Примеры. Предел функции — MT1205: Математический анализ для экономистов — Бизнес-информатика Произведение бесконечно малых последовательностей является последовательностью

Главная / А. С. Пушкин

Определения и свойства бесконечно малых и бесконечно больших функций в точке. Доказательства свойств и теорем. Связь между бесконечно малыми и бесконечно большими функциями.

Содержание

См. также: Бесконечно малые последовательности - определение и свойства
Свойства бесконечно больших последовательностей

Определение бесконечно малой и бесконечно большой функции

Пусть x 0 есть конечная или бесконечно удаленная точка: ∞ , -∞ или +∞ .

Определение бесконечно малой функции
Функция α(x) называется бесконечно малой при x стремящемся к x 0 0 , и он равен нулю:
.

Определение бесконечно большой функции
Функция f(x) называется бесконечно большой при x стремящемся к x 0 , если функция имеет предел при x → x 0 , и он равен бесконечности:
.

Свойства бесконечно малых функций

Свойство суммы, разности и произведения бесконечно малых функций

Сумма, разность и произведение конечного числа бесконечно малых функций при x → x 0 является бесконечно малой функцией при x → x 0 .

Это свойство является прямым следствием арифметических свойств пределов функции .

Теорема о произведении ограниченной функции на бесконечно малую

Произведение функции, ограниченной на некоторой проколотой окрестности точки x 0 , на бесконечно малую, при x → x 0 , является бесконечно малой функцией при x → x 0 .

Свойство о представлении функции в виде суммы постоянной и бесконечно малой функции

Для того, чтобы функция f(x) имела конечный предел , необходимо и достаточно, чтобы
,
где - бесконечно малая функция при x → x 0 .

Свойства бесконечно больших функций

Теорема о сумме ограниченной функции и бесконечно большой

Сумма или разность ограниченной функции, на некоторой проколотой окрестности точки x 0 , и бесконечно большой функции, при x → x 0 , является бесконечно большой функцией при x → x 0 .

Теорема о частном от деления ограниченной функции на бесконечно большую

Если функция f(x) является бесконечно большой при x → x 0 , а функция g(x) - ограничена на некоторой проколотой окрестности точки x 0 , то
.

Теорема о частном от деления ограниченной снизу функции на бесконечно малую

Если функция , на некоторой проколотой окрестности точки , по абсолютной величине ограничена снизу положительным числом:
,
а функция является бесконечно малой при x → x 0 :
,
и существует проколотая окрестность точки , на которой , то
.

Свойство неравенств бесконечно больших функций

Если функция является бесконечно большой при :
,
и функции и , на некоторой проколотой окрестности точки удовлетворяют неравенству:
,
то функция также бесконечно большая при :
.

Это свойство имеет два частных случая.

Пусть, на некоторой проколотой окрестности точки , функции и удовлетворяют неравенству:
.
Тогда если , то и .
Если , то и .

Связь между бесконечно большими и бесконечно малыми функциями

Из двух предыдущих свойств вытекает связь между бесконечно большими и бесконечно малыми функциями.

Если функция является бесконечно большой при , то функция является бесконечно малой при .

Если функция являются бесконечно малой при , и , то функция является бесконечно большой при .

Связь между бесконечно малой и бесконечно большой функцией можно выразить символическим образом:
, .

Если бесконечно малая функция имеет определенный знак при , то есть положительна (или отрицательна) на некоторой проколотой окрестности точки , то можно записать так:
.
Точно также если бесконечно большая функция имеет определенный знак при , то пишут:
, или .

Тогда символическую связь между бесконечно малыми и бесконечно большими функциями можно дополнить следующими соотношениями:
, ,
, .

Дополнительные формулы, связывающие символы бесконечности, можно найти на странице
«Бесконечно удаленные точки и их свойства ».

Доказательство свойств и теорем

Доказательство теоремы о произведении ограниченной функции на бесконечно малую

Для доказательства этой теоремы, мы воспользуемся . А также используем свойство бесконечно малых последовательностей, согласно которому

Пусть функция является бесконечно малой при , а функция ограничена в некоторой проколотой окрестности точки :
при .

Поскольку существует предел , то существует проколотая окрестность точки , на которой определена функция . Пусть есть пересечение окрестностей и . Тогда на ней определены функции и .


.
,
a последовательность является бесконечно малой:
.

Воспользуемся тем, что произведение ограниченной последовательности на бесконечно малую есть бесконечно малая последовательность:
.
.

Теорема доказана.

Доказательство свойства о представлении функции в виде суммы постоянной и бесконечно малой функции

Необходимость . Пусть функция имеет в точке конечный предел
.
Рассмотрим функцию:
.
Используя свойство предела разности функций , имеем:
.
То есть есть бесконечно малая функция при .

Достаточность . Пусть и . Применим свойство предела суммы функций :
.

Свойство доказано.

Доказательство теоремы о сумме ограниченной функции и бесконечно большой

Для доказательства теоремы, мы воспользуемся определением предела функции по Гейне


при .

Поскольку существует предел , то существует проколотая окрестность точки , на которой функция определена. Пусть есть пересечение окрестностей и . Тогда на ней определены функции и .

Пусть есть произвольная последовательность, сходящаяся к , элементы которой принадлежат окрестности :
.
Тогда определены последовательности и . Причем последовательность является ограниченной:
,
a последовательность является бесконечно большой:
.

Поскольку сумма или разность ограниченной последовательности и бесконечно большой
.
Тогда, согласно определению предела последовательности по Гейне,
.

Теорема доказана.

Доказательство теоремы о частном от деления ограниченной функции на бесконечно большую

Для доказательства, мы воспользуемся определением предела функции по Гейне . Также используем свойство бесконечно больших последовательностей, согласно которому является бесконечно малой последовательностью.

Пусть функция является бесконечно большой при , а функция ограничена в некоторой проколотой окрестности точки :
при .

Поскольку функция бесконечно большая, то существует проколотая окрестность точки , на которой она определена и не обращается в нуль:
при .
Пусть есть пересечение окрестностей и . Тогда на ней определены функции и .

Пусть есть произвольная последовательность, сходящаяся к , элементы которой принадлежат окрестности :
.
Тогда определены последовательности и . Причем последовательность является ограниченной:
,
a последовательность является бесконечно большой с отличными от нуля членами:
, .

Поскольку частное от деления ограниченной последовательности на бесконечно большую является бесконечно малой последовательностью, то
.
Тогда, согласно определению предела последовательности по Гейне,
.

Теорема доказана.

Доказательство теоремы о частном от деления ограниченной снизу функции на бесконечно малую

Для доказательства этого свойства, мы воспользуемся определением предела функции по Гейне . Также используем свойство бесконечно больших последовательностей, согласно которому является бесконечно большой последовательностью.

Пусть функция является бесконечно малой при , а функция ограничена по абсолютной величине снизу положительным числом, на некоторой проколотой окрестности точки :
при .

По условию существует проколотая окрестность точки , на которой функция определена и не обращается в нуль:
при .
Пусть есть пересечение окрестностей и . Тогда на ней определены функции и . Причем и .

Пусть есть произвольная последовательность, сходящаяся к , элементы которой принадлежат окрестности :
.
Тогда определены последовательности и . Причем последовательность является ограниченной снизу:
,
а последовательность является бесконечно малой с отличными от нуля членами:
, .

Поскольку частное от деления ограниченной снизу последовательности на бесконечно малую является бесконечно большой последовательностью, то
.
И пусть имеется проколотая окрестность точки , на которой
при .

Возьмем произвольную последовательность , сходящуюся к . Тогда, начиная с некоторого номера N , элементы последовательности будут принадлежать этой окрестности:
при .
Тогда
при .

Согласно определению предела функции по Гейне,
.
Тогда по свойству неравенств бесконечно больших последовательностей,
.
Поскольку последовательность произвольная, сходящаяся к , то по определению предела функции по Гейне,
.

Свойство доказано.

Использованная литература:
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.

См. также:

Бесконечно малые функции

Функцию %%f(x)%% называют бесконечно малой (б.м.) при %%x \to a \in \overline{\mathbb{R}}%%, если при этом стремлении аргумента предел функции равен нулю.

Понятие б.м. функции неразрывно связано с указанием об изменении ее аргумента. Можно говорить о б.м. функции при %%a \to a + 0%% и при %%a \to a - 0%%. Обычно б.м. функции обозначают первыми буквами греческого алфавита %%\alpha, \beta, \gamma, \ldots%%

Примеры

  1. Функция %%f(x) = x%% является б.м. при %%x \to 0%%, поскольку ее предел в точке %%a = 0%% равен нулю. Согласно теореме о связи двустороннего предела с односторонними эта функция — б.м. как при %%x \to +0%%, так и при %%x \to -0%%.
  2. Функция %%f(x) = 1/{x^2}%% — б.м. при %%x \to \infty%% (а также при %%x \to +\infty%% и при %%x \to -\infty%%).

Отличное от нуля постоянное число, сколь бы оно ни было мало по абсолютному значению, не является б.м. функцией. Для постоянных чисел исключение составляет лишь нуль, поскольку функция %%f(x) \equiv 0%% имеет нулевой предел.

Теорема

Функция %%f(x)%% имеет в точке %%a \in \overline{\mathbb{R}}%% расширенной числовой прямой конечный предел, равный числу %%b%%, тогда и только тогда, когда эта функция равна сумме этого числа %%b%% и б.м. функции %%\alpha(x)%% при %%x \to a%%, или $$ \exists~\lim\limits_{x \to a}{f(x)} = b \in \mathbb{R} \Leftrightarrow \left(f(x) = b + \alpha(x)\right) \land \left(\lim\limits_{x \to a}{\alpha(x) = 0}\right). $$

Свойства бесконечно малых функций

По правилам предельного перехода при %%c_k = 1~ \forall k = \overline{1, m}, m \in \mathbb{N}%%, следуют утверждения:

  1. Сумма конечного числа б.м. функций при %%x \to a%% есть б.м. при %%x \to a%%.
  2. Произведение любого числа б.м. функций при %%x \to a%% есть б.м. при %%x \to a%%.
  3. Произведение б.м. функций при %%x \to a%% и функции, ограниченной в некоторой проколотой окрестности %%\stackrel{\circ}{\text{U}}(a)%% точки а, есть б.м. при %%x \to a%% функция.

    Ясно, что произведение постоянной функции и б.м. при %%x \to a%% есть б.м. функция при %%x \to a%%.

Эквивалентные бесконечно малые функции

Бесконечно малые функции %%\alpha(x), \beta(x)%% при %%x \to a%% называются эквивалентными и пишутся %%\alpha(x) \sim \beta(x)%%, если

$$ \lim\limits_{x \to a}{\frac{\alpha(x)}{\beta(x)}} = \lim\limits_{x \to a}{\frac{\beta(x)}{\alpha(x)}} = 1. $$

Теормема о замене б.м. функций эквивалентными

Пусть %%\alpha(x), \alpha_1(x), \beta(x), \beta_1(x)%% — б.м. функции при %%x \to a%%, причем %%\alpha(x) \sim \alpha_1(x); \beta(x) \sim \beta_1(x)%%, тогда $$ \lim\limits_{x \to a}{\frac{\alpha(x)}{\beta(x)}} = \lim\limits_{x \to a}{\frac{\alpha_1(x)}{\beta_1(x)}}. $$

Эквивалентные б.м. функции.

Пусть %%\alpha(x)%% — б.м. функция при %%x \to a%%, тогда

  1. %%\sin(\alpha(x)) \sim \alpha(x)%%
  2. %%\displaystyle 1 - \cos(\alpha(x)) \sim \frac{\alpha^2(x)}{2}%%
  3. %%\tan \alpha(x) \sim \alpha(x)%%
  4. %%\arcsin\alpha(x) \sim \alpha(x)%%
  5. %%\arctan\alpha(x) \sim \alpha(x)%%
  6. %%\ln(1 + \alpha(x)) \sim \alpha(x)%%
  7. %%\displaystyle\sqrt[n]{1 + \alpha(x)} - 1 \sim \frac{\alpha(x)}{n}%%
  8. %%\displaystyle a^{\alpha(x)} - 1 \sim \alpha(x) \ln(a)%%

Пример

$$ \begin{array}{ll} \lim\limits_{x \to 0}{ \frac{\ln\cos x}{\sqrt{1 + x^2} - 1}} & = \lim\limits_{x \to 0}{\frac{\ln(1 + (\cos x - 1))}{\frac{x^2}{4}}} = \\ & = \lim\limits_{x \to 0}{\frac{4(\cos x - 1)}{x^2}} = \\ & = \lim\limits_{x \to 0}{-\frac{4 x^2}{2 x^2}} = -2 \end{array} $$

Бесконечно большие функции

Функцию %%f(x)%% называют бесконечно большой (б.б.) при %%x \to a \in \overline{\mathbb{R}}%%, если при этом стремлении аргумента функция имеет бесконечный предел.

Подобно б.м. функциям понятие б.б. функции неразрывно связано с указанием об изменении ее аргумента. Можно говорить о б.б. функции при %%x \to a + 0%% и %%x \to a - 0%%. Термин “бесконечно большая” говорит не об абсолютном значении функции, а о характере его изменения в окрестности рассматриваемой точки. Никакое постоянное число, как бы велико оно ни было по абсолютному значению, не является бесконечно большим.

Примеры

  1. Функция %%f(x) = 1/x%% — б.б. при %%x \to 0%%.
  2. Функция %%f(x) = x%% — б.б. при %%x \to \infty%%.

Если выполнены условия определений $$ \begin{array}{l} \lim\limits_{x \to a}{f(x)} = +\infty, \\ \lim\limits_{x \to a}{f(x)} = -\infty, \end{array} $$

то говорят о положительной или отрицательной б.б. при %%a%% функции.

Пример

Функция %%1/{x^2}%% — положительная б.б. при %%x \to 0%%.

Связь между б.б. и б.м. функциями

Если %%f(x)%% — б.б. при %%x \to a%% функция, то %%1/f(x)%% — б.м.

при %%x \to a%%. Если %%\alpha(x)%% — б.м. при %%x \to a%% функция, отличная от нуля в некоторой проколотой окрестности точки %%a%%, то %%1/\alpha(x)%% — б.б. при %%x \to a%%.

Свойства бесконечно больших функций

Приведем несколько свойств б.б. функций. Эти свойства непосредственно следуют из определения б.б. функции и свойств функций, имеющих конечные пределы, а также из теоремы о связи между б.б. и б.м. функциями.

  1. Произведение конечного числа б.б. функций при %%x \to a%% есть б.б. функция при %%x \to a%%. Действительно, если %%f_k(x), k = \overline{1, n}%% — б.б. функции при %%x \to a%%, то в некоторой проколотой окрестности точки %%a%% %%f_k(x) \ne 0%%, и по теореме о связи б.б. и б.м. функций %%1/f_k(x)%% — б.м. функция при %%x \to a%%. Получается %%\displaystyle\prod^{n}_{k = 1} 1/f_k(x)%% — б.м функция при %%x \to a%%, а %%\displaystyle\prod^{n}_{k = 1}f_k(x)%% — б.б. функция при %%x \to a%%.
  2. Произведение б.б. функции при %%x \to a%% и функции, которая в некоторой проколотой окрестности точки %%a%% по абсолютному значению больше положительной постоянной, есть б.б. функция при %%x \to a%%. В частности, произведение б.б. функции при %%x \to a%% и функции, имеющей в точке %%a%% конечный ненулевой предел, будет б.б. функцией при %%x \to a%%.
  3. Сумма ограниченной в некоторой проколотой окрестности точки %%a%% функции и б.б. функции при %%x \to a%% есть б.б. функция при %%x \to a%%.

    Например, функции %%x - \sin x%% и %%x + \cos x%% — б.б. при %%x \to \infty%%.

  4. Сумма двух б.б. функций при %%x \to a%% есть неопределенность. В зависимости от знака слагаемых характер изменения такой суммы может быть самым различным.

    Пример

    Пусть даны функции %%f(x)= x, g(x) = 2x, h(x) = -x, v(x) = x + \sin x%% — б.б. функции при %%x \to \infty%%. Тогда:

    • %%f(x) + g(x) = 3x%% — б.б. функция при %%x \to \infty%%;
    • %%f(x) + h(x) = 0%% — б.м. функция при %%x \to \infty%%;
    • %%h(x) + v(x) = \sin x%% не имет предела при %%x \to \infty%%.

Приводится определение бесконечно большой последовательности. Рассмотрены понятия окрестностей бесконечно удаленных точек. Дано универсальное определение предела последовательности, которое относится как к конечным, так и к бесконечным пределам. Рассмотрены примеры применения определения бесконечно большой последовательности.

Содержание

См. также: Определение предела последовательности

Определение

Последовательность { β n } называется бесконечно большой последовательностью , если для любого, сколь угодно большого числа M , существует такое натуральное число N M , зависящее от M , что для всех натуральных n > N M выполняется неравенство
|β n | > M .
В этом случае пишут
.
Или при .
Говорят, что стремится к бесконечности, или сходится к бесконечности .

Если , начиная с некоторого номера N 0 , то
( сходится к плюс бесконечности ).
Если же , то
( сходится к минус бесконечности ).

Запишем эти определения с помощью логических символов существования и всеобщности:
(1) .
(2) .
(3) .

Последовательности с пределами (2) и (3) являются частными случаями бесконечно большой последовательности (1). Из этих определений следует, что если предел последовательности равен плюс или минус бесконечности, то он также равен и бесконечности:
.
Обратное, естественно, не верно. Члены последовательности могут иметь чередующиеся знаки. При этом предел может равняться бесконечности, но без определенного знака.

Заметим также, что если какое-то свойство выполняется для произвольной последовательности с пределом равным бесконечности, то это же свойство выполняется и для последовательности, чей предел равен плюс или минус бесконечности.

Во многих учебниках по математическому анализу, в определении бесконечно большой последовательности указывается, что число M является положительным: M > 0 . Однако это требование является лишним. Если его отменить, то никаких противоречий не возникает. Просто малые или отрицательные значения для нас не представляют никакого интереса. Нас интересует поведение последовательности при сколь угодно больших положительных значениях M . Поэтому, если возникнет необходимость, то M можно ограничить снизу любым, наперед заданным числом a , то есть считать, что M > a .

Когда же мы определяли ε - окрестность конечной точки, то требование ε > 0 является важным. При отрицательных значениях, неравенство вообще не может выполняться.

Окрестности бесконечно удаленных точек

Когда мы рассматривали конечные пределы, то ввели понятие окрестности точки. Напомним, что окрестностью конечной точки является открытый интервал, содержащий эту точку. Также мы можем ввести понятия окрестностей бесконечно удаленных точек.

Пусть M - произвольное число.
Окрестностью точки "бесконечность" , , называется множество .
Окрестностью точки "плюс бесконечность" , , называется множество .
Окрестностью точки "минус бесконечность" , , называется множество .

Строго говоря, окрестностью точки "бесконечность" является множество
(4) ,
где M 1 и M 2 - произвольные положительные числа. Мы будем использовать первое определение, , поскольку оно проще. Хотя, все сказанное ниже, также справедливо и при использовании определения (4).

Теперь мы можем дать единое определение предела последовательности, которое относится как к конечным, так и к бесконечным пределам.

Универсальное определение предела последовательности .
Точка a (конечная или бесконечно удаленная) является пределом последовательности , если для любой окрестности этой точки существует такое натуральное число N , что все элементы последовательности с номерами принадлежат этой окрестности.

Таким образом, если предел существует, то за пределами окрестности точки a может находиться только конечное число членов последовательности, или пустое множество. Это условие является необходимым и достаточным. Доказательство этого свойства, точно такое, как для конечных пределов.

Свойство окрестности сходящейся последовательности
Для того, чтобы точка a (конечная или бесконечно удаленная) являлась пределом последовательности , необходимо и достаточно, чтобы за пределами любой окрестности этой точки находилось конечное число членов последовательности или пустое множество.
Доказательство .

Также иногда вводят понятия ε - окрестностей бесконечно удаленных точек.
Напомним, что ε - окрестностью конечной точки a называется множество .
Введем следующее обозначение. Пусть обозначает ε - окрестность точки a . Тогда для конечной точки,
.
Для бесконечно удаленных точек:
;
;
.
Используя понятия ε - окрестностей, можно дать еще одно универсальное определение предела последовательности:

Точка a (конечная или бесконечно удаленная) является пределом последовательности , если для любого положительного числа ε > 0 существует такое натуральное число N ε , зависящее от ε , что для всех номеров n > N ε члены x n принадлежат ε - окрестности точки a :
.

С помощью логических символов существования и всеобщности, это определение запишется так:
.

Примеры бесконечно больших последовательностей

Пример 1


.


.
Выпишем определение бесконечно большой последовательности:
(1) .
В нашем случае
.

Вводим числа и , связав их неравенствами:
.
По свойствам неравенств , если и , то
.
Заметим, что при это неравенство выполняется для любых n . Поэтому можно выбрать и так:
при ;
при .

Итак, для любого можно найти натуральное число , удовлетворяющее неравенству . Тогда для всех ,
.
Это означает, что . То есть последовательность является бесконечно большой.

Пример 2

Пользуясь определением бесконечно большой последовательности показать, что
.


(2) .
Общий член заданной последовательности имеет вид:
.

Вводим числа и :
.
.

Тогда для любого можно найти натуральное число, удовлетворяющее неравенству , так что для всех ,
.
Это означает, что .


.

Пример 3

Пользуясь определением бесконечно большой последовательности показать, что
.

Выпишем определение предела последовательности, равному минус бесконечности:
(3) .
Общий член заданной последовательности имеет вид:
.

Вводим числа и :
.
Отсюда видно, что если и , то
.

Поскольку для любого можно найти натуральное число, удовлетворяющее неравенству , то
.

При заданном , в качестве N можно взять любое натуральное число, удовлетворяющее следующему неравенству:
.

Пример 4

Пользуясь определением бесконечно большой последовательности показать, что
.

Выпишем общий член последовательности:
.
Выпишем определение предела последовательности, равному плюс бесконечности:
(2) .

Поскольку n есть натуральное число, n = 1, 2, 3, ... , то
;
;
.

Вводим числа и M , связав их неравенствами:
.
Отсюда видно, что если и , то
.

Итак, для любого числа M можно найти натуральное число, удовлетворяющее неравенству . Тогда для всех ,
.
Это означает, что .

Использованная литература:
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

См. также:

Исчисление бесконечно малых и больших

Исчисление бесконечно малых - вычисления, производимые с бесконечно малыми величинами, при которых производный результат рассматривается как бесконечная сумма бесконечно малых. Исчисление бесконечно малых величин является общим понятием для дифференциальных и интегральных исчислений , составляющих основу современной высшей математики . Понятие бесконечно малой величины тесно связано с понятием предела .

Бесконечно малая

Последовательность a n называется бесконечно малой , если . Например, последовательность чисел - бесконечно малая.

Функция называется бесконечно малой в окрестности точки x 0 , если .

Функция называется бесконечно малой на бесконечности , если либо .

Также бесконечно малой является функция, представляющая собой разность функции и её предела, то есть если , то f (x ) − a = α(x ) , .

Бесконечно большая величина

Последовательность a n называется бесконечно большой , если .

Функция называется бесконечно большой в окрестности точки x 0 , если .

Функция называется бесконечно большой на бесконечности , если либо .

Во всех случаях бесконечность справа от равенства подразумевается определённого знака (либо «плюс», либо «минус»). То есть, например, функция x sinx не является бесконечно большой при .

Свойства бесконечно малых и бесконечно больших

Сравнение бесконечно малых величин

Как сравнивать бесконечно малые величины?
Отношение бесконечно малых величин образует так называемую неопределённость .

Определения

Допустим, у нас есть бесконечно малые при одном и том же величины α(x ) и β(x ) (либо, что не суть важно для определения, бесконечно малые последовательности).

Для вычисления подобных пределов удобно использовать правило Лопиталя .

Примеры сравнения

С использованием О -символики полученные результаты могут быть записаны в следующем виде x 5 = o (x 3). В данном случае справедливы записи 2x 2 + 6x = O (x ) и x = O (2x 2 + 6x ).

Эквивалентные величины

Определение

Если , то бесконечно малые величины α и β называются эквивалентными ().
Очевидно, что эквивалентные величины являются частным случаем бесконечно малых величин одного порядка малости.

При справедливы следующие соотношения эквивалентности: , , .

Теорема

Предел частного (отношения) двух бесконечно малых величин не изменится, если одну из них (или обе) заменить эквивалентной величиной .

Данная теорема имеет прикладное значение при нахождении пределов (см. пример).

Пример использования

Заменяя s i n 2x эквивалентной величиной 2x , получаем

Исторический очерк

Понятие «бесконечно малое» обсуждалось ещё в античные времена в связи с концепцией неделимых атомов, однако в классическую математику не вошло. Вновь оно возродилось с появлением в XVI веке «метода неделимых» - разбиения исследуемой фигуры на бесконечно малые сечения.

В XVII веке произошла алгебраизация исчисления бесконечно малых. Они стали определяться как числовые величины, которые меньше всякой конечной (ненулевой) величины и всё же не равны нулю. Искусство анализа заключалось в составлении соотношения, содержащего бесконечно малые (дифференциалы), и затем - в его интегрировании .

Математики старой школы подвергли концепцию бесконечно малых резкой критике. Мишель Ролль писал, что новое исчисление есть «набор гениальных ошибок »; Вольтер ядовито заметил, что это исчисление представляет собой искусство вычислять и точно измерять вещи, существование которых не может быть доказано. Даже Гюйгенс признавался, что не понимает смысла дифференциалов высших порядков.

Споры в Парижской Академии наук по вопросам обоснования анализа приобрели настолько скандальный характер, что Академия однажды вообще запретила своим членам высказываться на эту тему (в основном это касалось Ролля и Вариньона). В 1706 году Ролль публично снял свои возражения, однако дискуссии продолжались.

В 1734 году известный английский философ, епископ Джордж Беркли выпустил нашумевший памфлет, известный под сокращенным названием «Аналист ». Полное его название: «Аналист или рассуждение, обращенное к неверующему математику, где исследуется, более ли ясно воспринимаются или более ли очевидно выводятся предмет, принципы и умозаключения современного анализа, чем религиозные таинства и догматы веры ».

«Аналист» содержал остроумную и во многом справедливую критику исчисления бесконечно малых. Метод анализа Беркли считал несогласным с логикой и писал, что, «как бы он ни был полезен, его можно рассматривать только как некую догадку; ловкую сноровку, искусство или скорее ухищрение, но не как метод научного доказательства ». Цитируя фразу Ньютона о приращении текущих величин «в самом начале их зарождения или исчезновения», Беркли иронизирует: «это ни конечные величины, ни бесконечно малые, ни даже ничто. Не могли ли бы мы их назвать призраками почивших величин?… И как вообще можно говорить об отношении между вещами, не имеющими величины?.. Тот, кто может переварить вторую или третью флюксию [производную], вторую или третью разность, не должен, как мне кажется, придираться к чему-либо в богословии ».

Невозможно, пишет Беркли, представить себе мгновенную скорость, то есть скорость в данное мгновение и в данной точке, ибо понятие движения включает понятия о (конечных ненулевых) пространстве и времени.

Как же с помощью анализа получаются правильные результаты? Беркли пришел к мысли, что это объясняется наличием в аналитических выводах взаимокомпенсации нескольких ошибок, и проиллюстрировал это на примере параболы. Занятно, что некоторые крупные математики (например, Лагранж) согласились с ним.

Сложилась парадоксальная ситуация, когда строгость и плодотворность в математике мешали одна другой. Несмотря на использование незаконных действий с плохо определёнными понятиями, число прямых ошибок было на удивление малым - выручала интуиция. И всё же весь XVIII век математический анализ бурно развивался, не имея по существу никакого обоснования. Эффективность его была поразительна и говорила сама за себя, но смысл дифференциала по-прежнему был неясен. Особенно часто путали бесконечно малое приращение функции и его линейную часть.

В течение всего XVIII века предпринимались грандиозные усилия для исправления положения, причём в них участвовали лучшие математики столетия, однако убедительно построить фундамент анализа удалось только Коши в начале XIX века. Он строго определил базовые понятия - предел, сходимость, непрерывность, дифференциал и др., после чего актуальные бесконечно малые исчезли из науки. Некоторые оставшиеся тонкости разъяснил позднее

Приводится определение бесконечно малой последовательности. Она обладает свойствами сходящихся последовательностей. Также имеются свойства, характерные только для последовательностей с пределом равным нулю. Приводятся доказательства таких свойств. Рассмотрен пример, в котором нужно доказать, что последовательность бесконечно малая.

Содержание

Определение

Бесконечно малая последовательность { α n } - это сходящаяся последовательность, предел которой равен нулю:
.

Следующие свойства являются прямым следствием арифметических свойств , примененных к последовательностям, предел которых равен нулю.

Свойство суммы и разности бесконечно малых последовательностей

Сумма и разность конечного числа бесконечно малых последовательностей является бесконечно малой последовательностью.
Также линейная комбинация конечного числа бесконечно малых последовательностей является бесконечно малой последовательностью.
Доказательство предела суммы и разности числовых последовательностей .

Свойство произведения бесконечно малых последовательностей

Произведение конечного числа бесконечно малых последовательностей является бесконечно малой последовательностью.
Доказательство предела произведения числовых последовательностей .

Следующие свойства относятся только к бесконечно малым последовательностям и не являются прямым следствием свойств сходящихся последовательностей.


{ x n }
x n = b + α n ,
где { α n }

Доказательства свойств

Свойство произведения ограниченной последовательности на бесконечно малую

Произведение ограниченной последовательности на бесконечно малую является бесконечно малой последовательностью.

Доказательство

Пусть последовательность ограничена некоторым числом :
(3.1) .

Пусть последовательность - бесконечно малая. То есть имеется такая функция , зависящая от переменной , что для любого положительного значения переменной , выполняется неравенство
(3.2) при .

Пусть последовательность является произведением последовательностей и . Ее общий член имеет вид:
.
Нам нужно найти такую функцию , при которой выполняется неравенство
(3.3) при .

Применим (3.1) и (3.2):
.
Это выполняется при . Итак,
.
Положим :
.

То есть мы нашли такую функцию , при которой, для любого положительного числа , выполняется неравенство:
(3.3) при .

Свойство доказано.

Свойство представления сходящейся последовательности через бесконечно малую

Для того, чтобы последовательность { x n } имела предел b , необходимо и достаточно, чтобы
x n = b + α n ,
где { α n } - бесконечно малая последовательность.

Доказательство

Необходимость . Пусть . Рассмотрим последовательность с общим членом . Используем арифметические свойства пределов :
.
То есть - бесконечно малая последовательность.

Достаточность . Пусть . На основании арифметических свойств пределов имеем:
.

Свойство доказано.

Пример

Все примеры Используя определение предела последовательности доказать, что последовательность

является бесконечно малой.

Выпишем определение бесконечно малой последовательности:
.
Поскольку n является натуральным числом, n = 1, 2, 3, ... , то
,
,
.
Поэтому члены последовательности являются положительными числами. Тогда
.

Итак, мы получили следующую оценку:
.
Вводим положительные числа и :
.
Согласно свойствам неравенств , если и , то
.

Отсюда следует, что для любого положительного можно найти натуральное число , так что при ,
.
Это означает, что предел исходной последовательности равен нулю и, следовательно, она является бесконечно малой.



© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний