По какой шкале измеряют. Теория измерений

Главная / Михаил Булгаков

В основе любого наблюдения и анализа лежат измерения.
Измерение — это алгоритмическая операция, которая данному наблюдаемому состоянию объекта ставит в соответствие определенное обозначение: число, помер или символ. Обозначим через х i . i=1,…, m наблюдаемое состояние (свойство) объекта, а через у i , i = 1,..,m — обозначение для этого свойства. Чем теснее соответствие между состояниями и их обозначениями, тем больше информации можно извлечь в результате обработки данных. Менее очевидно, что степень этого соответствия зависит не только от организации измерений (т. е. от экспериментатора), но и от природы исследуемого явления, и что сама степень соответствия в свою очередь определяет допустимые (и недопустимые) способы обработки данных!
Множество обозначений, используемых для регистрации состояний наблюдаемого объекта, называется измерительное шкалой.
Измерительные шкалы в зависимости от допустимых на них операций различаются по их силе. Самые слабые — номинальные шкалы, а самые сильные — абсолютные.
Выделяют три основных атрибута измерительных шкал, наличие или отсутствие которых определяет принадлежность шкалы к той или иной категории:
1. упорядоченность данных означает, что один пункт шкалы, соответствующий измеряемому свойству, больше, меньше или равен другому пункту;
2. интервальность пунктов шкалы означает, что интервал между любой парой чисел, соответствующих измеряемым свойствам, больше, меньше или равен интервалу между другой парой чисел;
3. нулевая точка (или точка отсчета) означает, что набор чисел, соответствующих измеряемым свойствам, имеет точку отсчета, обозначаемую за ноль, что соответствует полному отсутствию измеряемого свойства.
Кроме того, выделяют следующие группы:
o неметрические или качественные шкалы, в которых отсутствуют единицы измерений (номинальная и порядковая шкалы);
o количественные или метрические (шкала интервалов, шкала отношений и абсолютная шкала).

1. Шкала наименований
Шкала наименований (номинальная или классификационная) представляет собой конечный набор обозначений для никак не связанных между собой состояний (свойств) объекта (рис. 1).
Здесь отсутствуют все главные атрибуты измерительных шкал, а именно упорядоченность, интервальность, нулевая точка.

Рис. 1. Номинальная шкала.

Измерение будет состоять в том, чтобы, проведя эксперимент над объектом, определить принадлежность результата к тому или иному состоянию и записать это с помощью символа (набора символов), обозначающего данное состояние. Это самая простая шкала из тех, что могут рассматриваться как измерительные, хотя фактически эта шкала не ассоциируется с измере-нием и не связана с понятием «величина». Она используется только с целью отличить один объект от другого.
Если классифицируются дискретные по своей природе объекты и явления, то естественнее всего использовать шкалу наименований.
Примеры:
Для обозначения в номинальной шкале могут быть использованы:
o слова естественного языка (например, географические названия, собственные имена людей и т. д.);
o произвольные символы (гербы и флаги государств, эмблемы родов войск, всевозможные значки и т. д.);
o номера (регистрационные номера автомобилей, официальных документов, номера на майках спортсменов);
o их различные комбинации (например, почтовые адреса, экслибрисы личных библиотек, печати и пр.).
Однако необходимость классификации возникает и в тех случаях, когда классифицируемые состояния образуют непрерывное множество (или континуум). Задача сводится к предыдущей, если все множество разбить на конечное число подмножеств, искусственно образуя тем самым классы эквивалентности; тогда принадлежность состояния к какому-либо классу снова можно регистрировать в шкале наименований. Однако условность введенных классов (не их шкальных обозначений, а самих классов) рано или поздно проявится на практике.
Примеры:
1. Например, возникают трудности точного перевода с одного языка на другой при описании цветовых оттенков: в английском языке голубой, лазоревый и синий цвета не различаются.
2. Названия болезней также образуют шкалу наименований. Психиатр, ставя больному диагноз «шизофрения», «паранойя», «маниакальная депрессия» или «психоневроз», ис-пользует номинальную шкалу; и все же иногда врачи не зря вспоминают, что «нужно лечить больного, а не болезнь»: название болезни лишь обозначает класс, внутри которого на самом деле имеются различия, так как эквивалентность внутри класса носит условный характер.
Необходимо понимать, что обозначения классов - это только символы, даже если для этого использованы номера. С этими номерами нельзя обращаться как с числами - это только цифры.
Пример. Если у одного спортсмена на спине номер 1, а другого - 2, то никаких других выводов, кроме того, что это разные участники соревнований, делать нельзя: например, нельзя сказать, что «второй в два раза лучше».
При обработке экспериментальных данных, зафиксированных в номинальной шкале, непосредственно с самими данными можно выполнять только операцию проверки их совпадения или несовпадения.

2. Порядковые шкалы
Следующей по силе за номинальной шкалой идет порядковая, шкала (ординальная, ранговая). Она применяется в тех случаях, когда наблюдаемый (измеряемый) признак состояния имеет природу, не только позволяющую отождествить состояния с одним из классов эквивалентности, но и дающую возможность в каком-то отношении сравнивать разные классы.
Порядковая шкала не имеет определенной количественной меры. При этом присутствует упорядоченность, но отсутствуют атрибуты интервальности и нулевой точки.
Единственными типами отношений между неколичественными значениями шкалы могут быть:
а) равенство одинаковых значений порядковых переменных величин, соответствующих объектам одной категории,
б) неравенство разных значений переменных величин, соответствующих объектам одной категории;
в) отношения «больше» или «меньше» между разными значениями переменных величин, соответствующих объектам одной категории.
Измерение в шкале порядка может применяться, например, в следующих ситуациях:
o когда необходимо упорядочить объекты во времени или пространстве. Это ситуация, когда интересуются не сравнением степени выраженности какого-либо их качества, а лишь взаимным пространственным или временным расположением этих объектов;
o когда нужно упорядочить объекты в соответствии с каким-либо качеством, но при этом не требуется производить его точное измерение;
o когда какое-либо качество в принципе измеримо, но в настоящий момент не может быть измерено по причинам практического или теоретического характера.

2.1. Типовые порядковые шкалы
Обозначив такие классы символами и установив между этими символами отношения порядка, мы получим шкалу простого порядка: А → В → C → D → E → F.

Примеры:
Нумерация очередности, неимение знания, призовые места в конкурсе, социально-экономический статус («низший класс», «средний класс», «высший класс»).
Разновидностью шкалы простого порядка являются оппозиционные шкалы. Они образуются из пар антонимов (например, сильный-слабый), стоящих на разных концах шкалы, где за середину берется позиция, соответствующая среднему значению наблюдаемой сущности. Как пра-вило, остальные позиции никак не шкалируются.
Иногда оказывается, что не каждую пару классов можно упорядочить по предпочтению: неко-торые пары считаются равными - одновременно А ≥ В и В≤ А, т. е. А = В.
Шкала, соответствующая такому случаю, называется шкалой слабого порядка.
Иная ситуация возникает, когда имеются пары классов, несравнимые между собой, т. е. ни А≥ В, ни В ≤ А. В таком случае говорят о шкале частичного порядка. Шкалы частичного порядка часто возникают в социологических исследованиях субъективных предпочтений. Например, при изучении покупательского спроса субъект часто не в состоянии оценить, какой именно из двух разнородных товаров ему больше нравится (например, клетчатые носки или фруктовые консервы, велосипед или магнитофон и т. д.); затрудняется человек и упорядочить по предпочтению любимые занятия (чтение литературы, плавание, вкусная еда, слушание музыки).

Характерной особенностью порядковых шкал является то, что отношение порядка ничего не говорит о дистанции между сравниваемыми классами. Поэтому порядковые экспериментальные данные, даже если они изображены цифрами, нельзя рассматривать как числа. Например, нельзя вычислять выборочное среднее порядковых измерений.
Пример. Рассматривается испытание умственных способностей, при котором измеряется время, затрачиваемое испытуемым на решение тестовой задачи. В таких экспериментах время хотя и измеряется в числовой шкале, но как мера интеллекта принадлежит порядковой шкале.
Порядковые шкалы определяются только для заданного набора сравниваемых объектов, у этих шкал нет общепринятого, а тем более абсолютного стандарта.
Примеры:
1. При определенных условиях правомерно выражение «первый в мире, второй в Европе» — просто чемпион мира занял второе место на европейских соревнованиях.
2. Само расположение шкал является примером порядковой шкалы.

2.2. Модифицированные порядковые шкалы
Опыт работы с сильными числовыми шкалами и желание уменьшить относительность порядковых шкал, придать им хотя бы внешнюю независимость от измеряемых величин побуждают исследователей к различным модификациям, придающим порядковым шкалам некоторое (чаще всего кажущееся) усиление. Кроме того, многие величины, измеряемые в порядковых (принципиально дискретных) шкалах, имеют действительный или мыслимый непрерывный характер, что порождает попытки модификации (усиления) таких шкал. При этом иногда с полученными данными начинают обращаться как с числами, что приводит к ошибкам, неправильным выводам и решениям.
Примеры:
1. В 1811 г. немецкий минералог Ф. Моос предложил установить стандартную шкалу твердости, постулируя только десять ее градаций. 3а эталоны приняты следующие минералы с возрастающей твердостью: 1 - тальк; 2 - гипс; 3 - кальций, 4 - флюорит, 5 - апа-тит, б - ортоклаз, 7 - кварц, 8 - топаз, 9 - корунд, 10 - алмаз. Из двух минералов тверже тот, который оставляет на другом царапины или вмятины при достаточно силь-ном соприкосновении. Однако номера градаций алмаза и апатита не дают основания утверждать, что алмаз в два раза тверже апатита.
2. В 1806 г. английский гидрограф и картограф адмирал Ф. Бофорт предложил балльную шкалу силы ветра, определяя ее по характеру волнения моря: 0 - штиль (безветрие), 4 - умеренный ветер, 6 - сильный ветер, 10 шторм (буря), 12 - ураган.
3. В 1935 г. американский сейсмолог Ч. Рихтер предложил 12-балльную шкалу для оценки энергии сейсмических волн в зависимости от последствий прохождения их по данной территории. Затем он развил метод оценки силы землетрясения в эпицентре по его магнитуде (условная величина, характеризующая общую энергию упругих колебаний, вызванных землетрясением или взрывами) на поверхности земли и глубине очага.

3. Шкалы интервалов
Следующая по силе шкала — шкала интервалов (интервальная шкала), которая в отличие от предыдущих, качественных, шкал уже является количественной шкалой. Эта шкала применяется, когда упорядочивание значений измерений можно выполнить настолько точно, что известны интервалы между любыми двумя из них (рис. 2).

Рис. 2. Шкалы интервалов.

В шкале интервалов присутствуют упорядоченность и интервальность, но нет нулевой точки. Шкалы могут иметь произвольные начала отсчета, а связь между показаниями в таких шкалах является линейной:
у = ах + b,
где а > 0; — ∞ Для этой шкалы справедливо следующее свойство:

Примеры:
1. Температура, время, высота местности - величины, которые по физической природе либо не имеют абсолютного нуля, либо допускают свободу выбора в установлении начала отсчета.
2. Часто можно услышать фразу: «Высота … над уровнем моря». Какого моря? Ведь уровень морей и океанов разный, да и меняется со временем. В России высоты точек земной поверхности отсчитывают от среднемноголетнего Уровня Балтийского моря в районе Кронштадта.
В этой шкале только интервалы имеют смысл настоящих чисел и только над интервалами следует выполнять арифметические операции. Если произвести арифметические операции над самими отсчетами по шкале, забыв об их относительности, то имеется риск получить бессмыс-ленные результаты.
Пример. Нельзя сказать, что температура воды увеличилась в два раза при ее нагреве от 9 до 18° по шкале Цельсия, поскольку для того, кто привык пользоваться шкалой Фаренгейта, это будет звучать весьма странно, так как в этой шкале температура воды в том же опыте изменится от 37 до 42°.

4. Шкалы разностей
Частным случаем интервальных шкал являются шкалы разностей: циклические (периодические) шкалы, шкалы, инвариантные к сдвигу. В такой шкале значение не изменяется при любом числе сдвигов.
у = х + nb,
n = 0, 1, 2,…
Постоянная b называется периодом шкалы.
Примеры. В таких шкалах измеряется направление из одной точки (шкала компаса, роза ветров и т. д.), время суток (циферблат часов), фаза колебания (в градусах или радианах).
Однако соглашение о хотя и произвольном, но едином для нас начале отсчета шкалы позволяет использовать показания в этой шкале как числа, применять к нему арифметические действия (до тех пор пока кто-нибудь не забудет об условности нуля, например при переходе на летнее время или обратно).

5. Шкалы отношений
Следующей по силе шкалой является шкала отношений (подобий). Измерения в такой шкале являются «полноправными» числами, с ними можно выполнять любые арифметические действия, здесь присутствуют все атрибуты измерительных шкал: упорядоченность, интервальность, нулевая точка. Величины, измеряемые в шкале отношений, имеют естественный, абсолютный нуль, хотя остается свобода в выборе единиц (рис. 3):
у = ах,
где а ≠ 0

Рис. 3. Шкалы отношений

Примеры: Вес, длина, электрическое сопротивление, деньги - величина, природа которых соответствует шкале отношений. Из значений шкалы отношений видно, во сколько раз свойство одного объекта превосходит такое же свойство другого объекта.

6. Абсолютная шкала
Абсолютная (метрическая) шкала имеет и абсолютный нуль (b = 0), и абсолютную единицу (а = 1). В качестве шкальных значений при измерении количества объектов используются натуральные числа, когда объекты представлены целыми единицами, и действительные числа, если кроме целых единиц присутствуют и части объектов.
Именно такими качествами обладает числовая ось, которую естественно называть абсолютной шкалой.
Важной особенностью абсолютной шкалы по сравнению со всеми остальными является отвлеченность (безразмерность) и абсолютность ее единицы. Указанная особенность позволяет производить над показаниями абсолютной шкалы такие операции, которые недопустимы для показаний других шкал, - употреблять эти показания в качестве показателя степени и аргумента логарифма.
Примеры:
1. Абсолютные шкалы применяются, например, для измерения количества объектов, предметов, событий, решений и т. п.
2. Примером абсолютной шкалы также является шкала температур по Кельвину.
Числовая ось используется как измерительная шкала в явной форме при счете предметов, а как вспомогательное средство присутствует во всех остальных шкалах.

7. Шкалирование
Шкалирование представляет собой отображение какого-либо свойства объекта или явления в числовом множестве.
Можно сказать, что чем сильнее шкала, в которой производятся измерения, тем больше сведений об изучаемом объекте, явлении, процессе дают измерения. Поэтому так естественно стремление каждого исследователя провести измерения в возможно более сильной шкале. Однако важно иметь в виду, что выбор шкалы измерения должен ориентироваться на объективные отношения, которым подчинена наблюдаемая величина, и лучше всего производить измерения в той шкале, которая максимально согласована с этими отношениями. Можно измерять и в шкале более слабой, чем согласованная (это приведет к потере части полезной информации), но применять более сильную шкалу опасно: полученные данные на самом деле не будут иметь той силы, на которую ориентируется их обработка.
Иногда же исследователи усиливают шкалы; типичный случай - «оцифровка» качественных шкал: классам в номинальной или порядковой шкале присваиваются номера, с которыми дальше «работают» как с числами. Если в этой обработке не выходят за пределы допустимых преобразований, то «оцифровка» - это просто перекодировка в более удобную (например, для ЭВМ) форму. Однако применение других операций сопряжено с заблуждениями, ошибками, так как свойства, навязываемые подобным образом, на самом деле не имеют ме-ста.
По мере развития соответствующей области знания тип шкалы может меняться.
Пример. Температура сначала измерялась по порядковой шкале (холоднее - теплее), затем — по интервальным шкалам (Цельсия, Фаренгейта, Реомюра), а после открытия абсолютного нуля температур — по абсолютной шкале (Кельвина).

Резюме
1. В основе любого наблюдения и анализа лежат измерения, которые представляют собой алгоритмические операции: данному наблюдаемому состоянию объекта ставится в соответствие определенное обозначение: число, номер или символ. Множество таких обозначений, используемых для регистрации состояний наблюдаемого объекта, называется измерительной шкалой.
2. В зависимости от допустимых операций на измерительных шкалах их различают по их силе.
3. Самой слабой шкалой является номинальная шкала, представляющая собой конечный набор обозначений для никак не связанных между собой состояний (свойств) объекта.
4. Следующей по силе считается порядковая шкала, дающая возможность в каком-то отноше-нии сравнивать разные классы наблюдаемых состояний объекта, выстраивая их в определенном порядке. Различают шкалы простого, слабого и частичного порядка. Численные значения порядковых шкал не должны вводить в заблуждение относительно допустимости математических операций над ними.
5. Еще более сильная шкала - шкала интервалов, в которой кроме упорядочивания обозначений, можно оценить интервал между ними и выполнять математические действия над этими интервалами. Разновидностью шкалы интервалов является шкала разностей или циклическая.
6. Следующей по силе идет шкала отношений. Измерения в такой шкале являются «полноправными» числами, с ними можно выполнять любые арифметические действия (правда, при условии однотипности единиц измерения).
7. И, наконец, самая сильная шкала - абсолютная, с которой можно выполнять любые математические действия без каких-либо ограничений.
8. Отображение какого-либо свойства объекта или явления в числовом множестве называется шкалированием. Чем сильнее шкала, в которой производятся измерения, тем больше сведений об изучаемом объекте, явлении, процессе дают измерения. Однако применять более сильную шкалу опасно: полученные данные на самом деле не будут иметь той силы, на которую ориентируется их обработка. Лучше всего производить измерения в той шкале, которая максимально согласована с объективными отношениями, которым подчинена наблюдаемая величина. Можно измерять и в шкале, более слабой, чем согласованная, но это приведет к потере части полезной информации.

В практической деятельности необходимо проводить измерения различных величин, характеризующих свойства тел, веществ, явлений и процессов. Как было показано в предыдущих разделах, некоторые свойства проявляются только качественно, другие - количественно. Разнообразные проявления (количественные или качественные) любого свойства образуют множества, отображения элементов которых на упорядоченное множество чисел или в более общем случае условных знаков образуют шкалы измерения этих свойств. Шкала измерений количественного свойства является шкалой физических величин. Шкала физической величины - это упорядоченная последовательность значений физических величин, принятая по соглашению на основании результатов точных измерений. Термины и определения теории шкал измерений изложены в документе МИ 2365-96.

В соответствии с логической структурой проявления свойств различают пять основных типов шкал измерений.

1. Шкала наименований (шкала классификации) . Такие шкалы используются для классификации эмпирических объектов, свойства которых проявляются только в отношении эквивалентности. Эти свойства нельзя считать физическими величинами, поэтому шкалы такого вида не являются шкалами физических величин. Это самый простой тип шкал, основанный на приписывании качественным свойствам объектов чисел, играющих роль имен.

В шкалах наименований, в которых отнесение отражаемого свойства к тому или иному классу эквивалентности осуществляется с использованием органов чувств человека, наиболее адекватен результат, выбранный большинством экспертов. При этом большое значение имеет правильный выбор классов эквивалентной шкалы - они должны надежно различаться наблюдателями, экспертами, оценивающими данное свойство. Нумерация объектов по шкале наименований осуществляется по принципу: "не приписывай одну и ту же цифру разным объектам". Числа, приписанные объектам, могут быть использованы для определения вероятности или частоты появления данного объекта, но их нельзя использовать для суммирования и других математических операций.

Поскольку данные шкалы характеризуются только отношениями эквивалентности, то в них отсутствует понятия нуля, "больше" или "меньше" и единицы измерения. Примером шкал наименований являются широко распространенные атласы цветов, предназначенные для идентификации цвета.

2. Шкала порядка (шкала рангов) . Если свойство данного эмпирического объекта проявляет себя в отношении эквивалентности и порядка по возрастанию или убыванию количественного проявления свойства, то для него может быть построена шкала порядка. Она является монотонно возрастающей или убывающей и позволяет установить отношение больше/меньше между величинами, характеризующими указанное свойство. В шкалах порядка существует или не существует нуль, но принципиально нельзя ввести единицы измерения, так как для них не установлено отношение пропорциональности и соответственно нет возможности судить во сколько раз больше или меньше конкретные проявления свойства.

В случаях, когда уровень познания явления не позволяет точно установить отношения, существующие между величинами данной характеристики, либо применение шкалы удобно и достаточно для практики, используют условные (эмпирические) шкалы порядка. Условная шкала - это шкала физических величин, исходные значения которой выражены в условных единицах. Например, шкала вязкости Энглера, 12-бальная шкала Бофорта для силы морского ветра.

Широкое распространение получили шкалы порядка с нанесенными на них реперными точками. К таким шкалам, например, относится шкала Мооса для определения твердости минералов, которая содержит 10 опорных (реперных) минералов с различными условными числами твердости: тальк - 1; гипс - 2; кальций - 3; флюорит - 4; апатит - 5; ортоклаз - 6; кварц - 7; топаз - 8; корунд - 9; алмаз - 10. Отнесение минерала к той или иной градации твердости осуществляется на основании эксперимента, который состоит в том, что испытуемый материал царапается опорным. Если после царапанья испытуемого минерала кварцем (7) на нем остается след, а после ортоклаза (6) - не остается, то твердость испытуемого материала составляет более 6, но менее 7. Более точного ответа в этом случае дать невозможно.

В условных шкалах одинаковым интервалам между размерами данной величины не соответствуют одинаковые размерности чисел, отображающих размеры. С помощью этих чисел можно найти вероятности, моды, медианы, квантили, однако их нельзя использовать для суммирования, умножения и других математических операций.

Определение значения величин при помощи шкал порядка нельзя считать измерением, так как на этих шкалах не могут быть введены единицы измерения. Операцию по приписыванию числа требуемой величине следует считать оцениванием. Оценивание по шкалам порядка является неоднозначным и весьма условным, о чем свидетельствует рассмотренный пример.

3. Шкала интервалов (шкала разностей ) . Эти шкалы являются дальнейшим развитием шкал порядка и применяются для объектов, свойства которых удовлетворяют отношениям эквивалентности, порядка и аддитивности. Шкала интервалов состоит из одинаковых интервалов, имеет единицу измерения и произвольно выбранное начало - нулевую точку. К таким шкалам относится летоисчисление по различным календарям, в которых за начало отсчета принято либо сотворение мира, либо рождество Христово и т.д. Температурные шкалы Цельсия, Фаренгейта и Реомюра также являются шкалами интервалов.

На шкале интервалов определены действия сложения и вычитания интервалов. Действительно, по шкале времени интервалы можно суммировать или вычитать и сравнивать, во сколько раз один интервал больше другого, но складывать даты каких-либо событий просто бессмысленно.

Шкала интервалов величины Q описывается уравнением

Q = Q 0 + q[Q] ,

где q - числовое значение величины; Q 0 - начало отсчета шкалы; [Q] - единица рассматриваемой величины. Такая шкала полностью определяется заданием начала отсчета Q 0 шкалы и единицы данной величины [Q] .

Задать шкалу практически можно двумя путями. При первом из них выбираются два значения Q 0 и Q 1 величины, которые относительно просто реализованы физически. Эти значения называются опорными точками, или основными реперами, а интервал (Q 1 - Q 0 ) - основным интервалом. Точка Q 0 принимается за начало отсчета, а величина

(Q 1 -Q 0)/n = [Q]

за единицу Q . При этом n выбирается таким, чтобы [Q] было целой величиной.

Перевод одной шкалы интервалов Q = Q 01 + q 1 [Q] 1 в другую

Q = Q 02 + q 2 [Q] 2 осуществляется по формуле

Пример 2.1 . Шкала Фаренгейта является шкалой интервалов. На ней Q 0 - температура смеси льда, поваренной соли и нашатыря, Q 1 - температура человеческого тела. Единица измерения - градус Фаренгейта:

Температура таяния смеси льда, соли и нашатыря оказалась равной 32°F, а температура кипения воды - 212 °F.

На шкале Цельсия Q 0 - температура таяния льда, Q 1 - температура кипения воды. Градус Цельсия = (Q 1 - Q 2) / 100 = 1°С .

Требуется получить формулу для перехода от одной шкалы к другой.

Формула для перехода определяется в соответствии с выражением (2.2). Значение разности температур по шкале Фаренгейта между точкой кипения воды и точкой таяния льда составляет 212 °F-32 °F = 180 °F. По шкале Цельсия этот интервал температур равен 100 °С. Следовательно, 100 °С = 180 °F и отношение размеров единиц

Числовое значение интервала между началами отсчета по рассматриваемым шкалам, измеренного в градусах Фаренгейта ([Q],=°F), равно 32. Переход от температуры по шкале Фаренгейта к температуре по шкале Цельсия производится по формуле

При втором пути задания шкалы единица воспроизводится непосредственно как интервал, его некоторая доля или некоторое число интервалов размеров данной величины, а начало отсчета выбирают каждый раз по-разному в зависимости от конкретных условий изучаемого явления. Пример такого подхода - шкала времени, в которой 1 с = 9 192 631 770 периодов излучения, соответствующих переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133. За начало отсчета принимается начало изучаемого явления.

4. Шкала отношений . Эти шкалы описывают свойства эмпирических объектов, которые удовлетворяют отношениям эквивалентности, порядка и аддитивности (шкалы второго рода - аддитивные), а в ряде случаев и пропорциональности (шкалы первого рода - пропорциональные). Их примерами являются шкала массы (второго рода), термодинамической температуры (первого рода).

В шкалах отношений существует однозначный естественный критерий нулевого количественного проявления свойства и единица измерений, установленная по соглашению. С формальной точки зрения шкала отношений является шкалой интервалов с естественным началом отсчета. К значениям, полученным по этой шкале, применимы все арифметические действия, что имеет важное значение при измерении физических величин.

Шкалы отношений - самые совершенные. Они описываются уравнением

Q = q[Q],

где Q - физическая величина, для которой строится шкала, [Q] - ее единица измерения, q - числовое значение физических величин. Переход от одной шкалы отношений к другой происходит в соответствии с уравнением

q 2 = q 1 / .

5. Абсолютные шкалы . Некоторые авторы используют понятие абсолютных шкал, под которыми понимают шкалы, обладающие всеми признаками шкал отношений, но дополнительно имеющие естественное однозначное определение единицы измерения и не зависящие от принятой системы единиц измерения. Такие шкалы соответствуют относительным величинам: коэффициентам усиления, ослабления и др. Для образования многих производных единиц в системе СИ используются безразмерные и счетные единицы абсолютных шкал.

Отметим, что шкалы наименований и порядка называют неметрическими (концептуальными), а шкалы интервалов и отношений - метрическими (материальными). Абсолютные и метрические шкалы относятся к разряду линейных. Практическая реализация шкал измерений осуществляется путем стандартизации как самих шкал и единиц измерений, так и, в необходимых случаях, способов и условий их однозначного воспроизведения.

Все виды шкал измерений обычно разделяются на следующие типы: шкалы наименований; шкалы порядка; шкалы интервалов (разностей); шкалы отношений; абсолютные шкалы; условные шкалы. Шкалы интервалов и отношений относят к метрическим шкалам, сюда же относят абсолютные шкалы как подтип шкал отношений (рис. 4.2).

Шкалы наименований характеризуются оценкой (отношением) эквивалентности качественных проявлений свойства или отличиями проявления этого свойства.

Множество проявлений качественного параметра свойства может быть упорядочено по признаку близости (сходства) качественных различий и (или) по признаку количественных различий в некоторых показателях этих свойств. Например, шкалы измерений цвета опираются на трехкоординатную модель цветового пространства, упорядоченную

Рис. 4.2.

по цветовым различиям (качественный параметр) и яркости (количественный параметр).

Отличительными признаками шкал наименований являются: неприменимость в них понятий нуля, единицы измерений, размерности, в них отсутствует отношения сопоставления тина "больше – меньше".

В них допустимы только изоморфные и гомоморфные преобразования. В шкалах не допускается изменение спецификаций, которые описывают конкретные шкалы. Чаще всего наименования устанавливаются рядом "классов эквивалентностей". Примерами этого могут служить шкалы измерений цвета, геодезические шкалы для обозначения местоположения на Земле в установленных системах координат; шкалы запахов; шкалы групп крови человека с учетом резус-фактора и пр.

Например, шкала цветов может быть представлена в виде атласов цветов. При этом процесс измерений заключается в достижении (например, при визуальной оценке) эквивалентности испытуемого образца с одним из этатонных образцов, входящих в атлас цветов.

Шкалы порядка описывают свойства величин, упорядоченные по возрастанию или убыванию оцениваемого свойства.

Отличительными особенностями шкал порядка является отсутствие единицы измерений и размерности; необязательность наличия нуля; допустимость любых монотонных преобразований; недопустимость изменения спецификаций, описывающих конкретные шкалы.

Примерами шкал порядка могут быть шкалы:

  • твердости материалов: металлов (международные шкалы Бринелля, Роквела, Виккерса, Шора), минералов, резины, пластмасс и др.;
  • интенсивности и балльности землетрясений;
  • силы ветра и состояния поверхности моря (шкала Бофорта);
  • белизны различных объектов (бумаги, древесины, муки и пр.);
  • чисел светочувствительности фотоматериалов;
  • громкостей и уровней громкости;
  • интенсивности вкуса и запаха воды;
  • октановых и цетановых чисел топлива для двигателей;
  • чисел падения для зерна и муки;
  • оценки событий на атомных электростанциях;
  • кислотных, йодных, бромных, перманганатных, медных, хлорных, перекисных и др. чисел для различных материалов и продуктов.

Условные шкалы – это шкалы величин, в которых не определена единица измерения. К ним относятся шкалы наименований и порядка.

Подобное расширение применения шкал измерений выходит за рамки обычного понимания метрологии в смысле ориентированности на измерение физических величин.

Остановимся на содержании ряда важных условных шкал, в частности шкал твердости (шкал чисел твердости). Твердость оценивается по условным шкалам Бринелля (НВ), Виккерса (HV), Роквелла (HR) и др.

По условной шкале Бринелля твердость (число твердости) измеряют, вдавливая стальной закаленный шарик (диаметром 10 мм, 5 мм, 2,5 мм) в испытуемый образец, с помощью отношения усилия (нагрузки) F на шарик к площади S отпечатка, остающегося на образце,

где О – диаметр шарика, мм; d – диаметр отпечатка, мм; F – нагрузка на шарик, Н или кгс (1 кгс ≈ 9,8 Н).

По условной шкале Виккерса число твердости определяют, вдавливая в испытуемый образец алмазный наконечник, имеющий форму четырехгранной пирамиды (с углом при вершине 136°), с приложением усилия Fot 49 Н (5 кгс) до 980 Н (100 кгс) в течение времени выдержки, например, 10 с, 15 с, 20 с.

После приложения усилия с помощью микроскопа измеряется длина диагоналей на отпечатке d 1, d 2. Число твердости по Виккерсу определяется по формуле

Условной единицей, как в шкалах твердости по Бри- неллю и Виккерсу, является число твердости по Роквеллу. При измерении твердости по Роквеллу стандартный наконечник (стальной шарик или алмазный конус) вдавливается с помощью прессов Роквелла в испытуемый образец под действием двух усилий: предварительного F0 и общего F, причем F = F 0 + F 1.

Пресс Роквелла имеет три шкалы (А , В, С). Измерение твердости по шкалам А и С производится путем вдавливания в образец алмазного наконечника (конус с углом 120°). При измерении по шкале Л усилие F0 = 98 Н (10 кгс), F 1 = = 490 Н (50 кгс), а общее усилие F = 588 Н.

При измерении по шкале С усилие F 0 = 98 Н, F 1 = 1372 Н (140 кгс), F = 1470 Н (150 кгс).

Для сравнительно мягких материалов используется шкала В. При этом используется стальной шарик диаметром 1,588 мм под действием нагрузок F0 = 98 H, F1 = 882 H (90 кгс), F = 980 Н (100 кгс).

Твердость по Роквеллу обозначают в зависимости от применяемой шкалы HRA, HRB, HRC с указанием числа твердости, которое определяется в случае шкал A и С по формуле

HR = 100 – (h h 0) / 0,002, (4.6)

а в случае шкалы В

HRB = 130 – (h h 0) / 0,002 (4.7)

где h 0 – глубина внедрения наконечника в образец под действием предварительного усилия, h – глубина внедрения наконечника в образец под действием общего усилия, измеренного после снятия нагрузки F 1, с оставлением предварительной нагрузки.

В России имеется специальный эталон воспроизведения твердости по шкале HRC и HRC Э (шкала Супер-Роквелла). Для пересчета шкал HRC и HRC Э существуют официальные таблицы.

В настоящее время требования к твердости рекомендуется указывать числами по шкале HRC Э.

В ряде случаев применяется число твердости по Моосу, определяемое по 10-балльной шкале, применяемой для изучения твердости минералов. При этом более твердому минералу приписывается более высокий балл.

Так, если тальк имеет число твердости (балл), равный единице, гипс – двум, то кварцу соответствует число твердости, равное семи, топазу – восьми, корунду – девяти, алмазу – 10.

Шкала Мооса, "старейшая" из шкал твердости, была предложена в 1822 г.

Позже для минералов стала применяться 12-балльная шкала Брейтгаупта. Балл 1 по-прежнему приписывается тальку, но алмаз имеет 12-й балл. Таким образом, между этими шкалами нет принципиального различия.

Для определения твердости растягивающихся тел применяется число твердости по Шору, связанное с числом твердости по Бри неллю.

При этом НВ соответствует 7 Н Ш, где Н Ш – число делений шкалы Шора, которое находится по высоте, на которую отскакивает боек при испытаниях.

Для определения твердости резины применяется шкала Шора и международный стандарт, по которому твердость резины рассчитывается по глубине погружения индикатора в испытуемый образец.

Шкалы разностей (интервалов ) отличаются от шкал порядка тем, что для описываемых ими свойств имеют смысл не только соотношения эквивалентности и порядка, но и равенства и суммирования интервалов (разностей) между различными количественными проявлениями свойств. Например, шкала интервалов времени, в которой интервалы времени (период работы, учебы) можно складывать и вычитать, но складывать даты каких-либо событий бессмысленно. Другим примером может служить шкала длин (расстояний), оцениваемая путем совмещения нуля линейки с одной точкой через пространственный интервал до другой точки, у которой и выполняют отсчет. К шкалам этого типа относятся практические шкалы температур с условным нулем.

Шкалы разностей имеют условные (принятые по соглашению) единицы измерений и условные нули, основанные на каких-либо реперах. В этих шкалах допустимы линейные преобразования, в них применимы процедуры математического ожидания, стандартного отклонения и пр.

К шкалам разностей относят:

  • 1) Международную шкалу равномерного атомного времени ТА, в которой размер единицы соответствует определению секунды в СИ;
  • 2) шкалу всемирного времени UT0, длительность секунды в которой равна средней солнечной секунде;
  • 3) шкалу всемирного времени UT1, отличающуюся от UT0 поправкой на перемещение полюсов Земли;
  • 4) шкалу всемирного времени UT2, отличающуюся от UT1 поправкой на сезонную неравномерность вращения Земли;
  • 5) шкалу координированного времени UTC, в которой размер секунды такой же, как в ТА, но начало счета может меняться ровно на 1 с, чтобы расхождения между UTC и UT2 не превышало 0,9 с;
  • 6) календари (григорианский, юлианский, мусульманский, лунный и др.);
  • 7) шкалу температуры по Цельсию, в которой единица измерений – градус Цельсия – равна Кельвину и за условный нуль принята термодинамическая температура 273,16 К;
  • 8) шкалу окислительных потенциалов водных растворов.

Шкалы отношений описывают свойства величин, для множеств количественных проявлений которых применимы логические отношения эквивалентности, порядка и пропорциональности, а для некоторых шкал также отношение суммирования.

В шкалах отношения существует естественный нуль и по согласованию устанавливается единица измерения.

Примерами шкалы отношений являются:

  • 1) шкала массы (аддитивная);
  • 2) шкала частот, в которой размер единицы соответствует определению герца в СИ;
  • 3) шкала термодинамической температуры (пропорциональная), в которой размер единицы соответствует определению кельвина в СИ. К этой шкале максимально приближена международная температурная шкала МТШ-90, которая опирается на ряд реперных точек;
  • 4) шкала силы света оптического излучения, в которой размер единицы соответствует определению канделы в СИ с использованием для различных по спектру излучений стандартизированной Международной комиссией по излучению (МКО) эмпирической функции относительной спектральной световой эффективности монохроматического излучения для дневного зрения. Эта шкала является исходной для шкал всех световых величин;
  • 5) шкалы уровня звука А, В, С и D, стандартизированные на международном уровне. Уровень звукового давления в этих шкалах принято выражать в логарифмических шкалах (в децибелах относительно опорного значения 2 × 10-5 Па);
  • 6) шкалы измерения раздражающего действия шума (шумности и уровня воспринимаемого шума), стандартизированные на международном уровне;
  • 7) аудиометрические шкалы (для измерения остроты и степени потери слуха);
  • 8) псофометрические шкалы (для измерения действия шумов в линиях связи);
  • 9) шкалы доз (поглощенной и эквивалентной) и мощности доз ионизирующих излучений;
  • 10) шкала водородного показателя pH водных растворов (десятичного логарифма активности ионов водорода в грамм-молях на литр, взятого с обратным знаком, реализуемая с использованием ряда реперных растворов);
  • 11) Международная сахарная шкала, установленная рекомендацией Международной организацией законодательной метрологии;
  • 12) шкала жесткости воды.

Абсолютная шкала – это шкала отношений (пропорциональная или аддитивная) безразмерной величины.

Отличительным признаком абсолютных шкал является наличие естественных нуля и арифметической единицы измерений, которые нс зависят от принятой системы единиц; допустимость только тождественных преобразований; допустимость изменения спецификаций, описывающих конкретные шкалы.

Результаты измерений в абсолютных шкалах могут быть выражены не только в арифметических единицах, но и в процентах, промилле, битах, байтах, децибелах. Единицы абсолютных шкал могут быть применены в сочетании с единицами размерных величин. В частности, скорость передачи информации может быть выражена в битах в секунду.

Разновидностью абсолютных шкал являются дискретные (счетные) шкалы, в которых результат измерения выражается числом частиц, квантов или других объектов, эквивалентных по проявлению измеряемого свойства. Например, шкалы для электрического заряда ядер атомов, числа квантов (в фотохимии), количества информации. Иногда за единицу измерений в таких шкалах принимают какое-то определенное число частиц (квантов). Так, один моль – это число частиц, равное числу Авогадро.

ШКАЛА ИЗМЕРЕНИЙ

ШКАЛА ИЗМЕРЕНИЙ

Основополагающее понятие метрологии, позволяющее количественно или к.-л. другим способом определить свойство объекта. Ш. и. является более общим понятием, чем единица физической величины, отсутствующая в нек-рых видах измерений. Ш. и. необходимы как для количественных (длина, темп-pa), так и для качественных (цвет) проявлений свойств объектов (тел, веществ, явлений, процессов). Проявления свойства образуют , элементы к-рого находятся в опре-дел. логич. отношениях между собой, т. е. являются т. н. системой с отношениями. Имеются в виду отношения типа "эквивалентность" (равенство), "больше", "меньше", возможность "суммирования" элементов или "деления" одного на другой. Ш. и. получается гомоморфным отображением множества элементов такой системы с отношениями на множество чисел или, в более общем случае,- на знаковую систему с аналогичными логич. отношениями. Такими знаковыми системами, напр., являются: множество обозначений (названий) цветов, совокупность классификац. символов или понятий, множество названий состояний объекта, множество баллов оценки состояний объекта и т. п. При таком отображении используется модель объекта, достаточно адекватно (для решения измерит. задач) описывающая логич. структуру рассматриваемого свойства этого объекта.

В соответствии с логич. структурой свойств в теории измерений принято в основном различать 5 типов Ш. и.: шкалы наименований, порядка, разностей (интервалов), отношений и абс. шкалы (см. табл.).

Шкала наименований характеризуется только отношением эквивалентности к.-л. качественного проявления свойства. Пример такой Ш. и.- классификация (оценка) цвета объекта по наименованиям (красный, белый, сине-зелёный и т. д.), опирающаяся на стандартные атласы цветов (в атласах цвета могут обозначаться усл. номерами). Измерения выполняются путём сравнения при опре-дел. освещении образцов цвета из атласа с исследуемым цветом и установления их эквивалентности.

Шкала порядка описывает свойства, для к-рых имеют смысл не только отношение эквивалентности, но и отношение порядка по возрастанию или убыванию количественного проявления свойства. Характерный пример шкал порядка - шкалы чисел твёрдости тел, шкалы баллов землетрясений, шкалы баллов ветра и т. д. В такого рода шкалах в принципе нет возможности введения единицы измерений, также не имеют смысла суждения, во сколько раз больше или меньше проявления конкретных свойств. Разл. варианты шкал порядка для одного и того же свойства связаны между собой монотонными зависимостями. В шкалах порядка может быть (иметь смысл) нуль или его может не быть. Так, шкалы твёрдости начинаются с не-к-рого ненулевого значения, сейсмич. шкала начинается с одного балла, а шкала Бофорта для силы ветра - с нулевого значения.

Шкала разностей (интервалов) отличается от шкалы порядка тем, что для описываемого ею свойства имеют смысл не только отношения эквивалентности и порядка, но и пропорциональности или суммирования интервалов (разностей) между разл. количественными проявлениями свойства. Характерный пример - шкалы времени; интервалы времени можно суммировать или вычитать, складывать же даты к.-л. событий бессмысленно. Шкалы разностей имеют усл. нуль, опирающийся на к.-л. репер (напр., шкала Цельсия, см. Температурная шкала).

Шкала отношений описывает свойства, ко множеству количественных проявлений к-рых применимы отношения эквивалентности, порядка, пропорциональности или суммирования (а следовательно, и вычитания, и умножения). В шкале отношений существует естеств. критерий нулевого количественного проявления свойства, т. е. нуль имеет не усл. значение, а вполне определ. физ. смысл. Примеры шкал отношений - шкала массы, термодина-мич. температурная шкала.

Абсолютные шкалы обладают всеми признаками шкал отношений, но дополнительно в них существует естественное однозначное определение единицы измерения. Такие Ш и. соответствуют относит. величинам - отношениям одноимённых физ. величин, описываемых шкалами отношений. К таким величинам относятся коэф. усиления, колебат. системы, коэф. ослабления и т. п. Среди абс. шкал выделяются ограниченные по диапазону шкалы, значения к-рых находятся в пределах от 0 до 1. Они характерны для , амплитудной модуляции и т. п. величин.

Большинство свойств, к-рые рассматривают в практич. метрологии, описывается одномерными Ш. и. Однако имеются свойства, к-рые в принципе можно описать только многомерными шкалами. Таковы, напр., трёхмерные шкалы цвета в колориметрии. Шкалы сортности изделий и продуктов в общем случае являются многомерными шкалами наименований и опираются на ряд факторов, каждый из к-рых определяется по специализир. шкалам наименований порядка или по общим шкалам интервалов, отношений и абсолютным, описывающим общепринятые физ. величины и параметры (напр., размеры изделия).

Практич. реализация шкал конкретных свойств достигается путём стандартизации шкал и единиц измерений, а также способов и условий их однозначного воспроизведения эталонами и средствами измерений. Понятие единицы измерений, неизменной для любых участков шкалы, имеет смысл только для шкал отношений и разностей, а также

для абс. шкал. В соответствии с этим положением единицы измерений, охватываемые междунар. системой единиц, соответствуют величинам, описываемым только шкалами отношений и разностей. Конкретные матем. ф-лы в науке и технике могут связывать также только такие величины и разности величин, к-рые описываются соответственно шкалами отношений, разностей и абсолютными. Поэтому измерения в шкалах порядка и наименований иногда наз. оцениванием.

Для шкал отношений и разностей в нек-рых случаях оказывается недостаточным установление только единиц измерений. Так, даже для таких величин, как , сила света, темп-pa, к-рым в международной системе единиц соответствуют осн. единицы - , кандела, кельвин, практич. системы измерений опираются также на спец. Ш. и. Кроме того, сами единицы в ряде случаев определяются с использованием фундаментальных физических констант или метрологич. констант (см., напр., Кандела).

По мере развития метрологии наблюдается тенденция рассматривать в качестве объектов измерений все новые, и не только физические, свойства и соответствующие им величины. Так, напр., формируется и описан метрологич. подход к изучению и описанию свойств биол., психологич., социальных (в т. ч. экономических) систем, создаются новые и совершенствуются уже существующие Ш. и.

Лит.: Пфанцагль И., Теория измерений, пер. с англ., M., 1976; Кнорринг В. Г., Теоретические основы информационно-измерительной техники. Основные понятия теории шкал. Конспект лекций. Л., 1983; Пиотровский Я., Теория измерений для инженеров, пер. с польск., M., 1989; Брянский Л. H., Дойников А. С., Краткий справочник метролога, M., 1991; Кнорринг В. Г., Шкалы, используемые при измерениях, "Измерит. техника", 1992. №6, с. 11; Брянский Л. H., Дойников А. С., Крупин Б. H., Шкалы, единицы и

Теория измерений – это теория о классификации переменных величин по природе информации, которая содержится в числах – значениях этих переменных величин. Происхождение переменной величины накладывает ограничения на множество действий, которые можно производить с этой величиной. Иными словами, для каждой переменной величины существует класс допустимых преобразований (КДП ), которые корректно применимы ко всем значениям этой величины.

Классификация величин по измеримости была предложена С.С.Стивенсом в 1946 году. Каждая группа величин, имеющих общие допустимые преобразования, называется шкалой измерений.

Шкалы измерений

Номинальная шкала

В шкале наименований допустимыми являются все взаимно-однозначные преобразования. В этой шкале числа используются как метки, только для различения объектов. В шкале наименований измерены, например, номера телефонов, автомашин, паспортов, студенческих билетов. Пол людей тоже измерен в шкале наименований, результат измерения принимает два значения - мужской, женский. Очевидно, что не имеет смысла складывать номера телефонов или умножать серии паспортов.

КДП : биективные преобразования.

Порядковая шкала

В порядковой шкале числа используются не только для различения объектов, но и для установления порядка между объектами. Простейшим примером являются оценки знаний учащихся. Заметим, что в средней школе применяются оценки 2, 3, 4, 5, а в высшей школе ровно тот же смысл выражается словесно - неудовлетворительно, удовлетворительно, хорошо, отлично. Этим подчеркивается "нечисловой" характер оценок знаний учащихся. В порядковой шкале допустимыми являются все строго монотонные преобразования.

КДП : все строго монотонные преобразования.

Шкала интервалов

По шкале интервалов измеряют величину потенциальной энергии или координату точки на прямой. В этих случаях на шкале нельзя отметить ни естественное начало отсчета, ни естественную единицу измерения. Исследователь должен сам задать точку отсчета и сам выбрать единицу измерения. Допустимыми преобразованиями в шкале интервалов являются линейные возрастающие преобразования, т.е. линейные функции. Температурные шкалы Цельсия и Фаренгейта связаны именно такой зависимостью: °C = 5/9 (°F - 32), где °C - температура (в градусах) по шкале Цельсия, а °F - температура по шкале Фаренгейта.

КДП : все преобразования вида

Шкала отношений

В шкалах отношений есть естественное начало отсчета - нуль, но нет естественной единицы измерения. По шкале отношений измерены большинство физических единиц: масса тела, длина, заряд, а также цены в экономике. Допустимыми преобразованиями шкале отношений являются подобные (изменяющие только масштаб). Другими словами, линейные возрастающие преобразования без свободного члена. Примеры использования таких преобразований: пересчет цен из одной валюты в другую по фиксированному курсу, перевод массы из килограмм в фунты.

КДП : все преобразования вида

Шкала разностей

В шкале разностей есть естественная единица измерения, но нет естественного начала отсчета. Время измеряется по шкале разностей, если год (или сутки - от полудня до полудня) принимаем естественной единицей измерения, и по шкале интервалов в общем случае. На современном уровне знаний естественного начала отсчета времени указать нельзя. Допустимыми преобразованиями шкале разностей являются сдвиги.

КДП : все преобразования вида

Абсолютная шкала

Только для абсолютной шкалы результаты измерений - числа в обычном смысле слова. Примером является число людей в комнате. Для абсолютной шкалы допустимым является только тождественное преобразование.

КДП :

Иерархия шкал измерений

Все шкалы делят также на 2 большие группы: качественные и количественные . К качественным шкалам относят номинальную и порядковую, к количественным - все остальные. Это разделение показывает разницу в природе шкал: например, невозможно утверждать, что школьная оценка 2 настолько же хуже оценки 4, насколько 3 хуже оценки 5, поэтому порядковые шкалы относят к качественным. В то же время, для тел разной массы аналогичное утверждение корректно: тело массой 5 кг настолько же тяжелее тела массой 3 кг, насколько тело массой 4 кг тяжелей тела массой 2 кг. Таким образом, шкалы отношений - это количественные шкалы.



© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний