Принцип возможных перемещений термех. Применение принципа возможных перемещений

Главная / А. П. Чехов

1. Обобщённые координаты и число степеней свободы.

При движении механической системы, все её точки не могут перемещаться произвольно, так как они ограничены связями. Это значит, что не все координаты точек независимы. Положение точек определяется заданием только независимых координат.

обобщёнными координатами. Для голономных систем (т.е. таких, связи которых выражаются уравнениями, зависящими только от координат) число независимых обобщённых координат механической системыравно числу степеней свободы этой системы.

Примеры:

Положение всех точек однозначно определяется углом поворота

кривошипа.

Одна степень свободы.

2. Положение свободной точки в пространстве определяется тремя координатами, независимыми друг от друга. Поэтому три степени свободы.

3. Твёрдое вращающееся тело, положение определяется углом поворота j. Одна степень свободы.

4. Свободное твёрдое тело, движение которого определяется шестью уравнениями - шесть степеней свободы.

2. Возможные перемещения механической системы.

Идеальные связи.

Возможными перемещениями называются воображаемые бесконечно малые перемещения, допускаемые в данный момент наложенными на систему связями. Возможные перемещения точек механической системы рассматриваются как величины первого порядка малости, поэтому криволинейные перемещения точек заменяют прямолинейными отрезками, отложенными по касательной к траекториям движения точек и обозначаются dS .

dS A = dj . OA

Все силы, действующие на материальную точку, делятся на задаваемые и реакции связей.

Если сумма работ реакций связей на любом возможном перемещении системы равна нулю, то такие связи называются идеальными.

3. Принцип возможных перемещений.

Для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на неё активных сил при любом возможном перемещении системы была равна нулю.

Значение принципа возможных перемещений:

1. Учитываются только активные силы.

2. Даёт в общей форме условие равновесия для любой механической системы, тогда, как в статике необходимо рассматривать равновесие каждого тела системы в отдельности.

Задача.

Для заданного положения кривошипно-ползунного механизма при равновесии, найти зависимость между моментом и силой, если ОА = ℓ .

Общее уравнение динамики.

Принцип возможных перемещений даёт общий метод решения задач статики. С другой стороны, принцип Даламбера позволяет использовать методы статики для решения задач динамики. Следовательно, применяя эти два принципа одновременно, можно получить общий метод решения задач динамики.

Рассмотрим механическую систему, на которую наложены идеальные связи. Если ко всем точкам системы, кроме действующих на них активных сил и реакций связей , прибавить соответствующие силы инерции , то согласно принципу Даламбера полученная система сил будет находиться в равновесии. Применяя принцип возможных перемещений, получим:

Так как связи идеальные, то:

Это равенство представляет общее уравнение динамики.

Из него вытекает принцип Даламбера-Лагранжа – при движении системы с идеальными связями в каждый момент времени сумма элементарных работ всех приложенных активных сил и всех сил инерции на любом возможном перемещении системы будет равна нулю.

Задача.

В подъёмнике к шестерне 2 веса 2G c радиусом R 2 =R приложен вращающий момент М=4GR .

Определить ускорение поднимаемого груза А весом G , пренебрегая весом верёвки и трением в осях. Барабан, на который наматывается верёвка, и жёстко скреплённая с ним шестерня 1 , имеют общий вес 4G и радиус инерции r = R . Радиус барабана R A = R и шестерни 1

R 1 =0,5R .

Изобразим все действующие силы, направление ускорений и возможные перемещения.

________________

Подставим в общее уравнение динамики

Выразим перемещение через угол поворота δφ 1

Подставим значения

δφ 1 ≠0

Выразим все ускорения через искомое а А и приравняем выражение в скобках к нулю

Подставим значения

Принцип возможных перемещений.

а = 0,15 м

b = 2а = 0,3 м

m = 1,2 Нм _________________

х В; у В; N A ; M p

Решение: Найдём реакцию подвижной опоры А для чего мысленно отбросим эту связь, заменив её действие реакцией N A

Возможным перемещением стержня АС является его поворот вокруг шарнира С на угол dj . Стержень ВС остаётся неподвижным.

Составим уравнение работ, учитывая, что работа сил при повороте тела равна произведению момента силы относительно центра вращения на угол поворота тела.

Для определения реакций жёсткого закрепления в опоре В сначала найдём момент реакции М р . Для этого отбросим связь, препятствующую повороту стержня ВС , заменив жёсткое закрепление шарнирно-неподвижной опорой и приложив момент М р .

Сообщим стержню возможный поворот на угол dj 1 .

Составим уравнение работ для стержня ВС :

Определим перемещения:

Для определения вертикальной составляющей реакции жёского закрепления отбросим связь, препятствующую вертикальному перемещению точки В , заменив жёсткое закрепление скользящей (невозможен поворот) и приложив реакцию :

Сообщим левой части (стержню ВС с ползуном В ) возможную скорость V B поступательного движения вниз. Стержень АС повернётся вокруг точки А.

Составим уравнение работ:

Для определения горизонтальной составляющей реакции жёсткого закрепления отбросим связь, препятствующую горизонтальному перемещению точки В заменив жёсткую заделку скользящей и приложив реакцию :

Сообщим левой части (ползуну В вместе со стержнем ВС ) возможную скорость V B поступательного движения влево. Так как опора А на катках, то и правая часть будет перемещаться поступательно с той же скоростью. Следовательно .

Составим уравнение работ для всей конструкции.

Для проверки правильности решения составим уравнения равновесия всей системы:

Условие выполнено.

Ответ: y B = -14,2 H; X B = -28,4 H; N A = 14,2 H; V P =3,33 Hм.

Обобщённые скорости. Обобщённые силы.

Независимые величины, однозначно определяющие положение всех точек механической системы, называются обобщёнными координатами. q

Если система имеет S степеней свободы, то её положение будет определяться S обобщёнными координатами:

q 1 ; q 2 ; …; q s .

Поскольку обобщённые координаты между собой независимы, то элементарные приращения этих координат будут также независимы:

dq 1 ; dq 2 ; …; dq S .

При этом каждая из величин dq 1 ; dq 2 ; …; dq S определяет соответствующее, независимое от других возможное перемещение системы.

При движении системы её обобщённые координаты будут с течением времени непрерывно изменяться, закон этого движения определяется уравнениями:

, …. ,

Это уравнения движения системы в обощённых координатах.

Производные от обобщённых координат по времени называются обобщёнными скоростями системы:

Размерность зависит от размерности q .

Рассмотрим механическую систему, состоящую из n материальных точек, на которые действуют силы F 1 , F 2 , F n . Пусть система имеет S степеней свободы и её положение определяется обобщёнными координатами q 1 ; q 2 ; q 3 . Сообщим системе возможное перемещение, при котором координата q 1 получает приращение dq 1 , а остальные координаты не изменяются. Тогда радиус-вектор к-той точки получает элементарное приращение (dr k) 1 . Это приращение, которое получает радиус-вектор при изменении только координаты q 1 на величину dq 1 . Остальные координаты остаются неизменными. Поэтому (dr k) 1 вычисляется как частный дифференциал:

Вычислим элементарную работу всех приложенных сил:

Вынесем за скобки dq 1 , получим:

где - обобщённая сила.

Итак, обобщённая сила это коэффициент при приращениях обобщённой координаты.

Вычисление обобщённых сил сводится к вычислению возможной элементарной работы.

Если меняются все q , то:

Согласно принципа возможных перемещений, для равновесия системы необходимо и достаточно, чтобы SdА а к = 0 . В обобщённых координатах Q 1 . dq 1 + Q 2 . dq 2 + … + Q s . dq s = 0 следовательно, для равновесия системы необходимо и достаточно, чтобы обобщённые силы, соответствующие выбранным для системы возможным перемещениям, а значит и обобщённым координатам, были равны нулю.

Q 1 = 0; Q 2 = 0; … Q s = 0.

Уравнения Лагранжа.

Используя общее уравнение динамики для механической системы, можно найти уравнения движения механической системы.

4) определить кинетическую энергию системы, выразить эту энергию через обобщённые скорости и обобщённые координаты;

5) найти соответствующие частные производные от Т по и и подставить все значения в уравнение.

Теория удара.

Движение тела под действием обычных сил характеризуется непрерывным изменением модулей и направлений скоростей этого тела. Однако встречаются случаи, когда скорости точек тела, а следовательно и количество движения твёрдого тела за очень маленький промежуток времени получают конечные изменения.

Явление, при котором за ничтожно малый промежуток времени скорости точек тела изменяются на конечную величину, называется ударом.

Силы, при действии которых происходит удар, называются ударными.

Малый промежуток времени t , в течение которого происходит удар, называется временем удара.

Так как ударные силы очень велики и за время удара изменяются в значительных пределах, то в теории удара в качестве меры взаимодействия тел рассматривают не сами ударные силы, а их импульсы.

Импульсы неударных сил за время t будут величинами очень малыми и ими можно пренебречь.

Теорема об изменении количества движения точки при ударе:

где v – скорость точки в начале удара,

u – скорость точки в конце удара.

Основное уравнение теории удара.

Перемещение точек за очень малый промежуток времени, то есть за время удара, будут также малы, а следовательно, будем считать тело неподвижным.

Итак, можно сделать следующие выводы о действии ударных сил:

1) действием неударных сил за время удара можно пренебречь;

2) перемещениями точек тела за время удара можно пренебречь и считать тело во время удара неподвижным;

Рисунок 2.4

Решение

Заменим распределенную нагрузку сосредоточенной силой Q = q∙DH . Эта сила приложена в середине отрезка DH – в точке L .

Силу F разложим на составляющие, спроецировав ее на оси : горизонтальную F x cosα и вертикальную F y sinα .

Рисунок 2.5

Чтобы решить задачу с помощью принципа возможных перемещений, необходимо, чтобы конструкция могла перемещаться и при этом чтобы в уравнении работ была одна неизвестная реакция . В опоре A реакция раскладывается на составляющие X A , Y A .

Для определения X A изменим конструкцию опоры A так, чтобы точка A могла перемещаться только по горизонтали. Выразим перемещения точек конструкции через возможный поворот части CDB вокруг точки B на угол δφ 1 , часть AKC конструкции в этом случае поворачивается вокруг точки C V1 — мгновенного центра вращения (рисунок 2.5) на угол δφ 2 , и перемещения точек L и C – будут

δS L = BL∙δφ 1 ;
δS C = BC∙δφ 1
.

В то же время

δS C = CC V1 ∙δφ 2

δφ 2 = δφ 1 ∙BC/CC V1 .

Уравнение работ удобнее составить через работу моментов заданных сил , относительно центров вращений.

Q∙BL∙δφ 1 + F x ∙BH∙δφ 1 + F y ∙ED∙δφ 1 +
+ M∙δφ 2 — X A ∙AC V1 ∙δφ 2 = 0
.

Реакция Y A работу не совершает. Преобразуя это выражение, получим

Q∙(BH + DH/2)∙δφ 1 + F∙cosα∙BD∙δφ 1 +
+ F∙sinα∙DE∙δφ 1 + M∙δφ 1 ∙BC/CC V1 —
— X A ∙AC V1 ∙δφ 1 ∙BC/CC V1 = 0
.

Сократив на δφ 1 , получим уравнение, из которого легко находится X A .

Для определения Y A конструкцию опоры A изменим так, чтобы при перемещении точки A работу совершала только сила Y A (рисунок 2.6). Примем за возможное перемещение части конструкции BDC поворот вокруг неподвижной точки B δφ 3 .

Рисунок 2.6

Для точки C δS C = BC∙δφ 3 , мгновенным центром вращения для части конструкции AKC будет точка C V2 , и перемещение точки C выразится.

Принцип возможных перемещений : для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на нее активных сил при любом возможном перемещении была равна нулю. или в проекциях: .

Принцип возможных перемещений дает в общей форме условия равновесия для любой механической системы, дает общий метод решения задач статики .

Если система имеет несколько степеней свободы, то уравнение принципа возможных перемещений составляют для каждого из независимого перемещений в отдельности, т.е. будет столько уравнений, сколько система имеет степеней свободы.

Принцип возможных перемещений удобен тем, что при рассмотрении системы с идеальными связями их реакции не учитываются и необходимо оперировать только активными силами.

Принцип возможных перемещений формулируется следующим образом:

Для того, чтобы матер. система, подчиненная идеальным связям находилась в состоянии покоя, необходимо и достаточно, чтобы сумма элементарных работ, производимых активными силами на возможных перемещениях точек системы была положительная

Общее уравнение динамики - при движении системы с идеальными связями в каждый данный момент времен сумма элементарных работ всех приложенных активных сил и всех сил инерции на любом возможном перемещении системы будет равна нулю. Уравнение использует принцип возможных перемещений и принцип Даламбера и позволяет составить дифференциальные уравнения движения любой механической системы. Дает общий метод решения задач динамики.

Последовательность составления:

а) к каждому телу прикладывают действующие на него задаваемые силы, а также условно прикладывают силы и моменты пар сил инерции;

б) сообщают системе возможные перемещения;

в) составляют уравнения принципа возможных перемещений, считая систему находящейся в равновесии.

Следует отметить, что общее уравнение динамики можно применять и для систем с неидеальными связями, только в этом случае реакции неидеальных связей, таких, например, как сила трения или момент трения качения, необходимо отнести к категории активных сил.

Работа на возможном перемещении как активных, так и сил инерций , ищется также как и элементарная работа на действительном перемещении:

Возможная работа силы: .

Возможная работа момента (пары сил): .

Обобщенными координатами механической системы называются независимые между собой параметры q 1 , q 2 , …, q S любой размерности, однозначно определяющие положение системы в любой момент времени.

Число обобщенных координат равно S - числу степеней свободы механической системы. Положение каждой ν-й точки системы, то есть ее радиус вектор в общем случае всегда можно выразить в виде функции обобщенных координат:


Общее уравнение динамики в обобщенных координатах выглядит в виде системы S уравнений следующим образом:

……..………. ;

………..……. ;

здесь - обобщенная сила, соответствующая обобщенной координате :

а - обобщенная сила инерции, соответствующая обобщенной координате :

Число независимых между собою возможных перемещений системы называется числом степеней свободы этой системы. Например. шар на плоскости может перемещаться в любом направлении, но любое его возможное перемещение может быть получено как геометрическая сумма двух перемещений вдоль двух взаимно перпендикулярных осей. Свободное твердое тело имеет 6 степеней свободы.

Обобщенные силы. Каждой обобщенной координате можно вычислить соответствующую ей обобщенную силу Q k .

Вычисление производится по такому правилу.

Чтобы определить обобщенную силу Q k , соответствующую обобщенной координате q k , надо дать этой координате приращение (увеличить координату на эту величину), оставив все другие координаты неизменными, вычислить сумму работ всех сил, приложенных к системе, на соответствующих перемещениях точек и поделить ее на приращение координаты :

где - перемещение i -той точки системы, полученное за счет изменения k -той обобщенной координаты.

Обобщенная сила определяется с помощью элементарных работ. Поэтому эту силу можно вычислить иначе:

И так как есть приращение радиуса-вектора за счет приращения координаты при остальных неизменных координатах и времени t , отношение можно определять как частную производную . Тогда

где координаты точек - функции обобщенных координат (5).

Если система консервативная, то есть движение происходит под действием сил потенциального поля, проекции которых , где , а координаты точек - функции обобщенных координат, то

Обобщенная сила консервативной системы есть частная производная от потенциальной энергии по соответствующей обобщенной координате со знаком минус.

Конечно, при вычислении этой обобщенной силы потенциальную энергию следует определять как функцию обобщенных координат

П = П(q 1 , q 2 , q 3 ,…,q s ).

Замечания.

Первое. При вычислении обобщенных сил реакции идеальных связей не учитываются.

Второе. Размерность обобщенной силы зависит от размерности обобщенной координаты.

Уравнения Лагранжа 2-го рода выводятся из общего уравнения динамики в обобщенных координатах. Число уравнений соответствует числу степеней свободы:

Для составления уравнения Лагранжа 2-го рода выбираются обобщенные координаты и находятся обобщенные скорости . Находится кинетическая энергия системы, которая является функцией обобщенных скоростей, и, в некоторых случаях, обобщенных координат. Выполняются операции дифференцирования кинетической энергии, предусмотренные левыми частями уравнений Лагранжа.Полученные выражения приравниваются обобщенным силам, для нахождения которых помимо формул (26) часто при решении задач используют следующие:

В числителе правой части формулы - сумма элементарных работ все активных сил на возможном перемещении системы, соответствующем вариации i-й обобщенной координаты - . При этом возможном перемещении все остальные обобщенные координаты не изменяются. Полученные уравнения являются дифференциальными уравнениями движения механической системы с S степенями свободы.

Перейдем к рассмотрению еще одного принципа механики, который устанавливает общее условие равновесия механической системы. Под равновесием (см. § 1) мы понимаем то состояние системы, при котором все ее точки под действием приложенных сил находятся в покое по отношению к инерциальной системе отсчета (рассматриваем так называемое «абсолютное» равновесие). Одновременно будем считать все наложенные на систему связи стационарными и специально это в дальнейшем каждый раз оговаривать не будем.

Введем понятие о возможной работе, как об элементарной работе, которую действующая на материальную точку сила могла бы совершить на перемещении, совпадающем с возможным перемещением этой точки. Будем возможную работу активной силы обозначать символом , а возможную работу реакции N связи - символом

Дадим теперь общее определение понятия об идеальных связях, которым мы уже пользовались (см. § 123): идеальными называются связи, для которых сумма элементарных работ их реакций на любом возможном перемещении системы равна нулю, т. е.

Приведенное в § 123 и выраженное равенством (52) условие идеальности связей, когда они одновременно являются стационарными, соответствует определению (98), так как при стационарных связях каждое действительное перемещение совпадает с одним из возможных. Поэтому примерами идеальных связей будут все примеры, приведенные в § 123.

Для определения необходимого условия равновесия докажем, что если механическая система с идеальными связями находится действием приложенных сил в равновесии, то при любом возможном перемещении системы должно выполняться равенство

где - угол между силой и возможным перемещением.

Обозначим равнодействующие всех (и внешних, и внутренних) активных сил и реакций связей, действующих на какую-нибудь точку системы соответственно через . Тогда, поскольку каждая из точек системы находится в равновесии, , а следовательно, и сумма работ этих сил при любом перемещении точки будет тоже равна нулю, т. е. . Составив такие равенства для всех точек системы и сложив их почленно, получим

Но так как связи идеальные, представляют собой возможные перемещения точек системы, то вторая сумма по условию (98) будет равна нулю. Тогда равна нулю и первая сумма, т. е. выполняется равенство (99). Таким образом, доказано, что равенство (99) выражает необходимое условие равновесия системы.

Покажем, что это условие является и достаточным, т. е. что если к точкам механической системы, находящейся в покое, приложить активные силы удовлетворяющие равенству (99), то система останется в покое. Предположим обратное, т. е. что система при этом Придет в движение и некоторые ее точки совершат действительные перемещения . Тогда силы совершат на этих перемещениях работу и по теореме об изменении кинетической энергии будет:

где, очевидно, , так как вначале система была в покое; следовательно, и . Но при стационарных связях действительные перемещения совпадают с какими-то из возможных перемещений и на этих перемещениях тоже должно быть что противоречит условию (99). Таким образом, когда приложенные силы удовлетворяют условию (99), система из состояния покоя выйти не может и это условие является достаточным условием равновесия.

Из доказанного вытекает следующий принцип возможных перемещений: для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на нее активных сил при любом возможном перемещении системы была равна нулю. Математически сформулированное условие равновесия выражается равенством (99), которое называют также уравнением возможных работ. Это равенство можно еще представить в аналитической форме (см. § 87):

Принцип возможных перемещений устанавливает общее условие равновесия механической системы, не требующее рассмотрения равновесия отдельных частей (тел) этой системы и позволяющее при идеальных связях исключить из рассмотрения все наперед неизвестные реакции связей.


Принцип возможных перемещений сформулирован для решения задач статики методами динамики.

Определения

Связями называются все тела, ограничивающие перемещение рассматриваемого тела.

Идеальными называются связи, работа реакций которых на любом возможном перемещении равна нулю.

Числом степеней свободы механической системы называется число таких независимых между собой параметров, с помощью которых однозначно определяется положение системы.

Например, шар, расположенный на плоскости имеет пять степеней свободы, а цилиндрический шарнир - одну степень свободы.

В общем случае механическая система может иметь бесконечное число степеней свободы.

Возможными перемещениями будем называть такие перемещения, которые, во-первых, допускаются наложенными связями, и, во-вторых, являются бесконечно малыми.

Кривошипно-ползунный механизм имеет одну степень свободы. В качестве возможных перемещений могут приниматься параметры -  , x и др.

Для любой системы число независимых друг от друга возможных перемещений равно числу степеней свободы.

Пусть некоторая система находится в равновесии и связи, наложенные на эту систему, являются идеальными. Тогда для каждой точки системы можно записать уравнение

, (102)

где
- равнодействующая активных сил, приложенных к материальной точке;

- равнодействующая реакций связей.

Умножим (102) скалярно на вектор возможного перемещения точки

,

так как связи идеальные, то всегда
, останется сумма элементарных работ активных сил, действующих на точку

. (103)

Уравнение (103) можно записать для всех материальных точек, суммируя которые получим

. (104)

Уравнение (104) выражает следующий принцип возможных перемещений.

Для равновесия системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на нее активных сил при любом возможном перемещении системы была равна нулю.

Число уравнений (104) равно числу степеней свободы данной системы, что является достоинством этого метода.

Общее уравнение динамики (принцип Даламбера-Лагранжа)

Принцип возможных перемещений позволяет решать задачи статики методами динамики, с драгой стороны, принцип Даламбера дает общий метод решения задач динамики методами статики. Объединяя два эти принципа можно получить общий метод решения задач механики, который называется принципом Даламбера-Лагранжа.

. (105)

При движении системы с идеальными связями в каждый момент времени сумма элементарных работ всех приложенных активных сил и всех сил инерции на любом возможном перемещении системы будет равно нулю.

В аналитической форме уравнение (105) имеет вид

Уравнения Лагранжа II рода

Обобщенными координатами (q ) называются такие независимые друг от друга параметры, которые однозначно определяют поведение механической системы.

Число обобщенных координат всегда равно числу степеней свободы механической системы.

В качестве обобщенных координат могут быть выбраны любые параметры, имеющие любую размерность.

Н
апример, при изучении движения математического маятника, имеющего одну степень свободы, в качестве обобщенной координатыq могут быть приняты параметры:

x (м), y (м) – координаты точки;

s (м) – длина дуги;

 (м 2) – площадь сектора;

 (рад) – угол поворота.

При движении системы ее обобщенные координаты будут с течением времени непрерывно изменяться

Уравнения (107) – это уравнения движения системы в обобщенных координатах.

Производные от обобщенных координат по времени называются обобщенными скоростями системы

. (108)

Размерность обобщенной скорости зависит от размерности обобщенной координаты.

Через обобщенные координаты могут быть выражены любые другие координаты (декартовы, полярные и др.).

Наряду с понятием обобщенной координаты вводится понятие обобщенной силы.

Под обобщенной силой понимают величину равную отношению суммы элементарных работ всех сил, действующих на систему на некотором элементарном приращении обобщенной координаты, к этому приращению

, (109)

где S – индекс обобщенной координаты.

Размерность обобщенной силы зависит от размерности обобщенной координаты.

Для нахождения уравнений движения (107) механической системы с геометрическими связями в обобщенных координатах используются дифференциальные уравнения в форме Лагранжа II рода

. (110)

В (110) кинетическая энергия T системы выражена через обобщенные координаты q S и обобщенные скорости .

Уравнения Лагранжа дают единый и достаточно простой метод решения задач динамики. Вид и число уравнений не зависит от количества тел (точек), входящих в систему, а только от числа степеней свободы. При идеальных связях эти уравнения позволяют исключить все заранее неизвестные реакции связей.



© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний