вид.

В общем смысле, эта дифференциация произошла в процессе эволюции. Популяции организмов и их черты прошли через такие механизмы, как мутации. Те, у кого черты были более выгодными для выживания, вроде коричневых лягушек, которые отлично маскируются в болоте, были естественным образом избраны для выживания. Вот откуда взял начало термин естественный отбор.

Можно умножить две этих теории на много-много времени, и собственно это сделал Дарвин в 19 веке. Эволюция и естественный отбор объясняют огромное разнообразие жизни на Земле.

Общая теория относительности

Альберта Эйнштейна была и остается важнейшим открытием, которое навсегда изменила наш взгляд на вселенную. Главным прорывом Эйнштейна было заявление о том, что пространство и время не являются абсолютными, а гравитация - это не просто сила, приложенная к объекту или массе. Скорее гравитация связана с тем, что масса искривляет само пространство и время (пространство-время).

Чтобы осмыслить это, представьте, что вы едете через всю Землю по прямой линии в восточном направлении, скажем, из северного полушария. Через некоторое время, если кто-то захочет точно определить ваше местоположение вы будете гораздо южнее и восточнее своего исходного положения. Это потому что Земля изогнута. Чтобы ехать прямо на восток, вам нужно учитывать форму Земли и ехать под углом немного на север. Сравните круглый шарик и лист бумаги.

Пространство - это в значительной мере то же самое. К примеру, для пассажиров ракеты, летящей вокруг Земли, будет очевидно, что они летят по прямой в пространстве. Но на самом деле, пространство-время вокруг них изгибается под действием силы тяжести Земли, заставляя их одновременно двигаться вперед и оставаться на орбите Земли.

Теория Эйнштейна оказала огромное влияние на будущее астрофизики и космологии. Она объяснила небольшую и неожиданную аномалию орбиты Меркурия, показала, как изгибается свет звезд и заложила теоретические основы для черных дыр.

Принцип неопределенности Гейзенберга

Расширение теории относительности Эйнштейна рассказало нам больше о том, как работает Вселенная, и помогло заложить основу для квантовой физики, что привело к совершенно неожиданному конфузу теоретической науки. В 1927 году осознание того, что все законы вселенной в определенном контексте являются гибкими, привело к ошеломительному открытию немецкого ученого Вернера Гейзенберга.

Постулируя свой принцип неопределенности, Гейзенберг понял, что невозможно одновременно знать с высоким уровнем точности два свойства частицы. Вы можете знать положение электрона с высокой степенью точности, но не его импульс, и наоборот.

Позже Нильс Бор сделал открытие, которое помогло объяснить принцип Гейзенберга. Бор выяснил, что электрон обладает качествами как частицы, так и волны. Концепция стала известна как корпускулярно-волновой дуализм и легла в основу квантовой физики. Поэтому, когда мы измеряем положение электрона, мы определяем его как частицу в определенной точке пространства с неопределенной длиной волны. Когда мы измеряем импульс, мы рассматриваем электрон как волну, а значит можем знать амплитуду ее длины, но не положение.

Самая распространенная жалоба школьника на трудность предмета звучит так: “Зачем мне эта дурацкая …. (тут можно поставить что угодно – физику, математику, историю, биологию), если я не собираюсь заниматься ей после школы?!”

Действительно, а нужно ли бедному ребеночку зубрить формулы и разбираться с законами Ньютона и Фарадея? Может, ну ее, эту пакость, займемся лучше чем-то интересным? Удивительно, но многие взрослые и сами не понимают, зачем учили физику в школе и искренне не видят связи между этой занимательной наукой и повседневной жизнью. Давайте же найдем эту связь!

Представьте себе свой обычный день. Вот вы встали с кровати, потянулись и посмотрели в зеркало. И законы физики заработали прямо с началом вашего дня!

Движение, отражение в зеркале, гравитация, которая заставляет вас идти по земле, а воду течь в раковину, а не вам в лицо, сила, которая требуется для того, чтобы поднять сумку или открыть дверь – все это физика .

Обратите внимание на лифт, легко и быстро поднимающий вас на нужный этаж, автомобиль или другой транспорт, компьютеры, планшеты и телефоны. Без физики все это никуда бы не поехало, не включилось и не заработало.

Развитие физики можно приравнять к прогрессу.

Сначала люди поняли законы оптики и изобрели простые очки , чтобы те, кто плохо видит, могли лучше ориентироваться, читать и писать. А затем на свете появились микроскопы , с помощью которых ученые сделали невероятные открытия в таких областях, как биология и медицина. И телескопы , в которые астрономы увидели планеты, звезды и целые галактики и смогли сделать выводы об устройстве Вселенной. Каждое открытие в физике помогает человечеству сделать новый шаг вперед.

Хорошо, скажете вы. Но ведь для всего перечисленного, для всех этих открытий и разработок существуют физики. То есть люди, сознательно выбравшие именно эту науку своей основной профессией. Причем же здесь остальные, да еще и гуманитарии? Им-то на что эти знания, если можно просто прочитать инструкцию к своему телефону и этого будет достаточно для его использования?


Мы уже писали, что , но кроме этого, приведем несколько примеров из повседневной жизни, когда базовое знание физики может пригодиться каждому. Причем, разберем только один раздел физики, практически полностью созданный Исааком Ньютоном, - механику.

Движение, скорость, ускорение.

Итак, все во Вселенной постоянно двигается, включая нашу планету и землю, по которой мы ходим. А ходим мы почти ежедневно в разные места. Значит, мы постоянно рассчитываем, насколько быстро доберемся до театра, работы, друзей, чтобы не опоздать. Задачи на скорость мы решаем в средней школе в рамках курса математики, но на самом деле это базовая физика.


Теперь представьте, что вы выбираете машину. У вас есть желание получить резвый автомобиль, но вам нужно возить семью, поэтому размер тоже имеет значение. То есть резвый и большой. И как же понять, какой подойдет? На что вы обратите внимание? На ускорение , конечно! Есть такой параметр – постоянное ускорение, то есть разгон от 0 до 100 км за количество секунд. Так вот чем меньше время от 0 до 100, тем бодрее будет ваша машина на старте и виражах. И это подскажет вам физика!

Когда вы начинаете (и продолжаете) водить машину, кое-что из базового курса физики вам очень пригодится. Например, вы сами поймете, что резко тормозить на трассе при скорости 120 км/ч только потому, что вам внезапно захотелось полюбоваться красивым видом, пожалуй, не стоит.


Даже если за вами не едет на такой же скорости еще несколько автомобилей, водители которых могут не успеть среагировать. Просто при торможении ускорение отрицательное, поэтому всех, кто сидит в машине, резко бросает вперед. Поверьте, впивающиеся в тело ремни и растянутые шейные мышцы – это неприятно. Просто имейте в виду такое понятие из физики, как ускорение.

Сила тяготения, импульс и другие полезности.

Физика расскажет о законе тяготения . То есть мы уже и так знаем, что если бросить предмет, то он упадет на землю. Что это значит? Земля притягивает нас и все предметы. Мало того, планета Земля притягивает даже такой тяжелый космический предмет, как Луна. Заметим, что Луна не улетает по своей траектории и каждый вечер показывается людям. Также не зависают в воздухе любые штуки, которые мы в сердцах бросили на пол. На брошенные предметы действует еще и ускорение, потому что у Земли огромная сила притяжения. А также сила трения.


Поэтому, зная об этих законах, можно понять, что происходит, если человек прыгает с парашютом. Связана ли площадь парашюта связана с замедлением скорости падения? Может, стоит просить парашют побольше? Как действует импульс на коленки парашютиста, и почему нельзя приземляться на прямые ноги?

А как выбрать горные лыжи? Вы отлично катаетесь или только начинаете? Подумайте о трении, уточните именно эти параметры своих новых лыж. Если вы новичок, не знающий физики, то очень вероятна ошибка в выборе. Успеете ли вы остановиться?


Окей, вы не собираетесь прыгать с парашютом и ничего не хотите знать про горные лыжи.

Вернемся к повседневности. Вот перед вами гайка и гаечный ключ. За какую часть ключа нужно взяться, чтобы приложить к гайке максимальную силу? Те, кто изучал физику, возьмутся за ключ как можно дальше от гайки. Чтобы открыть тяжеленную дверь в старое здание, нужно давить на нее с самого краю, подальше от петель. Нужно ли рассказывать про рычаг и точку опоры, которой так не хватало Галилею?


Наверное, этих примеров пока достаточно для иллюстрации ежедневного присутствия физики в нашей жизни. И это была только механика! А ведь есть еще оптика, которую мы упоминали в начале статьи, и электричество с магнитными полями. И это мы скромно молчим про теорию относительности.

Поверьте, физика на базовом уровне необходима каждому, чтобы не выглядеть глупо и смешно в самых обычных ситуациях.

Экология жизни: Во всеоружии этого знания вы точно не попадётесь в ловушку мифов, не купите шарлатанский прибор и сможете уверенно отвечать на детские вопросы в духе «Почему небо голубое?».

Появилась в продаже книга Луиса Блумфилда «Как все работает. Законы физики в нашей жизни». Расскажем о том, почему её стоит прочитать - особенно если физика представляется вам чем-то скучным и непонятным.

Поднимаясь утром с пружинного матраса, включая электрический чайник, согревая руки о чашку кофе и проделывая ещё десятки повседневных вещей, мы редко задумываемся о том, как именно всё это происходит. Возможно, в чьей-то памяти одиноким осколком торчит закон Ома или правило буравчика (хорошо, если вы вообще помните, что «буравчик» - это винт, а не фамилия).

Далеко не всегда ясно, в какие моменты жизни мы встречаемся с силой тока и моментом импульса.

Само собой, существуют учёные, технические специалисты и гики. Мы даже готовы поверить, что бывают люди, которые просто очень хорошо учили физику в школе (наше им уважение). Для них не составит труда рассказать, как именно работает лампа накаливания или солнечная батарея и объяснить, глядя на крутящееся велосипедное колесо, где там трение покоя, а где - трение скольжения. Однако, будем честными, большинство людей имеет обо всём этом весьма смутные представления.

Источник: Pinterest

Из-за этого кажется, будто природные объекты и механизмы ведут себя тем или иным образом благодаря каким-то волшебным силам. Бытовое представление о причинах и следствиях может оградить от некоторых ошибок (например, не класть обёрнутые фольгой продукты в микроволновку), однако более глубокое понимание физико-химических процессов позволяет лучше разбираться, что к чему, и аргументировать свои решения.

Луис Блумфилд - профессор Виргинского университета, исследователь атомной физики, физики конденсированного состояния и оптики.

Ещё в юности он выбрал опыты главным методом исследования мира, черпая из обыденных вещей вдохновение для занятий наукой. Стремясь сделать знания доступными для многих людей, а не горстки специалистов, Блумфилд занимается преподаванием, выступает на телевидении и пишет научно-популярные работы.

Главная задача книги «Как все работает. Законы физики в нашей жизни» - опровергнуть представление о физике как скучной и оторванной от жизни науке, и дать понять, что она описывает реальные явления, которые можно увидеть, пощупать и ощутить.

Для меня всегда было загадкой, почему физика традиционно преподается как абстрактная наука - ведь она изучает вещественный мир и законы, которыми тот управляется. Я убеждён в обратном: если лишить физику бесчисленных примеров из живого, реального мира, она не будет иметь ни основы, ни формы - словно молочный коктейль без стакана.

Луис Блумфильд

Речь идёт о движении тел, механических устройствах, тепле и многом другом. Вместо того, чтобы начинать с теории, автор идёт от окружающих нас вещей, формулируя с их помощью законы и принципы. Отправными точками служат карусели, американские горки, водопровод, тёплая одежда, аудиоплееры, лазеры и светодиоды, телескопы и микроскопы...

Вот некоторые примеры из книги, на которых автор объясняет механику простых вещей.

Почему конькобежцы быстро двигаются

Коньки - удобный способ рассказать о принципах движения. Ещё Галилео Галилей сформулировал, что тела имеют свойство двигаться равномерно и прямолинейно в отсутствие внешних сил, будь то сопротивление воздуха или трение поверхности. Коньки способны почти полностью устранить трение, так что вы легко скользите по льду. Объект в состоянии покоя стремится остаться на месте, а объект движущийся - двигаться дальше. Именно это называется инерцией.

Как режут ножницы

Сдвигая кольца ножниц, вы производите моменты сил, под действием которых лезвия смыкаются и режут бумагу. Бумага стремится раздвинуть лезвия за счет моментов сил, «разводящих» лезвия. Если вы приложите достаточно большое усилие, «сдвигающие» моменты сил возобладают над «разводящими». В результате лезвия ножниц приобретут угловое ускорение, начнут поворачиваться, сомкнутся и разрежут лист бумаги.

Источник: Pexels

Что творится в шампурах

Если нагреть один конец металлического стержня, атомы в этой части стержня будут колебаться более интенсивно, чем в холодном конце, и металл начнет проводить тепло из горячего конца к холодному. Некоторая часть этого тепла передается благодаря взаимодействию соседних атомов, однако основная его часть будет передана подвижными электронами, которые переносят тепловую энергию на большие расстояния от одного атома к другому.

Как забиваются гвозди

Весь направленный вниз импульс, который вы сообщаете молотку, замахнувшись, передаётся гвоздю за время краткого удара. Поскольку время передачи импульса мало, со стороны молотка должна быть приложена очень большая сила, чтобы его импульс перешёл к гвоздю. Эта ударная сила вбивает гвоздь в доску.

Зачем воздушные шары нагревают

Чтобы заполнить воздушный шар горячим воздухом, нужно меньше частиц, чем для заполнения холодным воздухом. Дело в том, что в среднем частица горячего воздуха движется быстрее, сталкивается чаще и занимает больше места, чем частица холодного воздуха. Поэтому шар, наполненный горячим воздухом, весит меньше, чем такой же шар, наполненный холодным. Если вес шара достаточно мал, равнодействующая сила направлена вверх, и шар поднимается.

Почему воланчик летит всегда одинаков о

Бадминтонный волан всегда летит головкой вперед, так как результирующая сила, вызванная давлением, приложена в его центре давления, на некотором расстоянии от центра масс. Если вдруг оперение случайно окажется впереди головки, сопротивление воздуха создаст момент силы относительно центра масс и вернет всё на свои места.

Что делает воду жёсткой

Жёсткой считается вода, в которой содержание положительно заряженных ионов кальция и магния превышает 120 мг на литр. Ионы этих и некоторых других металлов связывают отрицательные ионы мыла и создают нерастворимую пену, оседающую грязным налетом на раковине, лейке душа, ванне, в стиральной машине и на одежде. Затеяв стирку мылом в жёсткой воде, будьте готовы к неприятным сюрпризам. опубликовано

Это Вам будет интересно:

Даниэль Канеман: Соображать и Думать - в чем разница

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Роль физики в нашей жизни

1. Что такое Физика

Фи м зика -- область естествознания. Наука о простейших и вместе с тем наиболее общих законах природы, о материи, её структуре и движении. Законы физики лежат в основе всего естествознания

Термин «физика» впервые появился в сочинениях одного из величайших мыслителей древности -- Аристотеля, жившего в IV веке до нашей эры. Первоначально термины «физика» и «философия» были синонимичны, поскольку в основе обеих дисциплин лежало стремление объяснить законы функционирования Вселенной. Однако в результате научной революции XVI века физика выделилась в отдельное научное направление.

В русский язык слово «физика» было введено М. В. Ломоносовым, В современном мире значение физики чрезвычайно велико. Всё то, чем отличается современное общество от общества прошлых веков, появилось в результате применения на практике физических открытий. Так, исследования в области электромагнетизма привели к появлению телефонов и позже мобильных телефонов, открытия в термодинамике позволили создать автомобиль, развитие электроники привело к появлению компьютеров.

Физическое понимание процессов, происходящих в природе, постоянно развивается. Большинство новых открытий вскоре получают применение в технике и промышленности. Однако новые исследования постоянно поднимают новые загадки и обнаруживают явления, для объяснения которых требуются новые физические теории. Несмотря на огромный объём накопленных знаний, современная физика ещё очень далека от того, чтобы объяснить все явления природы.

2. Физика в современной жизни

Говоря о роли физики, выделим три основных момента. Во-первых, физика является для человека важнейшим источником знаний об окружающем мире. Во-вторых, физика, непрерывно расширяя и многократно умножая возможности человека, обеспечивает его уверенное продвижение по пути технического прогресса. В-третьих, физика вносит существенный вклад в развитие духовного облика человека, формирует его мировоззрение, учит ориентироваться в шкале культурных ценностей. Поэтому будем говорить соответственно о научном, техническом и гуманитарном потенциалах физики.

Эти три потенциала содержались в физике всегда. Но особенно ярко и весомо они проявились в физике XX столетия, что и предопределило ту исключительно важную роль, какую стала играть физика в современном мире.

3. Физика как важнейший исто чник знаний об окружающем мире

Как известно, физика исследует наиболее общие свойства и формы движения материи. Она ищет ответы на вопросы: как устроен окружающий мир; каким законам подчиняются происходящие в нем явления и процессы? Стремясь познать «первоначала вещей» и «первопричины явлений», физика в процессе своего развития сформировала сначала механическую картину мира (XVII1--XIX вв.), затем электромагнитную картину (вторая половина XIX -- начало XX в.) и, наконец, современную физическую картину мира (середина XX в.).

В начале нашего столетия была создана теория относительности -- сначала специальная, а затем общая. Ее можно рассматривать как великолепное завершение комплекса интенсивно проводившихся в XIX столетии исследований, которые привели к созданию так называемой классической физики. Известный американский физик В. Вайскопф так охарактеризовал теорию относительности: «Это совершенно новый набор концепций, в рамках которых находят объединение механика, электродинамика и гравитация. Они принесли с собой новое восприятие таких понятий, как пространство и время. Эта совокупность идей в каком-то смысле является вершиной и синтезом физики XIX в. Они органически связаны с классическими традициями»

Тогда же, в начале века начала создаваться, а к концу первой трети столетия обрела достаточную стройность другая фундаментальная физическая теория XX в.-- квантовая теория. Если теория относительности эффектно завершала предшествовавший этап развития физики, то квантовая теория, решительно порывая с классической физикой, открывала качественно новый этап в познании человеком материи. «Для квантовой теории характерен именно разрыв с классикой,-- писал Вайскопф.-- Это шаг в неизведанное, в мир явлений, которые не умещались в рамки идей физики XIX в. Надо было создать новые приемы мышления, чтобы понять мир атомов и молекул с его дискретными энергетическими состояниями и характерными особенностями спектров и химических связей»

Используя квантовую теорию, физики совершили в XX в. в буквальном смысле слова прорыв в понимании вопросов, касающихся моля и вещества, строения и свойств кристаллов, молекул, атомов, атомных ядер, взаимопревращений элементарных частиц. Возникли новые разделы физики, такие, как физика твердого тела, физика плазмы, атомная и молекулярная физика, ядерная физика, физика элементарных частиц. А в традиционных разделах, например оптике, появились совершенно новые главы: квантовая оптика, нелинейная оптика, голография и др.

Физика исследует фундаментальные закономерности явлений; это предопределяет ее ведущую роль во всем цикле естественно-математических наук. Ведущая роль физики особенно ярко выявилась именно в XX в. Один из наиболее убедительных примеров -- объяснение периодической системы химических элементов на основе квантовомеханических представлений. На стыке физики и других естественных наук возникли новые научные дисциплины.

Химическая физика исследует электронное строение атомов и молекул, физическую природу химических связей, кинетику химических реакций.

Астрофизика изучает многообразие физических явлений во Вселенной; на широко применяет методы спектрального анализа и радиоастрономических наблюдений. В отдельные разделы астрофизики выделены: физика Солнца, физика планет, физика межзвездной среды и туманностей, физика звезд, космология. Биофизика рассматривает физические и физико-химические явления в живых организмах, влияние различных физических факторов на живые системы. В настоящее время из биофизики выделились самостоятельные направления биоэнергетика, фотобиология, радиобиология.

Геофизика исследует внутреннее строение Земли, физические процессы, происходящие в ее оболочках. Различают физику твердой Земли, физику моря и физику атмосферы.

Отметим также агрофизику, изучающую физические процессы в почве и растениях и разрабатывающую способы регулирования физических условий жизни сельскохозяйственных культур; петрофизику, исследующую связь физических свойств горных пород с их структурой и историей формирования; психофизику, р ассматривающую количественные отношения между силой и характером раздражителя, с одной стороны, и интенсивностью раздражения -- с другой.

4. Физика как основа научно-технического прогресса

Трудно переоценить роль фундаментальных физических исследований в развитии техники. Так, исследования тепловых явлений в XIX в. способствовали быстрому совершенствованию тепловых двигателей. Фундаментальные исследования в области электромагнетизма привели к возникновению и быстрому развитию электротехники. В первой половине XIX в. был создан телеграф, в середине века появились электрические осветители, а затем электродвигатели. Во второй половине XIX в. химические источники электрического тока стали вытесняться электрогенераторами. Девятнадцатый век завершился триумфально: появился телефон, родилось радио, был создан автомобиль с бензиновым двигателем, в ряде столиц открылись линии метрополитена, зародилась авиация. В 1912 г. В. Я. Брюсов написал строки, в которых хорошо отразилось победное настроение тех лет: Свершились все мечты, что были так далеки. Победный ум прошел за годы сотни миль. При электричестве пишу я эти строки, И у ворот, гудя, стоит автомобиль.

Первый фотоаппарат

А между тем научно-технический прогресс только еще набирал темп; был изобретен транзистор); в 60-х годах родилась микроэлектроника. Прогресс в области электроники привел к созданию совершенных систем радиосвязи, радиоуправления, радиолокации. Развивается телевидение, сменяются одно за другим поколения ЭВМ (растет их быстродействие, совершенствуется память, расширяются функциональные возможности), появляются промышленные роботы. В 1957 г. состоялся вывод на околоземную орбиту первого искусственного спутника Земли; 1961 г.-- полет Ю. А. Гагарина -- первого космонавта планеты; 1969 г.-- первые люди на Луне. Нас почти уже не удивляют поразительные успехи космической техники. Мы привыкли к запускам искусственных спутников Земли (их число давно перевалило за тысячу); становятся все более привычными полеты космонавтов на пилотируемых космических кораблях, их многодневные вахты на орбитальных станциях. Мы познакомились с обратной стороной Луны, получили фотоснимки поверхности Венеры, Марса, Юпитера, кометы Галлея.

Фундаментальные исследования в области ядерной физики позволили вплотную приступить к решению одной из наиболее острых проблем -- энергетической проблемы. Первые ядерные реакторы появились в 40-х годах, а в 1954 г. в СССР начала действовать первая в мире атомная электростанция -- родилась ядерная энергетика. В настоящее время на Земле работает более трехсот АЭС; они дают около 20% всей производимой в мире электрической энергии. Развернуты интенсивные исследования по термоядерному синтезу; прокладываются пути к термоядерной энергетике.

Успехи в исследовании физики газового разряда и физики твердого тела, более глубокое понимание физики взаимодействия оптического излучения с веществом, использование принципов и методов радиофизики -- все это предопределило развитие еще одного важного научно-технического направления -- лазерной техники. Это направление возникло всего тридцать лет назад (первый лазер создан в 1960 г.), но уже сегодня лазеры находят широкое применение во многих областях практической деятельности человека. Лазерный луч выполняет разнообразные технологические операции (сваривает, режет, пробивает отверстия, закаливает, маркирует и т. д.), используется в качестве хирургического скальпеля, выполняет точнейшие измерения, трудится на строительных площадках и взлетно-посадочных полосах аэродромов, контролирует степень загрязнения атмосферы и океана. В ближайшей перспективе лазерная техника позволит реализовать в широких масштабах оптическую связь и оптическую обработку информации, произвести своеобразную революцию в химии (управление химическими процессами, получение новых веществ и, в частности, особо чистых веществ) и осуществить управляемый термоядерный синтез.

Запуск ракеты

физика относительность элемент квантовомеханический

Первый полет в космос

Первое радио

Первый действующий танк

Первый самолет

Первая радиостанция

Говоря о связи между развитием физики и научно-техническим прогрессом, следует отметить, что эта связь двусторонняя. С одной стороны, достижения физики лежат в основе развития техники. С другой -- повышение уровня техники создает условия для интенсификации физических исследований, делает возможным постановку принципиально новых исследований. В качестве примера можно указать на важнейшие исследования, выполняемые на ядерных реакторах или на ускорителях заряженных частиц.

5. Физика как важнейший к омпонент человеческой культуры

Воздействуя решающим образом на научно-технический прогресс, физика тем самым оказывает существенное влияние и на все стороны жизни общества, в частности на человеческую культуру. Однако в данном случае мы имеем в виду не это опосредствованное влияние физики на культуру, а влияние непосредственное, позволяющее говорить о самой физике как о компоненте культуры. Иными словами, речь идет о гуманитарном содержании самого предмета физики, которое связано с развитием мышления, формированием мировоззрения, воспитанием чувств. Мы имеем в виду органическую связь физики с развитием общественного сознания, с воспитанием определенного отношения к окружающему миру.

Утверждая материалистическую диалектику, физика XX в. открыла ряд исключительно важных истин, значимость которых выходит за рамки самой физики, истин, ставших общечеловеческим достоянием.

Во-первых, была доказана фундаментальность статистических закономерностей как соответствующих более глубокому этапу (по сравнению с закономерностями динамическими) в процессе познания мира. Было показано, что вероятностная форма причинности является основной, а жесткая, однозначная причинность есть не более чем частный случай. Физика предоставила нам уникальную возможность: на основе статистических теорий рассмотреть количественно диалектику необходимого и случайного. Выходя за рамки собственных задач, современная физика показала, что случайность не только путает и нарушает наши планы, но и может нас обогащать, создавая новые возможности.

Во-вторых, физика XX в. продемонстрировала всеобщность принципа симметрии, заставила значительно глубже взглянуть на симметрию, расширив это понятие за рамки геометрических представлений, а главное, рассмотрела диалектику симметрии и асимметрии, связав ее с диалектикой общего и различного, сохранения и изменения. Был поставлен вопрос о симметрии-асимметрии физических законов, в связи с чем была выявлена особая роль законов сохранения. Выходя за рамки собственных задач, физика наглядно показала, что симметрия ограничивает число возможных вариантов структур или вариантов поведения систем. Это обстоятельство исключительно важно, так как дает возможность во многих случаях находить решение как результат выявления единственно возможного варианта, без выяснения подробностей (решение из соображений симметрии).

В-третьих, физика XX в. показала, что по мере углубления наших знаний происходит постепенное стирание граней, разрушение перегородок. Так, стирается грань между корпускулярным и волновым движениями, между веществом и полем. Оказалось, что как вещество, так и поле состоят из элементарных частиц и, более того, пустота -- это вовсе не пустота в обычном понимании, а физический вакуум, «наполненный» виртуальными частицами. Нормой поведения для частиц, рассматриваемых в современной физике, являются взаимопревращения, поэтому мир предстает перед нами как единое целое. В этом мире понятие полностью изолированного объекта по сути дела отсутствует. Здесь уместно напомнить известное ленинское замечание, что в природе нет абсолютных граней - , что «все грани в природе условны, относительны, подвижны, выражают приближение нашего ума к познанию материи»

В-четвертых, современная физика подарила нам принцип соответствия. Он возник в квантовой механике на этапе ее начального развития, но затем превратился в общий методологический принцип, отражающий диалектику процесса познания мира. Он демонстрирует важное положение диалектики: процесс познания -- это процесс постепенного и бесконечного приближения к абсолютной истине через последовательность относительных истин. Принцип соответствия показывает, как именно в физике реализуется указанный процесс приближения к истине. Это не механическое добавление новых фактов к уже известным, а процесс последовательного обобщения, когда новое отрицает старое, но отрицает не просто, а с удержанием всего того положительного, что было накоплено в старом. «Изучение физики дает возможность показать, что все физические представления и теории отражают объективную реальность лишь приближенно, что наши представления о мире непрерывно углубляются и расширяются, что процесс познания материального мира бесконечен»

Наши представления о мире... Нет необходимости доказывать, что современное миропонимание -- важный компонент человеческой культуры. Каждый культурный человек должен хотя бы в общих чертax представлять, как устроен мир, в котором он живет. Это необходимо не только для общего развития. Любовь к природе предполагает уважение к происходящим в ней процессам, а для этого надо понимать, по каким законам они совершаются. Мы имеем много поучительных примеров, когда природа наказывала нас за наше невежество; пора научиться извлекать из этого уроки. Нельзя также сбывать, что именно знание законов природы есть эффективное оружие борьбы с мистическими представлениями, есть фундамент атеистического воспитания.

Современная физика вносит существенный вклад в выработку нового стиля мышления, который можно назвать планетарным мышлением. Она обращается к проблемам, имеющим большое значение для всех стран и народов. Сюда относятся, например, проблемы солнечно-земных связей, касающиеся воздействия солнечных излучений на магнитосферу, атмосферу и биосферу Земли; прогнозы физической картины мира после ядерной катастрофы, если таковая разразится; глобальные экологические проблемы, связанные с загрязнением Мирового океана и земной атмосферы.

В заключение отметим, что, воздействуя на самый характер мышления, помогая ориентироваться в шкале жизненных ценностей, физика способствует, в конечном счете, выработке адекватного отношения к окружающему миру и, в частности, активной жизненной позиции. Любому человеку важно знать, что мир в принципе познаваем, что случайность не всегда вредна, что нужно и можно ориентироваться и работать в мире, насыщенном случайностями, что в этом изменяющемся мире есть тем не менее «опорные точки», инварианты (что бы ни менялось, а энергия сохраняется), что по мере углубления знаний картина неизбежно усложняется, становится диалектичнее, так что вчерашние «перегородки» более не годятся.

Мы убеждаемся, таким образом, что современная физика действительно содержит в себе мощный гуманитарный потенциал. Можно не считать слишком большим преувеличением слова американского физика И. Раби: «Физика составляет сердцевину гуманитарного образования нашего времени»

6. Стихи

1. В нашей жизни электричества -

Непомерное количество.

Даже Папа, их величество,

Чтоб величье ощущать,

Преуспев в борьбе с язычеством,

Приказал свои владычества

В самом центре католичества

Ярко ночью освещать.

Ну а мы, махнув по стопочке,

Жмем, расслабившись, на кнопочки, .

И как в сказке - вот вам, опачки!

Телевизор уж включен.

И в квартирах всюду лампочки,

А в глазах от счастья бабочки.

Греют нас электротапочки,

Погружая в сладкий сон.

Нож на кухне - электрический,

Режет все автоматически.

И вращаясь истерически

Ездят щетки по зубам. .

Преуспел прогресс технический,

Даже к близости физической

Нас матрас терапевтический

По ночам толкает сам.

У приборов электрических

В рабстве мы уже практически,

Заменил мозги фактически

Электронный интеллект.

Словно в дреме наркотической

Пребывая флегматически,

Станем мы для электричества

Не нужны в один момент…

2. Физика учит хозяйку,

Как пищу готовить быстрей.

Зимою выращивать розы,

Тепло сберегать в квартире своей.

Физика учит плавать

Тяжёлый морской теплоход,

Летать воздушный лайнер,

Космический звездоход.

Физика в жизнь воплощает

Все замыслы и мечты.

Загадки природы она объясняет,

Всем, кто с нею на ты.

7. Загадки

В загадках нужно учесть следующий момент:

Какое физическое явление (объект) отражено в загадке.

Какие свойства загадываемого явления, объекта отражены в загадке а какие нет.

С каким явлением или объектом сравниваем загадываемое?

Я в Москве, он в Ленинграде

В разных комнатах сидим

Далеко, а будто рядом

Разговариваем с ним. (телефон)

Чудо-птица алый хвост

Полетела в стаю звёзд. (ракета)

Я под мышкой посижу

И что делать укажу

Или разрешу гулять

Или уложу в кровать (термометр)

Через нос проходит в грудь

И обратный держит путь

Он не видимый и всё же

Без него мы жить не можем. (воздух)

В нашей комнате одно

Есть волшебное окно

В нём летают чудо - птицы,

Бродят волки и лисицы,

Знойным летом снег идёт,

И зимою сад цветёт.

В том окне чудес полно

Что же это за окно. (телевизор)

Сначала - блеск

За блеском - треск

За треском - плеск. (молния)

Никто его не видывал,

А слышать всякий слыхивал

Без тела, а живёт оно

Без языка кричит. (эхо)

Пушистая вата

Плывёт куда-то

Чем вата ниже,

Тем дождик ближе. (туча)

Цветное коромысло

Над лесом повисло. (радуга)

Летит - молчит,

Лежит - молчит,

Когда умрёт, тогда заревёт. (снег)

Две сестры качались,

Правды добивались.

А когда добились, то остановились. (весы)

Всем поведает хоть без языка

Когда будет ясно, а когда облака. (барометр)

По высокой дороге идёт бычок круторогий. (месяц)

В круглом домике, в окошке

Ходят сёстры по дорожке, Не торопиться меньшая,

Но зато спешит старшая. (часы)

Размещено на Allbest.ru

...

Подобные документы

    Предмет и структура физики. Роль тепловых машин в жизни человека. Основные этапы истории развития физики. Связь современной физики с техникой и другими естественными науками. Основные части теплового двигателя и расчет коэффициента его полезного действия.

    реферат , добавлен 14.01.2010

    Изложение физических основ классической механики, элементы теории относительности. Основы молекулярной физики и термодинамики. Электростатика и электромагнетизм, теория колебаний и волн, основы квантовой физики, физики атомного ядра, элементарных частиц.

    учебное пособие , добавлен 03.04.2010

    Важная роль физики в техническом развитии оборонной промышленности. Теоретические исследования физиков, начальное развитие новых отраслей науки: теории относительности, атомной квантовой физики. Работы в области радиотехники, военных прикладных отраслей.

    доклад , добавлен 27.02.2011

    Основные закономерности развития физики. Аристотелевская механика. Физические идеи средневековья. Галилей: принципы "земной динамики". Ньютоновская революция. Становление основных отраслей классической физики. Создание общей теории относительности.

    реферат , добавлен 26.10.2007

    Научно-техническая революция (НТР) ХХ века и ее влияние на современный мир. Значение физики и НТР в развитии науки и техники. Открытие и применение ультразвука. Развитие микроэлектроники и применение полупроводников. Роль компьютера в развитии физики.

    презентация , добавлен 04.04.2016

    История биофизики и физики, их значение и роль в теоретическом развитии и методическом вооружении: физиологии, биохимии, цитологии, ветеринарно-санитарной экспертизе, клинической диагностике, ветеринарной хирургии, зооинженерии, экологии и биотехнологии.

    курс лекций , добавлен 01.05.2009

    Научные исследования физических, химических и биологических явлений, проводившиеся в ХХ в. Открытие элементарных частиц и теория расширяющейся Вселенной. Создание и развитие общей теории относительности. Возникновение релятивистской и квантовой физики.

    презентация , добавлен 08.11.2015

    Основные этапы жизни советского физика П. Капицы. Студенческие годы и начало преподавательской работы ученого. Получение Нобелевской премии за фундаментальные изобретения и открытия в области физики низких температур. Роль Капицы в становлении физики.

    презентация , добавлен 05.06.2011

    Предмет физики и ее связь со смежными науками. Общие методы исследования физических явлений. Развитие физики и техники и их взаимное влияния друг на друга. Успехи физики в течение последних десятилетий и характеристика ее современного состояния.

    учебное пособие , добавлен 26.02.2008

    Геометрия и физика в теории многомерных пространств. Абсолютная система измерения физических величин. Бесконечности в теории многомерных пространств. Квантовая теория относительности. Сущность принципа относительности в теории многомерных пространств.

Статья создана на основе материалов из интернета, учебника физики и собственных знания.

Никогда не любила физику, не знала и старалась избегать по мере возможности. Однако в последнее время все больше понимаю: вся наша жизнь сводится к простыми законам физики.

1) Самый простой, но самый важный из них – это Закон сохранения и преобразования энергии.

Он звучит так: «Энергия любой замкнутой системы при всех процессах, происходящих в системе, остается постоянной». А мы с вами именно в такой системе и находимся. Т.е. сколько отдадим, столько и получим. Если мы хотим что-то получить, надо столько же перед этим отдать. И никак иначе! А нам, конечно же, хочется получать большую зарплату, а на работу при этом не ходить. Иногда создается иллюзия, что «дуракам везет» и многим счастье сваливается на голову. Вчитайтесь в любую сказку. Героям постоянно надо преодолевать огромные трудности! То искупаться в воде студеной, то в воде вареной. Мужчины обращают на себя внимание женщин ухаживаниями. Женщины в свою очередь заботятся потом об этих мужчинах и о детях. И так далее. Так что, если вы хотите что-то получить, потрудитесь сначала отдать. Фильм «Заплати вперед» очень ярко отображает этот закон физики.

Есть еще шутка на данную тему:
Закон сохранение энергии:
Если вы утром пришли на работу энергичным, а уходите как выжатый лимон, то
1. кто-то другой пришел как выжатый лимон, а уходит энергичным
2. вас использовали для нагрева помещения

2) Следующий закон звучит так: "Сила действия равна силе противодействия"

Этот закон физики отражает и предыдущий, в принципе. Если человек совершил негативный поступок – осознанный или нет – он потом получил ответ, т.е. противодействие. Иногда причина и следствие бывают разбросаны во времени, и можно сразу и не понять, откуда ветер дует. Надо, главное, помнить, что ничего просто так не бывает. Как пример, можно привести родительское воспитание, которое проявляется затем через несколько десятков лет.

3) Следующий закон – Закон рычага. Архимед воскликнул: «Дайте мне точку опоры, и я переверну Землю!». Любую тяжесть можно перенести, если подобрать правильный рычаг. Нужно всегда прикидывать, какой длины понадобится рычаг, чтобы добиться той или иной цели и сделать для себя вывод, расставить приоритеты. Понять, как рассчитать свои силы, нужно ли тратить столько сил, чтобы создать правильный рычаг и передвинуть эту тяжесть или проще оставить ее в покое и заняться другой деятельностью.

4) Так называемое правило буравчика, которое заключается в том, что указывает на направление магнитного поля. Это правило отвечает на вечный вопрос: кто виноват? И указывает на то, что во всем, что с нами происходит, виноваты мы сами. Как бы обидно ни было, как бы сложно ни было, как бы, на первый взгляд, несправедливо ни было, надо всегда отдавать себе отчет в том, что причиной изначально были мы сами.

5) Наверняка кто-то помнит закон сложения скоростей. Звучит он следующим образом: "Скорость движения тела относительно неподвижной системы отсчета равна векторной сумме скорости этого тела относительно подвижной системы отсчета и скорости самой подвижной системы отсчета относительно неподвижной системы" Сложно звучит? Сейчас разберемся.
Принцип сложения скоростей не что иное, как арифметическая сумма слагаемых скоростей, как математических понятий или определений.

Скорость - это одно из существенных явлений, относящихся к кинетике. Кинетика изучает процессы переноса энергии, импульса, заряда и вещества в различных физических системах и влияние на них внешних полей. Может быть самонадеянно, но ведь с точки зрения кинетики тогда можно рассматривать и целый ряд общественных процессов, например, конфликты.

Следовательно, при наличии двух конфликтующих объектов и их соприкосновении должен срабатывать закон, аналогичный закону сохранения скоростей (как факт переноса энергии)? Значит, сила и агрессия конфликта зависит от степени конфликтности двух (трех, четырех) сторон. Чем более они агрессивны и сильны, тем конфликт более жестче и более разрушителен. Если одна из сторон не конфликтна, то роста степени агрессивности не происходит.

Все очень просто. И если не можешь заглянуть внутрь себя, чтобы разобраться в причинно-следственных связях своей проблемы, просто открой учебник по физике за 8 класс.



© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний