Корреляционная и взаимно корреляционная функция. Взаимно корреляционная функция и ее применение Спектральные плотности корреляционных функций

Главная / Н. А. Некрасов

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Корреляционная функция. Взаимная корреляционная функция. Линейное преобразование случайного процесса

1. Корреляционная функция

При исследовании случайных сигналов широко используется теория случайных процессов, основанная на использовании моментов не выше второго порядка. Эта теория получила название корреляционной теории.

Определение . Корреляционной функцией R x (t 1 ,t 2) случайного процесса X(t) называется корреляционный момент центрированного случайного процесса в двух сечениях t = t 1 и t = t 2:

Корреляционная функция обладает всеми свойствами корреляционного момента. Часто вместо корреляционной функции рассматривается нормированная корреляционная функция x (t 1 ,t 2):

которая является безразмерной величиной.

В дальнейшем будем рассматривать только центрированные случайные процессы. Если процесс будет не центрированным, то об этом будет специально оговорено.

Корреляционная функция R x (t 1 ,t 2) случайного процесса X(t) называется еще автокорреляционной функцией.

Для стационарных процессов (в широком и узком смысле) автокорреляционная функция имеет вид

R x (t 1 ,t 2) = R x (0, t 2 - t 1) = R x () ,

где = t 2 - t 1.

Можно определить и временную автокорреляционную функцию следующим образом

где - реализация центрированного случайного процесса X(t). Для эргодических процессов = R x ().

Ниже приведен обычный график автокорреляционной функции

2. Свойства автокорреляционных функций

Автокорреляционные функции играют большую роль в представлении случайных процессов и при анализе систем, оперирующих со случайными входными сигналами. Поэтому приведем некоторые свойства автокорреляционных функций стационарных процессов.

1. R x (0) = M(X 2 (t)) = D x (t).

2. R x () = R x (-). Автокорреляционная функция является четной функцией. Это свойство симметрии графика функции исключительно полезно при вычислении автокорреляционной функции, так оно означает, что вычисления можно производить только для положительных, а для отрицательных можно их определить, используя свойство симметрии.

3.R x () R x (0). Наибольшее значение автокорреляционной функции, как правило, принимает при = 0.

Пример . В случайном процессе X(t) = A Cost, где А - случайная величина с характеристиками: М(А) = 0, D(A) = 2 , найти М(Х), D(Х) и R x (t 1 ,t 2).

Решение . Найдем математическое ожидание и дисперсию случайного процесса:

М(Х) = М(A Cost) = Cost М(А) = 0,

D(Х) = М((A Cost-0) 2) = М(А 2) Cos 2 t = 2 Cos 2 t.

Теперь найдем автокорреляционную функцию

R x (t 1 ,t 2) = М(А Cost 1 А Cost 2) =

М(А 2) Cost 1 Cost 2 = 2 Cost 1 Cost 2 .

3. Взаимная корреляционная функция

Входной Х(t) и выходной Y(t) случайные сигналы системы можно рассматривать как двумерный векторный случайный процесс Введем числовые характеристики этого процесса.

Математическое ожидание и дисперсия векторного случайного процесса определяется как математическое ожидание и дисперсия его компонент:

Корреляционную функцию векторного процесса введем с помощью матрицы второго порядка:

где R xy (t 1 , t 2) взаимная корреляционная функция случайных процессов X(t) иY(t), определяемая следующим образом

Из определения взаимной корреляционной функции вытекает, что

R xy (t 1 ,t 2) = R yx (t 2 ,t 1).

Нормированной взаимной корреляционной функцией двух случайных процессов X(t), Y(t) называется функция

Определение. Если взаимная корреляционная функция случайных процессов X(t) и Y(t) равна нулю:

то случайные процессы называются некоррелироваными.

Для суммы случайных процессов X(t) и Y(t) автокорреляционная функция равна

R x + y (t 1 ,t 2) = R x (t 1 ,t 2) + R xy (t 1 ,t 2) + R yx (t 1 ,t 2) + R y (t 1 ,t 2).

Для некоррелированных случайных процессов X(t) и Y(t) автокорреляционная функция суммы случайных процессов равна сумме автокорреляционных функций

R x+y (t 1 ,t 2) = R x (t 1 ,t 2) + R y (t 1 ,t 2),

а значит и дисперсия суммы случайных процессов равна сумме дисперсий:

D x+y (t) = D x (t) + D y (t).

Если где X 1 (t), ..., X n (t) - некоррелированные случайные процессы, то и

При выполнении различных преобразований со случайными процессами часто удобно записывать их в комплексном виде.

Комплексным случайным процессом называется случайный процесс вида

Z(t) = X(t) + i Y(t),

где X(t) , Y(t) - действительные случайные процессы.

Математическое ожидание, корреляционная функция и дисперсия комплексного случайного процесса определяются следующим образом:

M(Z) = M(X) + i M(Y),

где знак * обозначает комплексное сопряжение;

Пример . Пусть случайный процесс, где - постоянная величина, Здесь А и - независимые случайные величины, причем М(А) = m A , D(A) = 2 , а - равномерно распределенная случайная величина на интервале . Определить математическое ожидание, корреляционную функцию и дисперсию комплексного случайного процесса Z(t).

Решение . Найдем математическое ожидание:

Используя равномерное распределение случайной величины на интервале , имеем

Автокорреляционная функция случайного процесса Z(t) равна

Отсюда имеем

D z (t 1) = R z (t 1, t 1) = 2 + m A 2 .

Из полученных результатов следует, что случайный процесс Z(t) стационарный в широком смысле.

4. Линейное преобразование случайного процесса

При решении многих практических задач радиотехники приходится определять характеристики случайного процесса на выходе линейной системы. Линейная система осуществляет линейные операции над входным случайным процессом. Это значит, что если на вход системы поступает случайный процесс X(t), то на выходе этот процесс преобразуется в случайный процесс

Y(t) = A ,

где А - оператор (преобразование), обладающий свойствами:

A [ 1 X 1 (t) + 2 X 2 (t)] = 1 A + 2 .

Здесь постоянные величины.

Примеры линейных операторов

Оператор умножения на неслучайную функцию f(t):

Y(t) = A = f(t) X(t).

Определим математическое ожидание и автокорреляционную функцию случайного процесса Y(t):

m y (t) = M(Y(t)) = M(f(t) X(t)) = f(t) M(X(t)),

Оператор дифференцирования:

Представив производную в виде предела

и применив операцию математического ожидания к правой и левой части равенства, получаем

Оператор интегрирования:

Представим интеграл в виде интегральной суммы

и применим к этому равенству операцию математического ожидания. Тогда имеем

Автокорреляционная функция случайного процесса легко определяется:

5. Преобразование Фурье

При анализе различных линейных систем широко используются преобразования Фурье и Лапласа, позволяющие достаточно просто выполнить необходимые вычисления. Основная причина такого упрощения заключается в замене процедуры свертки, используемой при анализе системы во временной области на обычную операцию умножения частотных характеристик и функций, используемых при анализе в частотной области.

Пусть у нас имеется сигнал (неслучайный, который представляет собой функцию времени) f(t), измеряемый в вольтах. Тогда

Преобразование Фурье сигнала f(t) (иногда под преобразованием Фурье понимают сопряженную величину F*()), которое имеет размерность и определяет относительные амплитуды и фазы незатухающих гармонических составляющих. Таким образом, амплитудное соотношение в преобразовании Фурье характеризует плотность распределения амплитуд по частоте, а значит определяет распределение энергии по спектру. Спектром любого колебательного процесса называется функция, описывающая распределение амплитуд гармоник по различным частотам. Спектр показывает, какого рода колебания по частоте преобладают в данном процессе и какова его внутренняя структура.

Для преобразования Фурье разработана теория, суть которой кратко заключается в следующем.

Вводится пространство L 2 (-,) - пространство суммируемых в квадрате функций, то есть таких функций, для которых

Если f(t) - сигнал, то это условие означает конечность мощности этого сиг-

нала. Для каждой функции f L 2 (-,) существует предел в среднем функции

при Т и этот предел обозначается

причем F() L 2 (-,). Существует и обратное преобразование

Для двух преобразований Фурье

выполняет обобщенное равенство Парсеваля:

В частности, получаем обычное равенство Парсеваля

6. Спектральная плотность стационарного случайного процесса

Непосредственное применение преобразования Фурье для реализации случайного процесса x(t) неприменимо, так как это преобразование не существует. С целью использования преобразования Фурье при анализе стационарного (центрированного) случайного процесса необходимо видоизменить реализацию процесса таким образом, чтобы преобразование Фурье существовало для каждой реализации. Один из таких способов заключается во введении усеченного процесса X T (t):

Этот усеченный процесс удовлетворяет требованию существования преобразования Фурье для любой реализации, так как

Это соотношение означает, что оно выполняется для любой реализации случайного процесса X T (t). Теперь для усеченного процесса можно ввести преобразование Фурье, понимая под этим преобразование Фурье любой его реализации:

Целью дальнейшего является доказательство того факта, что в пределе при Т существует, если даже не существует преобразование Фурье для какой-либо реализации.

Первый этап доказательства состоит в применении равенства Парсеваля:

Заметим, что

(2)

Усредним теперь во времени левую часть равенства (1) с целью получения средней мощности случайного процесса

Левая часть полученного равенства представляет собой квадрат эффективного значения функции X T (t). Кроме того, для эргодического процесса при Т эта величина приближается к значению среднего квадрата случайного процесса M(X 2 (t)).

В соотношении (3) нельзя перейти к пределу при Т, так как не существует.

Поэтому сначала возьмем математическое ожидание левой и правой частей этого равенства

и перепишем его, устремив Т. Тогда

Для стационарного процесса

Поэтому получаем соотношение

Величина

называется спектральной плотностью случайного процесса. Укажем, что после выполнения операции усреднения по множеству реализаций (по ансамблю) справедлив переход к пределу при Т. Если X(t) - напряжение, то ([X] = B), S x () имеет размерность а интеграл от S x () в соответствии с (4) определяет средний квадрат этого напряжения, то есть

Более наглядная физическая интерпретация спектральной плотности может быть дана путем анализа средней мощности. Если X(t) - флуктуационное напряжение или ток, протекающий через резистор сопротивления 1 Ом, то М(Х 2) есть средняя мощность, рассеиваемая этим резистором.

Спектральную плотность можно интерпретировать как среднюю мощность, сосредоточенную в пределах полосы частот шириной 1 Гц.

Вследствие этого спектральную плотность часто называют спектром плотности мощности.

От двусторонней спектральной плотности случайного процесса можно перейти к односторонней, где фигурирует обычно частота f. С этой целью запишем

и в первом интеграле сделаем замену переменной, положив = 2f, а во втором - = - 2f.

Так как в силу соотношения (2) функция S x () = S x (-), то есть является четной функцией, то

Представим интеграл в этом соотношении в виде интегральной суммы

где D k - дисперсия случайного процесса на k-ой гармонике. Отсюда получаем, что G x (f) = D k /f k - дисперсия (мощность) k-ой гармоники, отнесенная к полосе частот f k , то есть спектральная плотность дисперсии (мощности) случайного процеса.

Пример . Стационарный случайный процесс имеет двухстороннюю спектральную плотность

Определить среднюю мощность процесса, рассеиваемую на резисторе сопротивлением 1 Ом в диапазоне изменения от -4 до 4.

Решение Средняя мощность процесса M(X 2 (t)) для указанного диапазона равна:

автокорреляционная функция случайный процесс

В радиотехнике часто используется понятие "белого шума". Под "белым шумом" принято понимать стационарный случайный процесс, спектральная плотность которого постоянна на всех частотах. Термин "белый шум" образно подчеркивает аналогию со светом, у которого в пределах видимого диапазона частот интенсивность всех спектральных составляющих примерно одинакова. Белый шум является математической моделью процесса, который реально в природе не существует, так как мощность его равна бесконечности. Однако это удобная модель для описания широкополосных случайных процессов систем, в полосе пропускания которых спектр можно считать постоянным.

Размещено на Allbest

Подобные документы

    Построение и изучение математической модели случайного стационарного эргодического процесса с вероятностными характеристиками: ожидание и дисперсия. Построение графиков динамики изменения эмпирических данных и гистограмм распределения для всех выборок.

    курсовая работа , добавлен 18.03.2012

    Недостатки традиционного Фурье-преобразования. Оконное, дискретное преобразование, оконные функции и их виды. Непрерывное вейвлет-преобразование, материнские вейвлеты. Кратномасштабный анализ и разложение сигнала по разным ортонормированным базисам.

    курсовая работа , добавлен 23.10.2009

    Порядок расчета установившегося случайного процесса в системе управления. Статистическая линеаризация нелинейной части системы. Расчет математического ожидания, среднеквадратического отклонения сигнала ошибки. Решение уравнений и построение зависимостей.

    контрольная работа , добавлен 23.02.2012

    Определение нижней и верхней цены игры, заданной платежной матрицей. Имеет ли игра седловую точку? Решение геометрически задачи линейного программирования. Построение графа состояний случайного процесса. Предельные вероятности для заданной системы.

    контрольная работа , добавлен 04.02.2011

    Степень тесноты и характера направления зависимости между признаками. Парная линейная корреляционная зависимость, ее корреляционно-регрессионный анализ. Исследование связи между одним признаком-фактором и одним признаком-результатом, шкала Чеддока.

    методичка , добавлен 15.11.2010

    Передаточная функция разомкнутой системы "ЛА-САУ". Выбор частоты среза для желаемой ЛАХ и ее построение. Синтез корректирующего звена. Расчет переходного процесса для замкнутой скорректированной и не скорректированной автоматической системы управления.

    курсовая работа , добавлен 10.12.2012

    Гетероскедастичность случайного возмущения: основные причины и последствия. Тесты на наличие или отсутствие гетероскедастичности. Тест ранговой корреляции Спирмена. Тест Голдфеда–Квандта. Тест Глейзера. Количественные характеристики вектора возмущений.

    реферат , добавлен 06.01.2015

    Принципы и этапы построения модели авторегрессии, ее основные достоинства. Спектр процесса авторегрессии, формула для ее нахождения. Параметры, характеризующие спектральную оценку случайного процесса. Характеристическое уравнение модели авторегрессии.

    контрольная работа , добавлен 10.11.2010

    Общая характеристика и порядок определения коэффициента корреляции, методика и этапы его оценки. Описание автокорреляционных функций. Сущность критерия Дарбина-Уотсона. Примеры практических расчетов с помощью макроса Excel "Автокорреляционная функция".

    курсовая работа , добавлен 03.07.2010

    Системы с положительной и отрицательной обратной связью. Собственные динамические свойства системы. Стандартный сигнал простого вида. Единичная ступенчатая функция. График переходного процесса. Значение постоянной времени. Сохранение полезных сигналов.

Математическое ожидание и дисперсия являются важными характеристиками случайного процесса, но они не дают достаточного представления о том, какой характер будут иметь отдельные реализации случайного процесса. Это хороню видно из рис. 9.3, где показаны реализации двух случайных процессов, совершенно различных по своей структуре, хотя и имеющих

одинаковые значения математического ожидания и дисперсии. Штриховыми линиями на рис. 9.3 показаны значения для случайных процессов.

Процесс, изображенный на рис. 9.3, а, от одного сечения к другому протекает сравнительно плавно, а процесс на рис. 9.3, б обладает сильной изменчивостью от сечения к сечению Поэтому статистическая связь между сечениями в первом случае больше, чем во втором, однако ни по математическому ожиданию, ни по дисперсии этого установить нельзя.

Чтобы в какой-то мере охарактеризовать внутреннюю структуру случайного процесса, т. е. учесть связь между значениями случайного процесса в различные моменты времени или, иными словами, учесть степень изменчивости случайного процесса, необходимо ввести понятие о корреляционной (автокорреляционной) функции случайного процесса.

Корреляционной функцией случайного процесса называют неслучайную функцию двух аргументов которая для каждой пары произвольно выбранных значений аргументов (моментов времени) равна математическому ожиданию произведения двух случайных величин соответствующих сечений случайного процесса:

где - двумерная плотность вероятности; - центрированный случайный процесс; - математическое ожидание (среднее значение) случайного процесса.

Различные случайные процессы в зависимости от того, как изменяются их статистические характеристики с течением времени, делят на стационарные и нестационарные. Разделяют стационарность в узком смысле и стационарность в широком смысле.

Стационарным в узком смысле называют случайный процесс если его n-мерные функции распределения и плотности вероятности при любом не зависят от сдвига всех точек

Вдоль оси времени на одинаковую величину т. е.

Это означает, что два процесса имеют одинаковые статистические свойства для любого т. е. статистические характеристики стационарного случайного процесса неизменны во времени.

Стационарный случайный процесс - это своего рода аналог установившегося процесса в детерминированных системах. Любой переходный процесс не является стационарным.

Стационарным в широком смысле называют случайный процесс математическое ожидание которого постоянно:

а корреляционная функция зависит только от одной переменной - разности аргументов при этом корреляционную функцию обозначают

Процессы, стационарные в узком смысле, обязательно стационарны и в широком смысле; однако обратное утверждение, вообще говоря, неверно.

Понятие случайного процесса, стационарного в широком смысле, вводится тогда, когда в качестве статистических характеристик случайного процесса используются только математическое ожидание и корреляционная функция. Часть теории случайных процессов, которая описывает свойства случайного процесса через его математическое ожидание и корреляционную функцию, называют корреляционной теорией.

Для случайного процесса с нормальным законом распределения математическое ожидание и корреляционная функция полностью определяют его n-мерную плотность вероятности.

Поэтому для нормальных случайных процессов понятия стационарности в широком и узком смысле совпадают.

Теория стационарных процессов разработана наиболее полно и позволяет сравнительно просто производить расчеты для многих практических случаев. Поэтому допущение о стационарности иногда целесообразно делать также и для тех случаев, когда случайный процесс хотя и нестационарен но на рассматриваемом отрезке времени работы системы статистические характеристики сигналов не успевают сколько-нибудь существенно измениться. В дальнейшем, если не будет оговорено особо, будут рассматриваться случайные процессы, стационарные в широком смысле.

При изучении случайных процессов, стационарных в широком смысле, можно ограничиться рассмотрением только процессов с математическим ожиданием (средним значением), равным нулю, т. е. так как случайный процесс с ненулевым математическим ожиданием представляют как сумму процесса с нулевым математическим ожиданием и постоянной неслучайной (регулярной) величиной, равной математическому ожиданию этого процесса (см. далее § 9.6).

При выражение для корреляционной функции

В теории случайных процессов пользуются двумя понятиями средних значений. Первое понятие о среднем значении - это среднее значение по мнооюеству (или математическое ожидание), которое определяется на основе наблюдения над множеством реализацчй случайного процесса в один и тот же момент времени. Среднее значение по множеству принято обозначать волнистой чертой над выражением, описывающим случайную функцию:

В общем случае среднее значение по множеству является функцией времени

Другое понятие о среднем значении - это среднее значение по времени, которое определяется на основе наблюдения за отдельной реализацией случайного процесса на протяжении

достаточно длительного времени Т. Среднее значение по времени обозначают прямой чертой над соответствующим выражением случайной функции и определяют по формуле:

если этот предел существует.

Среднее значение по времени в общем случае различно для отдельных реализаций множества, определяющих случайный процесс. Вообще говоря, для одного и того же случайного процесса среднее по множеству и среднее по времени значения различны. Однако существует класс стационарных случайных процессов, называемых эргодическими, для которых среднее по множеству равно среднему по времени, т. е.

Корреляционная функция эргодического стационарного случайного процесса неограниченно убывает по модулю при

Однако надо иметь в виду, что не всякий стационарный случайный процесс является эргодическим, например случайный процесс каждая реализация которого постоянна во времени (рис. 9.4), является стационарным, но не эргодическим. В этом случае средние значения, определенные по одной реализации и в результате обработки множества реализаций, не совпадают. Один и тот же случайный процесс в общем случае может быть эргодическим по отношению к одним статистическим характеристикам и неэргодическим по отношению к другим. В дальнейшем будем считать, что по отношению ко всем статистическим характеристикам условия эргодичности выполняются.

Свойство эргодичности имеет очень большое практическое значение. Для определения статистических свойств некоторых объектов, если трудно осуществить одновременное наблюдение за ними в произвольно выбранный момент времени (например, при наличии одного опытного образца), его можно заменить длительным наблюдением за одним объектом. Иными словами, отдельная реализация эргодического случайного

процесса на бесконечном промежутке времени полностью определяет весь случайный процесс с его бесконечными реализациями. Собственно говоря, этот факт лежит в основе описанного ниже метода экспериментального определения корреляционной функции стационарного случайного процесса по одной реализации.

Как видно из (9.25), корреляционная функция представляет собой среднее значение по множеству. Для эргодических случайных процессов корреляционную функцию можно определить как среднее по времени от произведения , т. е.

где - любая реализация случайного процесса; х - среднее значение по времени, определяемое по (9.28).

Если среднее значение случайного процесса равно нулю то

Основываясь на свойстве эргодичности, можно дисперсию [см. (9.19)] определить как среднее по времени от квадрата центрированного случайного процесса, т. е.

Сравнивая выражения (9.30) и (9.32) при можно установить очень важную связь между дисперсией и корреляционной функцией - дисперсия стационарного случайного процесса равна начальному значению корреляционной функции:

Из (9.33) видно, что дисперсия стационарного случайного процесса постоянна, а следовательно, постоянно и среднее квадратическое отклонение:

Статистические свойства связи двух случайных процессов можно характеризовать взаимной корреляционной функцией которая для каждой пары произвольно выбранных значений аргументов равна

Для эргодических случайных процессов вместо (9.35) можно записать

где - любые реализации стационарных случайных процессов соответственно.

Взаимная корреляционная функция характеризует взаимную статистическую связь двух случайных процессов в разные моменты времени, отстоящие друг от друга на промежуток времени . Значение характеризует эту связь в один и тот же момент времени.

Из (9.36) следует, что

Если случайные процессы статистически не связаны друг с другом и имеют равные нулю средние значения, то их взаимная корреляционная функция для всех равна нулю. Однако обратный вывод о том, что если взаимная корреляционная функция равна нулю, то процессы независимы, можно сделать лишь в отдельных случаях (в частности, для процессов с нормальным законом распределения), общей же силы обратный закон не имеет.

Заметим, что корреляционные функции могут вычисляться и для неслучайных (регулярных) функций времени. Однако когда говорят о корреляционной функции регулярной функции то под этим понимают просто результат формального

применения к регулярной функции операции, выражаемой интегралом:

Приведем некоторые основные свойства корреляционных функций

1. Начальное значение корреляционной функции [см. (9.33)] равно дисперсии случайного процесса:

2. Значение корреляционной функции при любом не может превышать ее начального значения, т. е.

Чтобы доказать это, рассмотрим очевидное неравенство из которого следует

Находим средние значения по времени от обеих частей последнего неравенства:

Таким образом, получим неравенство

3. Корреляционная функция есть четная функция , т. е.

Это вытекает из самого определения корреляционной функции. Действительно,

поэтому на графике корреляционная функция всегда симметрична относительно оси ординат.

4. Корреляционная функция суммы случайных процессов определяется выражением

где - взаимные корреляционные функции

Действительно,

5. Корреляционная функция постоянной величины равна квадрату этой постоянной величины (рис. 9.5, а), что вытекает из самого определения корреляционной функции:

6. Корреляционная функция периодической функции, например представляет собой косинусоиду (рис. 9-5, 5), т. е.

имеющую ту же частоту что и и не зависящую от сдвига фазы

Чтобы доказать это, заметим, что при нахождении корреляционных функций периодических функций можно использовать следующее равенство:

где - период функции

Последнее равенство получается после замены интеграла с пределами от -Т до Т при Т со суммой отдельных интегралов с пределами от до , где и использования периодичности подынтегральных функций.

Тогда, учитывая сказанное выше, получим т.

7. Корреляционная функция временной функции, разлагаемой в ряд Фурье:

Рис. 9.5 (см. скан)

имеет на основании изложенного выше следующий вид:

8. Типичная корреляционная функция стационарного случайного процесса имеет вид, представленный на рис. 9.6. Ее можно аппроксимировать следующим аналитическим выражением:

С ростом связь между ослабевает и корреляционная функция становится меньше. На рис. 9.5, б, в приведены, например, две корреляционные функции и две соответствующие им реализации случайного процесса. Легко заметить, что корреляционная функция, соответствующая случайному процессу с более тонкой структурой, убывает быстрее Другими словами, чем более высокие частоты присутствуют в случайном процессе, тем быстрее убывает соответствующая ему корреляционная функция.

Иногда встречаются корреляционные функции, которые могут быть аппроксимированы аналитическим выражением

где - дисперсия; - параметр затухания; - резонансная частота.

Корреляционные функции подобного вида имеют, например, случайные процессы типа турбулентности атмосферы, фединга радиолокационного сигнала, углового мерцания цели и т. п. Выражения (9.45) и (9.46) часто используются для аппроксимации корреляционных функций, полученных в результате обработки экспериментальных данных.

9. Корреляционная функция Стационарного случайного процесса, на которой наложена периодическая составляющая с частотой также будет содержать периодическую составляющую той же частоты.

Это обстоятельство можно использовать как один из способов обнаружения «скрытой периодичности» в случайных процессах, которая может не обнаруживаться при первом взгляде на отдельные записи реализации случайного процесса.

Примерный вид корреляционной функции процесса содержащего в своем составе кроме случайной также и периодическую составляющую, показан на рис. 9.7, где обозначена корреляционная функция, соответствующая случайной составляющей. Чтобы выявить скрытую периодическую составляющую (такая задача возникает, например, при выделении малого полезного сигнала на фоне большой помехи), лучше всего определить корреляционную функцию для больших значений когда случайный сигнал уже сравнительно слабо коррелирован и случайная составляющая слабо сказывается на виде корреляционной функции.

Взаимнокорреляционная функция - стандартный метод оценки степени корреляции двух последовательностей. Она часто используется для поиска в длинной последовательности более короткой заранее известной. Рассмотрим два ряда f и g. Взаимная корреляция определяется по формуле:

(f\star g)_i \ \stackrel{\mathrm{def}}{=}\ \sum_j f^*_j\,g_{i+j},

где i - сдвиг между последовательностями относительно друг друга, а верхний индекс в виде звёздочки означает комплексное сопряжение . В общем случае, для непрерывных функций f (t ) и g (t ) взаимная корреляция определяется как

(f \star g)(t)\ \stackrel{\mathrm{def}}{=} \int_{-\infty}^{\infty} f^*(\tau)\ g(t+\tau)\,d\tau,

Если X и Y - два независимых случайных числа с функциями распределения вероятностей соответственно f и g , тогда взаимная корреляция f \star g соответствует распределению вероятностей выражения -X + Y. Напротив, свёртка f * g соответствует распределению вероятностей суммы X + Y.

Свойства

Взаимная корреляция и свёртка взаимосвязанны:

f(t)\star g(t) = f^*(-t)*g(t)

поэтому, если функции f и g чётны, то

(f\star g) = f*g

Также: (f\star g)\star(f\star g)=(f\star f)\star (g\star g)

См. также.

Напишите отзыв о статье "Взаимнокорреляционная функция"

Ссылки

  • функция в MATLAB

Отрывок, характеризующий Взаимнокорреляционная функция

Анатоль был всегда доволен своим положением, собою и другими. Он был инстинктивно всем существом своим убежден в том, что ему нельзя было жить иначе, чем как он жил, и что он никогда в жизни не сделал ничего дурного. Он не был в состоянии обдумать ни того, как его поступки могут отозваться на других, ни того, что может выйти из такого или такого его поступка. Он был убежден, что как утка сотворена так, что она всегда должна жить в воде, так и он сотворен Богом так, что должен жить в тридцать тысяч дохода и занимать всегда высшее положение в обществе. Он так твердо верил в это, что, глядя на него, и другие были убеждены в этом и не отказывали ему ни в высшем положении в свете, ни в деньгах, которые он, очевидно, без отдачи занимал у встречного и поперечного.
Он не был игрок, по крайней мере никогда не желал выигрыша. Он не был тщеславен. Ему было совершенно всё равно, что бы об нем ни думали. Еще менее он мог быть повинен в честолюбии. Он несколько раз дразнил отца, портя свою карьеру, и смеялся над всеми почестями. Он был не скуп и не отказывал никому, кто просил у него. Одно, что он любил, это было веселье и женщины, и так как по его понятиям в этих вкусах не было ничего неблагородного, а обдумать то, что выходило для других людей из удовлетворения его вкусов, он не мог, то в душе своей он считал себя безукоризненным человеком, искренно презирал подлецов и дурных людей и с спокойной совестью высоко носил голову.
У кутил, у этих мужских магдалин, есть тайное чувство сознания невинности, такое же, как и у магдалин женщин, основанное на той же надежде прощения. «Ей всё простится, потому что она много любила, и ему всё простится, потому что он много веселился».
Долохов, в этом году появившийся опять в Москве после своего изгнания и персидских похождений, и ведший роскошную игорную и кутежную жизнь, сблизился с старым петербургским товарищем Курагиным и пользовался им для своих целей.
Анатоль искренно любил Долохова за его ум и удальство. Долохов, которому были нужны имя, знатность, связи Анатоля Курагина для приманки в свое игорное общество богатых молодых людей, не давая ему этого чувствовать, пользовался и забавлялся Курагиным. Кроме расчета, по которому ему был нужен Анатоль, самый процесс управления чужою волей был наслаждением, привычкой и потребностью для Долохова.

Множество непрерывных функций действительного переменного { U n (t ) } = { U 0 (t ) , U 1 (t ),.. . } называе т ся ортогональным на интервале [ t 0 , t 0 + T ] , если

При с = 1 множество {U n (t)} называется ортонормированным.

Для вычисления сигнала через коэффициенты разложения используется:


В силу условий ортогональности будем иметь

  1. Функция взаимной корреляции. Функция автокорреляции.

Корреляция – математическая операция, схожа со свёрткой, позволяет получить из двух сигналов третий. Бывает: автокорреляция (автокорреляционная функция), взаимная корреляция (взаимнокорреляционная функция, кросскорреляционная функция). Пример:

[Взаимная корреляционная функция]

[Автокорреляционная функция]

Корреляция - это техника обнаружения заранее известных сигналов на фоне шумов, ещё называют оптимальной фильтрацией. Хотя корреляция очень похожа на свёртку, но вычисляются они по-разному. Области применения их также различные (c(t)=a(t)*b(t) - свертка двух функций, d(t)=a(t)*b(-t) - взаимная корреляция).

Корреляция – это та же свёртка, только один из сигналов инвертируется слева направо. Автокорреляция (автокорреляционная функция) характеризует степень связи между сигналом и его сдвинутой на? копией. Взаимнокорреляционная функция характеризует степень связи между 2-мя разными сигналами.

Математическое ожидание и дисперсия являются важными характеристиками случайного процесса, но они не дают достаточного представления о том, какой характер будут иметь отдельные реализации случайного процесса. Это хороню видно из рис. 9.3, где показаны реализации двух случайных процессов, совершенно различных по своей структуре, хотя и имеющих

одинаковые значения математического ожидания и дисперсии. Штриховыми линиями на рис. 9.3 показаны значения для случайных процессов.

Процесс, изображенный на рис. 9.3, а, от одного сечения к другому протекает сравнительно плавно, а процесс на рис. 9.3, б обладает сильной изменчивостью от сечения к сечению Поэтому статистическая связь между сечениями в первом случае больше, чем во втором, однако ни по математическому ожиданию, ни по дисперсии этого установить нельзя.

Чтобы в какой-то мере охарактеризовать внутреннюю структуру случайного процесса, т. е. учесть связь между значениями случайного процесса в различные моменты времени или, иными словами, учесть степень изменчивости случайного процесса, необходимо ввести понятие о корреляционной (автокорреляционной) функции случайного процесса.

Корреляционной функцией случайного процесса называют неслучайную функцию двух аргументов которая для каждой пары произвольно выбранных значений аргументов (моментов времени) равна математическому ожиданию произведения двух случайных величин соответствующих сечений случайного процесса:

где - двумерная плотность вероятности; - центрированный случайный процесс; - математическое ожидание (среднее значение) случайного процесса.

Различные случайные процессы в зависимости от того, как изменяются их статистические характеристики с течением времени, делят на стационарные и нестационарные. Разделяют стационарность в узком смысле и стационарность в широком смысле.

Стационарным в узком смысле называют случайный процесс если его n-мерные функции распределения и плотности вероятности при любом не зависят от сдвига всех точек

Вдоль оси времени на одинаковую величину т. е.

Это означает, что два процесса имеют одинаковые статистические свойства для любого т. е. статистические характеристики стационарного случайного процесса неизменны во времени.

Стационарный случайный процесс - это своего рода аналог установившегося процесса в детерминированных системах. Любой переходный процесс не является стационарным.

Стационарным в широком смысле называют случайный процесс математическое ожидание которого постоянно:

а корреляционная функция зависит только от одной переменной - разности аргументов при этом корреляционную функцию обозначают

Процессы, стационарные в узком смысле, обязательно стационарны и в широком смысле; однако обратное утверждение, вообще говоря, неверно.

Понятие случайного процесса, стационарного в широком смысле, вводится тогда, когда в качестве статистических характеристик случайного процесса используются только математическое ожидание и корреляционная функция. Часть теории случайных процессов, которая описывает свойства случайного процесса через его математическое ожидание и корреляционную функцию, называют корреляционной теорией.

Для случайного процесса с нормальным законом распределения математическое ожидание и корреляционная функция полностью определяют его n-мерную плотность вероятности.

Поэтому для нормальных случайных процессов понятия стационарности в широком и узком смысле совпадают.

Теория стационарных процессов разработана наиболее полно и позволяет сравнительно просто производить расчеты для многих практических случаев. Поэтому допущение о стационарности иногда целесообразно делать также и для тех случаев, когда случайный процесс хотя и нестационарен но на рассматриваемом отрезке времени работы системы статистические характеристики сигналов не успевают сколько-нибудь существенно измениться. В дальнейшем, если не будет оговорено особо, будут рассматриваться случайные процессы, стационарные в широком смысле.

При изучении случайных процессов, стационарных в широком смысле, можно ограничиться рассмотрением только процессов с математическим ожиданием (средним значением), равным нулю, т. е. так как случайный процесс с ненулевым математическим ожиданием представляют как сумму процесса с нулевым математическим ожиданием и постоянной неслучайной (регулярной) величиной, равной математическому ожиданию этого процесса (см. далее § 9.6).

При выражение для корреляционной функции

В теории случайных процессов пользуются двумя понятиями средних значений. Первое понятие о среднем значении - это среднее значение по мнооюеству (или математическое ожидание), которое определяется на основе наблюдения над множеством реализацчй случайного процесса в один и тот же момент времени. Среднее значение по множеству принято обозначать волнистой чертой над выражением, описывающим случайную функцию:

В общем случае среднее значение по множеству является функцией времени

Другое понятие о среднем значении - это среднее значение по времени, которое определяется на основе наблюдения за отдельной реализацией случайного процесса на протяжении

достаточно длительного времени Т. Среднее значение по времени обозначают прямой чертой над соответствующим выражением случайной функции и определяют по формуле:

если этот предел существует.

Среднее значение по времени в общем случае различно для отдельных реализаций множества, определяющих случайный процесс. Вообще говоря, для одного и того же случайного процесса среднее по множеству и среднее по времени значения различны. Однако существует класс стационарных случайных процессов, называемых эргодическими, для которых среднее по множеству равно среднему по времени, т. е.

Корреляционная функция эргодического стационарного случайного процесса неограниченно убывает по модулю при

Однако надо иметь в виду, что не всякий стационарный случайный процесс является эргодическим, например случайный процесс каждая реализация которого постоянна во времени (рис. 9.4), является стационарным, но не эргодическим. В этом случае средние значения, определенные по одной реализации и в результате обработки множества реализаций, не совпадают. Один и тот же случайный процесс в общем случае может быть эргодическим по отношению к одним статистическим характеристикам и неэргодическим по отношению к другим. В дальнейшем будем считать, что по отношению ко всем статистическим характеристикам условия эргодичности выполняются.

Свойство эргодичности имеет очень большое практическое значение. Для определения статистических свойств некоторых объектов, если трудно осуществить одновременное наблюдение за ними в произвольно выбранный момент времени (например, при наличии одного опытного образца), его можно заменить длительным наблюдением за одним объектом. Иными словами, отдельная реализация эргодического случайного

процесса на бесконечном промежутке времени полностью определяет весь случайный процесс с его бесконечными реализациями. Собственно говоря, этот факт лежит в основе описанного ниже метода экспериментального определения корреляционной функции стационарного случайного процесса по одной реализации.

Как видно из (9.25), корреляционная функция представляет собой среднее значение по множеству. Для эргодических случайных процессов корреляционную функцию можно определить как среднее по времени от произведения , т. е.

где - любая реализация случайного процесса; х - среднее значение по времени, определяемое по (9.28).

Если среднее значение случайного процесса равно нулю то

Основываясь на свойстве эргодичности, можно дисперсию [см. (9.19)] определить как среднее по времени от квадрата центрированного случайного процесса, т. е.

Сравнивая выражения (9.30) и (9.32) при можно установить очень важную связь между дисперсией и корреляционной функцией - дисперсия стационарного случайного процесса равна начальному значению корреляционной функции:

Из (9.33) видно, что дисперсия стационарного случайного процесса постоянна, а следовательно, постоянно и среднее квадратическое отклонение:

Статистические свойства связи двух случайных процессов можно характеризовать взаимной корреляционной функцией которая для каждой пары произвольно выбранных значений аргументов равна

Для эргодических случайных процессов вместо (9.35) можно записать

где - любые реализации стационарных случайных процессов соответственно.

Взаимная корреляционная функция характеризует взаимную статистическую связь двух случайных процессов в разные моменты времени, отстоящие друг от друга на промежуток времени . Значение характеризует эту связь в один и тот же момент времени.

Из (9.36) следует, что

Если случайные процессы статистически не связаны друг с другом и имеют равные нулю средние значения, то их взаимная корреляционная функция для всех равна нулю. Однако обратный вывод о том, что если взаимная корреляционная функция равна нулю, то процессы независимы, можно сделать лишь в отдельных случаях (в частности, для процессов с нормальным законом распределения), общей же силы обратный закон не имеет.

Заметим, что корреляционные функции могут вычисляться и для неслучайных (регулярных) функций времени. Однако когда говорят о корреляционной функции регулярной функции то под этим понимают просто результат формального

применения к регулярной функции операции, выражаемой интегралом:

Приведем некоторые основные свойства корреляционных функций

1. Начальное значение корреляционной функции [см. (9.33)] равно дисперсии случайного процесса:

2. Значение корреляционной функции при любом не может превышать ее начального значения, т. е.

Чтобы доказать это, рассмотрим очевидное неравенство из которого следует

Находим средние значения по времени от обеих частей последнего неравенства:

Таким образом, получим неравенство

3. Корреляционная функция есть четная функция , т. е.

Это вытекает из самого определения корреляционной функции. Действительно,

поэтому на графике корреляционная функция всегда симметрична относительно оси ординат.

4. Корреляционная функция суммы случайных процессов определяется выражением

где - взаимные корреляционные функции

Действительно,

5. Корреляционная функция постоянной величины равна квадрату этой постоянной величины (рис. 9.5, а), что вытекает из самого определения корреляционной функции:

6. Корреляционная функция периодической функции, например представляет собой косинусоиду (рис. 9-5, 5), т. е.

имеющую ту же частоту что и и не зависящую от сдвига фазы

Чтобы доказать это, заметим, что при нахождении корреляционных функций периодических функций можно использовать следующее равенство:

где - период функции

Последнее равенство получается после замены интеграла с пределами от -Т до Т при Т со суммой отдельных интегралов с пределами от до , где и использования периодичности подынтегральных функций.

Тогда, учитывая сказанное выше, получим т.

7. Корреляционная функция временной функции, разлагаемой в ряд Фурье:

Рис. 9.5 (см. скан)

имеет на основании изложенного выше следующий вид:

8. Типичная корреляционная функция стационарного случайного процесса имеет вид, представленный на рис. 9.6. Ее можно аппроксимировать следующим аналитическим выражением:

С ростом связь между ослабевает и корреляционная функция становится меньше. На рис. 9.5, б, в приведены, например, две корреляционные функции и две соответствующие им реализации случайного процесса. Легко заметить, что корреляционная функция, соответствующая случайному процессу с более тонкой структурой, убывает быстрее Другими словами, чем более высокие частоты присутствуют в случайном процессе, тем быстрее убывает соответствующая ему корреляционная функция.

Иногда встречаются корреляционные функции, которые могут быть аппроксимированы аналитическим выражением

где - дисперсия; - параметр затухания; - резонансная частота.

Корреляционные функции подобного вида имеют, например, случайные процессы типа турбулентности атмосферы, фединга радиолокационного сигнала, углового мерцания цели и т. п. Выражения (9.45) и (9.46) часто используются для аппроксимации корреляционных функций, полученных в результате обработки экспериментальных данных.

9. Корреляционная функция Стационарного случайного процесса, на которой наложена периодическая составляющая с частотой также будет содержать периодическую составляющую той же частоты.

Это обстоятельство можно использовать как один из способов обнаружения «скрытой периодичности» в случайных процессах, которая может не обнаруживаться при первом взгляде на отдельные записи реализации случайного процесса.

Примерный вид корреляционной функции процесса содержащего в своем составе кроме случайной также и периодическую составляющую, показан на рис. 9.7, где обозначена корреляционная функция, соответствующая случайной составляющей. Чтобы выявить скрытую периодическую составляющую (такая задача возникает, например, при выделении малого полезного сигнала на фоне большой помехи), лучше всего определить корреляционную функцию для больших значений когда случайный сигнал уже сравнительно слабо коррелирован и случайная составляющая слабо сказывается на виде корреляционной функции.



© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний