Уравнение Функции Бесселя Дифференциальное уравнение Г-функция Эйлера и ее свойства Рекуррентные формулы для функций Бесселя полуцелого индекса Нули бесселевых функций Ортогональность и норма Функции Неймана (Вебера). Функции Бесселя (Бесселевые или цилин

Главная / А. П. Чехов

Введение

Цилиндрическими функциями называются решения линейного дифференциального уравнения второго порядка

где - комплексное переменное,

Параметр, который может принимать любые вещественные или комплексные значения.

Термин «цилиндрические функции» обязан своим происхождением тому обстоятельству, что уравнение (1) встречается при рассмотрении краевых задач теории потенциала для цилиндрической области.

Специальные классы цилиндрических функций известны в литературе под названием функций Бесселя, и иногда это наименование присваивается всему классу цилиндрических функций.

Хорошо разработанная теория рассматриваемых функций, наличие подробных таблиц и широкая область применений служат достаточным основанием для того, чтобы отнести цилиндрические функции к числу наиболее важных специальных функций.

Уравнение Бесселя возникает во время нахождения решений уравнения Лапласа и уравнения Гельмгольца в цилиндрических и сферических координатах. Поэтому функции Бесселя применяются при решении многих задач о распространении волн, статических потенциалах и т. п., например:

1) электромагнитные волны в цилиндрическом волноводе;

2) теплопроводность в цилиндрических объектах;

3) формы колебания тонкой круглой мембраны;

4) скорость частиц в цилиндре, заполненном жидкостью и вращающемся вокруг своей оси.

Функции Бесселя применяются и в решении других задач, например, при обработке сигналов.

Цилиндрические функции Бесселя являются самыми распространенными из всех специальных функций. Они имеют многочисленные приложения во всех естественных и технических науках (особенно в астрономии, механике и физике). В ряде задач математической физики встречаются цилиндрические функции, в которых аргумент или индекс (иногда и тот и другой) принимают комплексные значения. Для численного решения таких задач необходимо разработать алгоритмы, позволяющие вычислять функции Бесселя с высокой точностью.

Цель курсовой работы: изучение функций Бесселя и применение их свойств в решении дифференциальных уравнений.

1) Изучить уравнение Бесселя и модифицированное уравнение Бесселя.

2) Рассмотреть основные свойства функций Бесселя, асимптотические представления.

3) Решить дифференциальное уравнение с использованием функции Бесселя.

Функции Бесселя с целым положительным значком

Для рассмотрения многих проблем, связанных с применением цилиндрических функций, достаточно ограничиться изучением специального класса этих функций, который соответствует случаю, когда параметр в уравнении (1) равен нулю или целому положительному числу.

Исследование данного класса носит более элементарный характер, чем теория, относящаяся к произвольным значениям, и может служить хорошим введением в эту общую теорию.

Покажем, что одним из решений уравнения

0, 1, 2, …, (1.1)

является функция Бесселя первого рода порядка, которая для любых значений определяется как сумма ряда

При помощи признака Даламбера легко убедиться, что рассматриваемый ряд сходится на всей плоскости комплексного переменного и, следовательно, представляет целую функцию от.

Если обозначить левую часть уравнения (1.1) через и ввести сокращенную запись коэффициентов ряда (1.2), положив

то в результате подстановки получим


откуда следует так как выражение в фигурных скобках равно нулю. Таким образом, функция удовлетворяет уравнению (1.1), т. е. представляет собой цилиндрическую функцию.

Простейшими функциями рассматриваемого класса являются функции Бесселя порядка нуль и единица:

Покажем, что функции Бесселя других порядков могут быть выражены через эти две функции. Для доказательства предположим, что а -- целое положительное число, умножим ряд (1.2) на и продифференцируем по. Мы получим тогда

Аналогичным образом, умножая ряд на находим

Выполнив дифференцирование в равенствах (1.4 - 1.1) и разделив на множитель, приходим к формулам:

откуда непосредственно следует:

Полученные формулы известны под названием рекуррентных соотношений для функций Бесселя.

Первое из соотношений дает возможность выразить функцию произвольного порядка через функции порядков нуль и единица, что существенным образом сокращает работу по составлению таблиц функций Бесселя.

Второе соотношение позволяет представить производные от функций Бесселя через функции Бесселя. Для это соотношение должно быть заменено формулой

непосредственно вытекающей из определения данных функций.

Функции Бесселя первого рода просто связаны с коэффициентами разложения функции в ряд Лорана ):

Коэффициенты этого разложения могут быть вычислены путем перемножения степенных рядов:

и объединения членов, содержащих одинаковые степени. Выполнив это, получим:

откуда следует, что рассматриваемое разложение может быть записано в виде

Функция называется производящей функцией для функций Бесселя с целым значком; найденное соотношение (1.12) играет важную роль в теории этих функций.

Для получения общего интеграла уравнения (1.1), дающего выражение произвольной цилиндрической функции с целым значком, необходимо построить второе решение уравнения, линейно независимое с. В качестве такого решения может быть взята функция Бесселя второго рода, исходя из определения которой нетрудно получить для аналитическое выражение в виде ряда

(- постоянная Эйлера) и, в случае, первую из сумм надлежит положить равной нулю.

Функция регулярна в плоскости с разрезом. Существенная особенность рассматриваемого решения состоит в том, что оно обращается в бесконечность, когда. Общее выражение цилиндрической функции для представляет линейную комбинацию построенных решений

где и - произвольные постоянные,

Линейное обыкновенное дифференциальное уравнение второго порядка вида \[{x^2}y"" + xy" = \left({{x^2} - {v^2}} \right)y = 0\] называется уравнением Бесселя . Число \(v\) называется порядком уравнения Бесселя .

Данное дифференциальное уравнение было названо в честь немецкого математика и астронома Фридриха Вильгельма Бесселя , который подробно исследовал его и показал (в \(1824\) году), что решения уравнения выражаются через специальный класс функций, получивших название цилиндрических функций или функций Бесселя .

Конкретное представление общего решения зависит от числа \(v.\) Далее мы отдельно рассмотрим два случая:

    Порядок \(v\) является нецелым числом;

    Порядок \(v\) является целым числом.

Случай 1. Порядок \(v\) является нецелым числом

Полагая, что число \(v\) является нецелым и положительным, общее решение уравнения Бесселя можно записать в виде \ где \({C_1},\) \({C_2}\) − произвольные постоянные, а \({J_v}\left(x \right),\) \({J_{ - v}}\left(x \right)\) − функции Бесселя первого рода .

Функцию Бесселя первого рода можно представить в виде ряда, члены которого выражаются через так называемую гамма-функцию : \[{J_v}\left(x \right) = \sum\limits_{p = 0}^\infty {\frac{{{{\left({ - 1} \right)}^p}}}{{\Gamma \left({p + 1} \right)\Gamma \left({p + v + 1} \right)}}{{\left({\frac{x}{2}} \right)}^{2p + v}}} .\] Гамма-функция является расширением факториальной функции с множества целых на множество действительных чисел. В частности, она обладает следующими свойствами: \[ {\Gamma \left({p + 1} \right) = p!,}\;\; {\Gamma \left({p + v + 1} \right) = \left({v + 1} \right)\left({v + 2} \right) \cdots \left({v + p} \right)\Gamma \left({v + 1} \right).} \] Аналогичным образом записываются функции Бесселя первого рода отрицательного порядка (с индексом \(-v\)). Здесь мы предполагаем, что \(v > 0.\) \[{J_{ - v}}\left(x \right) = \sum\limits_{p = 0}^\infty {\frac{{{{\left({ - 1} \right)}^p}}}{{\Gamma \left({p + 1} \right)\Gamma \left({p - v + 1} \right)}}{{\left({\frac{x}{2}} \right)}^{2p - v}}} .\] Функции Бесселя вычисляются в большинстве математических пакетов. Для примера вид функций Бесселя первого рода порядка от \(v = 0\) до \(v = 4\) показан на рисунке \(1.\) Эти функции можно вычислить также и в MS Excel.

Случай 2. Порядок \(v\) является целым

Если порядок \(v\) дифференциального уравнения Бесселя является целым, то функции Бесселя первого рода \({J_v}\left(x \right)\) и \({J_{ - v}}\left(x \right)\) становятся зависимыми друг от друга. В этом случае общее решение уравнения будет описываться другой формулой: \ где \({Y_v}\left(x \right)\) − функция Бесселя второго рода . Иногда это семейство функций называют также функциями Неймана или функциями Вебера .

Функцию Бесселя второго рода \({Y_v}\left(x \right)\) можно выразить через функции Бесселя первого рода \({J_v}\left(x \right)\) и \({J_{ - v}}\left(x \right):\) \[{Y_v}\left(x \right) = \frac{{{J_v}\left(x \right)\cos \pi v - {J_{ - v}}\left(x \right)}}{{\sin \pi v}}.\] Графики функций \({Y_v}\left(x \right)\) для нескольких первых порядков \(v\) представлены выше на рисунке \(2.\)

Примечание : В действительности общее решение дифференциального уравнения Бесселя можно выразить через функции Бесселя первого и второго рода также и для случая нецелого порядка \(v.\)

Некоторые дифференциальные уравнения, приводимые к уравнению Бесселя

1. Еще одним хорошо известным уравнением данного класса является модифицированное уравнение Бесселя , которое получается из регулярного уравнения Бесселя заменой \(x\) на \(-ix.\) Это уравнение имеет вид: \[{x^2}y"" + xy" - \left({{x^2} + {v^2}} \right)y = 0.\] Решение данного уравнения выражается через так называемые модифицированые функции Бесселя первого и второго рода : \[ {y\left(x \right) = {C_1}{J_v}\left({ - ix} \right) + {C_2}{Y_v}\left({ - ix} \right) } = {{C_1}{I_v}\left(x \right) + {C_2}{K_v}\left(x \right),} \] где \({I_v}\left(x \right)\) и \({K_v}\left(x \right)\) обозначают модифицированные функции Бесселя, соответственно, первого и второго рода.

2. Дифференциальное уравнение Эйри , известное в астрономии и физике, записывается в виде: \ Его также можно свести к уравнению Бесселя. Решение уравнения Эйри выражается через функции Бесселя дробного порядка \(\pm \large\frac{1}{3}\normalsize:\) \[ {y\left(x \right) } = {{C_1}\sqrt x {J_{\large\frac{1}{3}\normalsize}}\left({\frac{2}{3}i{x^{\large\frac{3}{2}\normalsize}}} \right) + {C_2}\sqrt x {J_{ - \large\frac{1}{3}\normalsize}}\left({\frac{2}{3}i{x^{\large\frac{3}{2}\normalsize}}} \right).} \]
3. Дифференциальное уравнение вида \[{x^2}y"" + xy" + \left({{a^2}{x^2} - {v^2}} \right)y = 0\] отличается от уравнения Бесселя лишь множителем \({a^2}\) перед \({x^2}\) и имеет общее решение в следующем виде: \
4. Похожее дифференциальное уравнение \[{x^2}y"" + axy" + \left({{x^2} - {v^2}} \right)y = 0\] также сводится к уравнению Бесселя \[{x^2}z"" + xz" + \left({{x^2} - {n^2}} \right)z = 0\] с помощью подстановки \ Здесь параметр \({n^2}\) обозначает \[{n^2} = {v^2} + \frac{1}{4}{\left({a - 1} \right)^2}.\] В результате, общее решение данного дифференциального уравнения определяется формулой \.\]
Специальные функции Бесселя широко используются в решении задач математической физики, например, при исследовании

    распространения волн;

    теплопроводности;

    колебаний мембран

в случаях, когда объекты имеют цилиндрическую или сферическую симметрию.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

СТЕРЛИТАМАКСКИЙ ФИЛИАЛ

ГОСУДАРСТВЕННОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«БАШКИРСКИЙ ГОСУДАРСВТЕННЫЙ УНИВЕРСИТЕТ»

Экономический факультет

Кафедра математики и информатики

Курсовая работа

на тему:

Функции Бесселя

Выполнил студент 2 курса

группы ПМиИ-08

Александрова А.Ю._______

«___»____________2010г.

Научный руководитель

к.ф.-м.н., ст. пр.

Сидоренко О.Г._______

«___»____________2010г.

Стерлитамак 2010


Введение

1 Функции Бесселя с целым положительным значком

2 Функции Бесселя с произвольным значком

3 Общее представление цилиндрических функций. Функции Бесселя второго рода

4 Разложение в ряд функции Бесселя второго рода с целым значком

5 Функции Бесселя третьего рода

6 Функции Бесселя мнимого аргумента

7 Цилиндрические функции с индексом, равным половине нечетного целого числа

8 Асимптотические представления цилиндрических функций для больших значений аргумента

9 Нули цилиндрических функций

Заключение

Список литературы

Введение

Цилиндрическими функциями называются решения линейного дифференциального уравнения второго порядка

где – комплексное переменное,

Термин «цилиндрические функции» обязан своим происхождением тому обстоятельству, что уравнение (1) встречается при рассмотрении краевых задач теории потенциала для цилиндрической области.

Специальные классы цилиндрических функций известны в литературе под названием функций Бесселя, и иногда это наименование присваивается всему классу цилиндрических функций.

Хорошо разработанная теория рассматриваемых функций, наличие подробных таблиц и широкая область применений служат достаточным основанием для того, чтобы отнести цилиндрические функции к числу наиболее важных специальных функций.

Уравнение Бесселя возникает во время нахождения решений уравнения Лапласа и уравнения Гельмгольца в цилиндрических и сферических координатах. Поэтому функции Бесселя применяются при решении многих задач о распространении волн, статических потенциалах и т. п., например:

1) электромагнитные волны в цилиндрическом волноводе;

2) теплопроводность в цилиндрических объектах;

3) формы колебания тонкой круглой мембраны;

4) скорость частиц в цилиндре, заполненном жидкостью и вращающемся вокруг своей оси.

Функции Бесселя применяются и в решении других задач, например, при обработке сигналов.

Цилиндрические функции Бесселя являются самыми распространенными из всех специальных функций. Они имеют многочисленные приложения во всех естественных и технических науках (особенно в астрономии, механике и физике). В ряде задач математической физики встречаются цилиндрические функции, в которых аргумент или индекс (иногда и тот и другой) принимают комплексные значения. Для численного решения таких задач необходимо разработать алгоритмы, позволяющие вычислять функции Бесселя с высокой точностью.

Цель курсовой работы: изучение функций Бесселя и применение их свойств в решении дифференциальных уравнений.

Задачи:

1) Изучить уравнение Бесселя и модифицированное уравнение Бесселя.

2) Рассмотреть основные свойства функций Бесселя, асимптотические представления.

3) Решить дифференциальное уравнение с использованием функции Бесселя.

1 Функции Бесселя с целым положительным значком

Для рассмотрения многих проблем, связанных с применением цилиндрических функций, достаточно ограничиться изучением специального класса этих функций, который соответствует случаю, когда параметр в уравнении (1) равен нулю или целому положительному числу.

Исследование данного класса носит более элементарный характер, чем теория, относящаяся к произвольным значениям , и может служить хорошим введением в эту общую теорию.

Покажем, что одним из решений уравнения

0, 1, 2, …, (1.1)

является функция Бесселя первого рода порядка , которая для любых значений определяется как сумма ряда

(1.2)

При помощи признака Даламбера легко убедиться, что рассматриваемый ряд сходится на всей плоскости комплексного переменного и, следовательно, представляет целую функцию от .

Если обозначить левую часть уравнения (1.1) через и ввести сокращенную запись коэффициентов ряда (1.2), положив

то в результате подстановки получим

откуда следует так как выражение в фигурных скобках равно нулю. Таким образом, функция удовлетворяет уравнению (1.1), т. е. представляет собой цилиндрическую функцию.

Простейшими функциями рассматриваемого класса являются функции Бесселя порядка нуль и единица:

(1.3)

Покажем, что функции Бесселя других порядков могут быть выражены через эти две функции. Для доказательства предположим, что а - целое положительное число, умножим ряд (1.2) на и продифференцируем по . Мы получим тогда

(1.4)

Аналогичным образом, умножая ряд на находим

(1.5)

Выполнив дифференцирование в равенствах (1.4 – 1.1) и разделив на множитель , приходим к формулам:

(1.6)

откуда непосредственно следует:

(1.7)

Полученные формулы известны под названием рекуррентных соотношений для функций Бесселя.

Первое из соотношений дает возможность выразить функцию произвольного порядка через функции порядков нуль и единица, что существенным образом сокращает работу по составлению таблиц функций Бесселя.

Второе соотношение позволяет представить производные от функций Бесселя через функции Бесселя. Для это соотношение должно быть заменено формулой

(1.9)

непосредственно вытекающей из определения данных функций.

Функции Бесселя первого рода просто связаны с коэффициентами разложения функции в ряд Лорана ):

(1.10)

Коэффициенты этого разложения могут быть вычислены путем перемножения степенных рядов:

и объединения членов, содержащих одинаковые степени . Выполнив это, получим:

(1.11)

откуда следует, что рассматриваемое разложение может быть записано в виде

Функция называется производящей функцией для функций Бесселя с целым значком; найденное соотношение (1.12) играет важную роль в теории этих функций.

Для получения общего интеграла уравнения (1.1), дающего выражение произвольной цилиндрической функции с целым значком , необходимо построить второе решение уравнения, линейно независимое с . В качестве такого решения может быть взята функция Бесселя второго рода, исходя из определения которой нетрудно получить для аналитическое выражение в виде ряда

где

( – постоянная Эйлера) и, в случае , первую из сумм надлежит положить равной нулю.

Функция регулярна в плоскости с разрезом . Существенная особенность рассматриваемого решения состоит в том, что оно обращается в бесконечность, когда . Общее выражение цилиндрической функции для представляет линейную комбинацию построенных решений

где и – произвольные постоянные,

2 Функции Бесселя с произвольным значком

бессель цилиндрическая функция

Функции Бесселя, рассмотренные в пункте 1, составляют частный случай цилиндрических функций более общего вида, известных под названием функций Бесселя первого рода с произвольным значком . Чтобы определить эти функции, рассмотрим ряд

где – комплексное переменное, принадлежащее плоскости с разрезом

– параметр, который может принимать любые вещественные или комплексные значения.

Легко видеть, что данный ряд сходится при любых и , причем в области , ( – произвольно большие фиксированные числа) сходимость равномерна по отношению к каждому из переменных.

Действительно, начиная с достаточного большого , отношение модулей последующего члена ряда к предыдущему, равное величине

не будет превосходить некоторой правильной положительной дроби , не зависящей от и . Отсюда, согласно известному признаку сходимости, следует, что рассматриваемый ряд сходится равномерно в указанной области .

Так как члены ряда представляют собой регулярные функции в плоскости с разрезом сумма ряда определяет некоторую функцию комплексного переменного , регулярную в рассматриваемой разрезанной плоскости. Эта функция называется функцией Бесселя первого рода с индексом и обозначается символом . Таким образом,

(2.1)

Нетрудно показать, что определенная таким образом функция есть частное решение уравнения


(2.2)

Действительно, обозначая левую часть этого уравнения и полагая , мы находим, так же как в пункте 1,

где – коэффициенты ряда (2.1),

откуда следует, что

Так как при фиксированном , принадлежащем плоскости с разрезом члены ряда (2.1) представляют собой целые функции переменного , то из равномерной сходимости по отношению к этому переменному вытекает, что функция Бесселя первого рода, рассматриваемая как функция своего значка, есть целая функция . При целом и ряд (2.1) переходит в ряд (1.2), поэтому функции, определенные в настоящем параграфе, являются обобщением функций Бесселя с целым положительным значком, изученных в пункте 2. При равном целому отрицательному числу , первые членов ряда (2.1) обращаются в нуль, и рассматриваемая формула может быть записана в виде

откуда следует

(2.3)

Таким образом, функции Бесселя с отрицательным целым значком отличаются от соответствующих функций с положительным значком только постоянным множителем.

Полученное соотношение вместе с формулами (1.10 – 1.11) показывает, что разложение (1.12) может быть записано в виде

(2.4)

Многие равенства, установленные ранее для функций Бесселя с целым положительным значком, переносятся на функции с произвольным индексом без каких-либо изменений. Так, например, имеют место соотношения:

(2.5)

(2.6)

(2.7)

представляющие собой обобщение соответствующих формул пункта 2. Доказательство формул (2.5 – 2.6) повторяет рассуждения этого параграфа и поэтому не приводится. Формулы (2.7) получаются путем повторного применения равенств (2.6).

3 Общее представление цилиндрических функций. Функции Бесселя второго рода

По определению цилиндрическая функция есть произвольное решение дифференциального уравнения второго порядка

(3.1)

поэтому общее ее выражение содержится в форме

где и – какие-либо линейно независимые решения рассматриваемого уравнения, и – постоянные, являющиеся, вообще говоря, произвольными функциями параметра . Легко получить общее выражение цилиндрической функции для случая, когда отлично от целого числа. Действительно, выбрав , где – функция Бесселя, определенная в пункте 2, мы можем взять в качестве функцию , которая также является решением уравнения (3.1), так как последнее не меняется при замене на .

Если не равно целому числу, асимптотическое поведение рассматриваемых решений при будет

(3.3)


поэтому эти решения линейно независимы между собой и искомое выражение для цилиндрической функции может быть дано в виде

(3.4)

Если – целое число, то, в силу соотношения (2.3), построенные частные решения линейно зависимы между собой и найденное выражение (3.4) не является общим интегралом уравнения Бесселя (3.1). Чтобы получить представление произвольной цилиндрической функции, пригодное при любых значениях параметра , введем в рассмотрение функцию Бесселя второго рода , которую для произвольных , принадлежащих плоскости с разрезом , определим при помощи равенства

(3.5)

При равном целому числу правая часть рассматриваемого выражения приобретает неопределенный вид (2.3), и мы условимся понимать под значением функции в этом случае предел

(3.6)

Так как по доказанному числитель и знаменатель в (3.5) суть целые функции , рассматриваемый предел существует, и может быть вычислен по правилу Лопиталя, применение которого дает

(3.7)

Из определения функции следует, что эта функция регулярна в плоскости с разрезом , а при фиксированном представляет собой целую функцию параметра . Докажем теперь, что удовлетворяет уравнению (3.1), следовательно, является цилиндрической функцией. При , отличном от целого числа, требуемый результат непосредственно вытекает из формулы (3.4), поэтому достаточно провести доказательство только для случая

Проще всего воспользоваться для этого принципом аналитического продолжения. Так как – целая функция , то из равенства следует

Решения и линейно независимы между собой. Для этот результат является следствием линейной независимости решений и . Линейная независимость для вытекает из сопоставления поведения рассматриваемых функций при [формулы (3.3) и (3.4)]. Таким образом, общее выражение цилиндрической функции, пригодное при любых значениях , будет

Функции Бесселя второго рода удовлетворяют тем же рекуррентным соотношениям, что и функции первого рода, именно:

(3.9)

При , отличном от целого числа, справедливость этих формул вытекает из определения функции Бесселя второго рода и соответствующих формул для функций первого рода. Для целого требуемый результат следует из непрерывности рассматриваемых функций по отношению к значку , что позволяет осуществить в соотношениях (3.9) предельный переход

Отметим еще формулу

(3.10)

являющуюся следствием (3.7) и позволяющую свести вычисление функций с отрицательным целым значком к вычислению функций, индекс которых положителен.

При помощи замены переменных в уравнении (3.1) легко получить ряд других дифференциальных уравнений, общий интеграл которых может быть выражен через цилиндрические функции. Наиболее интересные для приложений уравнения этого типа являются различными частными случаями дифференциальных уравнений

(3.11)

общие интегралы которых соответственно будут:

(3.12)

где обозначает произвольную цилиндрическую функцию.

4 Разложение в ряд функции Бесселя второго рода с целым значком

Для того чтобы получить разложение в ряд функции , достаточно воспользоваться формулой (3.7) и вычислить производные по значку , исходя из разложения (2.1), причем, ввиду соотношения (3.10), можно ограничиться рассмотрением случая целых положительных

Так как ряд (2.1), по доказанному, сходится равномерно по отношению к , мы можем дифференцировать его почленно и получим тогда

где – логарифмическая производная гамма-функции.

Аналогично имеем

При и поэтому первые членов ряда принимают неопределенный вид. Воспользовавшись известными формулами теории гамма-функции

;

получим для таких

где введен новый значок суммирования

Из формулы (3.7) следует, что искомое разложение функции Бесселя второго рода с целым положительным значком имеет вид

где в случае первую сумму надлежит положить равной нулю.

Значения логарифмической производной гамма-функции могут быть вычислены по формулам:

(4.2)

где – постоянная Эйлера,

Принимая во внимание равенство (1.2), мы можем представить разложение (4.1) в несколько другом виде, именно:

(4.3)

Из (4.1) вытекает, что при справедливы асимптотические формулы

(4.4)

показывающие, что когда

5 Функции Бесселя третьего рода

К цилиндрическим функциям относятся также функции Бесселя третьего рода или функции Ханкеля и , которые для произвольного и , принадлежащего плоскости с разрезом вдоль полуоси , определяются при помощи формул

где – функции Бесселя первого и второго рода.

Целесообразность введения этих функций обусловлена тем, что рассматриваемые линейные комбинации из и обладают наиболее простыми асимптотическими разложениями при больших (пункт 8) и часто встречаются в приложениях.

Из определения функций Ханкеля следует, что эти функции представляют собой регулярные функции в плоскости с разрезом и целые функции . Очевидно, что рассматриваемые функции линейно независимы между собой и по отношению к , так что общий интеграл уравнения Бесселя (3.1) может быть, наряду с (3.8), представлен в одной из следующих форм:

где – произвольные постоянные.

Являясь линейными комбинациями функций и , функции Ханкеля удовлетворяют тем же рекуррентным соотношениям, что и эти функции, например,

(5.3)

Если с помощью (3.5) исключить из (5.1) функцию Бесселя второго рода, то получим

(5.4)

откуда вытекают важные соотношения:

6 Функции Бесселя мнимого аргумента

С функциями Бесселя тесно связаны две часто встречающиеся в приложениях функции и , которые для , принадлежащего плоскости с разрезом вдоль отрицательной полуоси и произвольного , могут быть определены при помощи формул:

(6.1)

(6.2)

и при целом

(6.3)

Повторяя рассуждения пункта 2, получаем, что и представляют собой регулярные функции в плоскости с разрезом и целые функции .

Рассматриваемые функции просто связаны с функциями Бесселя от аргумента .

Действительно, предположим, что . Тогда и из (2.1) следует

(6.4)

для всех

Аналогично из формулы (5.4) получаем для таких же

(6.5)

Для значений функции и могут быть выражены через функции Бесселя от аргумента . Мы имеем

(6.6)

для всех .

На основании полученных соотношений функции и называются функциями Бесселя мнимого аргумента. Функция известна в литературе также под названием функции Макдональда.

Из выведенных формул непосредственно следует, что рассматриваемые функции представляют собой линейно независимые решения дифференциального уравнения

(6.7)

которое отличается от уравнения Бесселя только знаком одного члена и переходит в него при подстановке .

Уравнение (6.7) часто встречается в математической физике. Общий интеграл этого уравнения при произвольном может быть записан в виде

Функции и удовлетворяют простым рекуррентным соотношениям:

(6.9)


Рекуррентные формулы, содержащие функции , доказываются подстановкой в них ряда (6.1). Соответствующие формулы для функций при , отличном от целого числа, проверяются путем подстановки в них выражения (6.2) и использования формул первой группы. Справедливость последних соотношений при целом следует из непрерывности рассматриваемых функций по отношению к значку.

Укажем еще две полезные формулы:

(6.10)

первая из которых вытекает из (6.1), если принять во внимание, что при первые членов разложения обращаются в нуль, в то время как вторая является прямым следствием определения функции Макдональда (6.2).

Разложение функции при может быть получено из (6.3) методом пункта 5. Приведем окончательный результат вычисления:

Здесь – логарифмическая производная гамма-функции, значения которой могут быть найдены по формулам (4.2). Для случая первую из сумм надлежит считать равной нулю.

Из (6.11) вытекает, что асимптотическое поведение функции при определяется формулами

(6.12)

7 Цилиндрические функции с индексом, равным половине нечетного целого числа

Специальный класс цилиндрических функций образуют цилиндрические функции с индексом, равным половине нечетного целого числа. В рассматриваемом случае цилиндрические функции могут быть выражены через элементарные функции. Чтобы показать это, найдем предварительно значения функций , для чего положим в (2.1) и воспользуемся для преобразования рядов формулой удвоения гамма-функции

Мы получим тогда

(7.1)

и аналогично


(7.2)

Возможность выразить функцию Бесселя первого рода с любым полуцелым значком через элементарные функции следует теперь из рекуррентной формулы (2.5)

пользуясь которой можно последовательно получить:

Общее выражение для через элементарные функции получается из формул (2.7). Например, если положить во второй из них и воспользоваться результатом (7.1), то находим:

(7.3)

Соответствующие формулы для функций Бесселя второго и третьего рода могут быть выведены из найденных соотношений, если воспользоваться выражениями этих функций через функции Бесселя первого рода (3.5 и 5.4). Например, мы имеем:

(7.4)

В заключение укажем на формулы:

(7.5)

вытекающие из определений рассматриваемых функций (6.1 – 6.2).

Формулы для других полуцелых значений индекса получаются из этих формул с помощью рекуррентных соотношений (6.9). Лиувиллем доказано, что случай полуцелого индекса является единственным, когда цилиндрические функции приводятся к элементарным.

8 Асимптотические представления цилиндрических функций для больших значений аргумента

Цилиндрические функции обладают простыми асимптотическими представлениями, удобными для аппроксимации этих функций при больших по модулю значениях и фиксированном значении индекса . Главные члены этих формул можно получить, исходя из дифференциальных уравнений, которым удовлетворяют рассматриваемые функции.

Из цилиндрических функций наиболее простые асимптотические представления имеют функции третьего рода.

Чтобы получить асимптотическое представление функции , воспользуемся равенством

(8.1)

и преобразуем его с помощью подстановки . Тогда получим

(8.2)

Заменяя множитель биноминальным разложением с остаточным членом

и интегрируя почленно, находим

(8.3)

где

Предположим, что ( – произвольное малое положительное число) и будем временно считать, что выбрано так, что Оценка остаточного члена по модулю тогда дает

при фиксированном

Таким образом, для больших

(8.4)

Покажем, что условие, наложенное на , может быть отброшено. Действительно, если , то можно выбрать такое , что . Представив с помощью формулы (8.4), где заменено на , и замечая, что

мы снова приходим к прежнему результату.

Также легко с помощью соотношения освободиться от ограничения, наложенного на параметр .

Наконец, если воспользоваться вместо (8.1) интегральным представлением несколько более общего вида, можно показать, что найденная асимптотическая формула остается справедливой в более широком секторе .

Таким образом, окончательно для больших

(8.5)

Асимптотическое представление для функции получается аналогичным способом из формулы

(8.6)

и имеет следующий вид:

(8.7)

Асимптотические представления для цилиндрических функций первого и второго рода следуют из выведенных формул (8.5) и (8.7) и соотношений (5.1). Мы находим

(8.8)

(8.9)

Асимптотические формулы для модифицированных цилиндрических функций могут быть получены с помощью соотношений пункта 6.

Окончательные формулы имеют следующий вид:

(8.10)

знак соответствует

При условии, что , второе слагаемое в (8.10) будет мало, и эта формула может быть записана в виде

Из (8.5) и (8.7 – 8.12) следует, что расходящиеся ряды, получающиеся, если формально положить , являются асимптотическими для функций, стоящих в левых частях рассматриваемых равенств.

Способ, при помощи которого выведены рассматриваемые формулы, дает только порядок величины остаточного члена, но не позволяет сделать более точных заключений. При специальных предположениях относительно и можно, путем некоторого видоизменения рассуждений, получить значительно более точные результаты. Так, например, можно показать, что если и – вещественные положительные числа и число взято настолько большим, что то остатки асимптотических разложений для и будут численно меньше первых отбрасываемых членов. В асимптотическом представлении для тот же результат имеет место при .

9 Нули цилиндрических функций

При решении многих прикладных вопросов необходимо иметь представление о распределении нулей цилиндрических функций на плоскости комплексного переменного и уметь приближенно вычислять их значения.

Распределение нулей функций Бесселя с целым положительным значком, т. е. решений уравнения

устанавливается следующей теоремой.

Теорема 4. Функция не имеет комплексных нулей и имеет бесконечное множество вещественных нулей, расположенных симметрично относительно точки , которая, в случае принадлежит к их числу. Все нули функции – простые, за исключением точки , которая при является соответственно нулем кратности .

Распределение нулей функций Бесселя с произвольным вещественным индексом , т. е. решений уравнения

– вещественно, (9.2)

дается более общей теоремой 5.

Теорема 5. Функция – любое вещественное число) имеет бесконечное множество вещественных положительных нулей и конечное число комплексных сопряженных нулей, где, в зависимости от значения параметра ,

(1) если или

(2) при

Если среди комплексных нулей имеется пара чисто мнимых.

Все нули функции простые, исключая, может быть, точку .

В математической физику часто встречается уравнение

(где и – заданные вещественные числа, ), которое можно рассматривать как обобщение уравнения (9.2). При указанном ограничении параметра рассматриваемое уравнение имеет бесконечное множество положительных корней и не имеет комплексных корней, за исключением случая , когда это уравнение имеет два чисто мнимых корня.

Распределение нулей функции может быть выведено из теоремы 5 с помощью соотношений пункта 6. В частности, отметим важный результат, что при все нули функции чисто мнимые. Функция Макдональда при вещественном не имеет нулей в области . Нули функции, лежащие в остальной части разрезанной плоскости, комплексные сопряженные и число их конечно.

Для приближенного вычисления корней уравнений, содержащих цилиндрические функции, применяется метод последовательных приближений, причем за хорошее начальное приближение во многих случаях могут быть приняты корни уравнений, получающихся из исходных при замене цилиндрических функций их асимптотическими представлениями.

10 Пример

Решить дифференциальное уравнение:

В данном уравнении сделаем замену

где

Следовательно,

Подставим найденные производные в исходное уравнение, получим:

Умножим на :

Пусть , тогда получим:

Разделим на :

Исходя из общего вида уравнения Бесселя (1) следует, что .

Общее выражение цилиндрической функции для на основании формулы (1.14) представляет линейную комбинацию построенных решений:

где и – произвольные постоянные.

Таким образом, решение исходного уравнения имеет вид:

Заключение

В данной курсовой работе были изучены функции Бесселя (уравнение Бесселя и модифицированное уравнение Бесселя), основные свойства вышеуказанных функций и решено дифференциальное уравнение с использованием функций Бесселя.


Список литературы

1. Лебедев Н.Н. Специальные функции и их приложения (2-е изд.). – М.-Л.: ГИФМЛ, 1963г. – 359с.

2. Романовский П.И. Ряды Фурье. Теория поля. Аналитические и специальные функции. Преобразование Лапласа, учебное пособие для вузов. – М.: Наука, 1983г. – 336с.

3. Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. Т. 2. Функции Бесселя, функции параболического цилиндра, ортогональные многочлены. – М.: Наука, 1966г. – 296с.

4. Пискунов Н.С. Дифференциальное и интегральное исчисления, учебное пособие для вузов. – М.: Наука, 1985г. – 560с.

5. G.N. Watson A treatise on the theory of Bessel functions. 1945. (Имеется перевод: Ватсон Г.Н. Теория бесселевых функций: Пер. со 2-го англ.изд. / Авт.предисл. В.С. Берман. – М.: ИЛ, 1949г. – 798с.)

6. Сабитов К.В. Функциональные, дифференциальные и интегральные уравнения. – М.: Высшая школа, 2005г. – 671с.

7. Кузнецов Д.С. Специальные функции. – М.: Высшая школа, 1962г. – 249с.

8. Морс Ф.М., Фешбах Г. Методы теоретической физики. Т.2. – М.: ИЛ, 1960г. – 897с.

9. Коренев Б.Г. Введение в теорию бесселевых функций. – М.: Наука, 1971г. – 287с.

10. Кузьмин Р.О. Бесселевы функции. – Л.-М.: ГТТИ, 1933г. – 152с.

Функциями Бесселя первого рода, обозначаемыми , являются решения, конечные в точке при целых или неотрицательных . Выбор конкретной функции и её нормализации определяются её свойствами. Можно определить эти функции с помощью разложения в ряд Тейлора около нуля (или в более общий степенной ряд при нецелых ):

Здесь - это гамма-функция Эйлера, обобщение факториала на нецелые значения. График функции Бесселя похож на синусоиду, колебания которой затухают пропорционально , хотя на самом деле нули функции расположены не периодично.

Ниже приведены графики для :

Если не является целым числом, функции и линейно независимы и, следовательно, являются решениями уравнения. Но если целое, то верно следующее соотношение:

5. Вычисление спектра амплитуд и фаз периодических сигналов с помощью процедуры БПФ;

Есть файл в маткаде

Спектр мощности соответствует мощности, рассчитанной как квадрат амплитуды для каждой частоты, но не имеет никакой информации о начальной фазе. По­скольку спектр мощности теряет информацию о начальной фазе, можно попы­таться использовать БПФ, чтобы определить и частоту, и информацию о фазе сигнала.

Информация о начальной фазе, которую БПФ обеспечивает, есть фаза относи­тельно начала отсчета сигнала в области времени. Поэтому необходимо начинать выборку от некоторого момента в сигнале, чтобы получить непротиворечивые

сведения о начальной фазе. Колебание по закону синуса имеет начальную фазу, равную - 90°. Колебание по закону косинуса имеет начальную фазу, равную 0°. Обычно основным интересом для анализа спектра сигнала представляет измере­ние разности фаз между составляющими спектра или разности фаз между двумя гармоническими колебаниями, полученными одновременно. Можно рассмотреть разность фаз между двумя сигналами, используя некоторые из расширенных функций БПФ.

В результате БПФ получают двусторонний спектр в комплексной форме с реаль­ными и мнимыми частями. Необходимо масштабировать и преобразовать двусто­ронний спектр в полярную форму, чтобы получить амплитуду и фазу каждой гар­монической составляющей сигнала. Ось частоты полярной формы идентична оси частоты двустороннего спектра мощности.

Часто ДПФ применяется для наблюдения и анализа спектра сигнала.
При этомчасто наиболее интересными являются лишь амплитуды Ck отдельных гармоник, а не их фазы. В этом случае спектр обычно отображается в виде графика зависимости амплитуды от частоты (рис.2). Часто шкала частот градуируется в децибелах. Децибелы измеряют не сами амплитуды, а их отношения. Напри- мер, разница на 20 дБ означает различие амплитуд в 10 раз, разница на 40 дБ означает отношение амплитуд в 100 раз. Различию амплитуд в 2 раза отвечает разница примерно на 6 дБ. Формула для вычисления разницы в децибелах та-кова:


Шкала частот также часто градуируется в логарифмическом масштабе.

Перед вычислением спектра сигнала нужно выбрать отрезок сигнала, на кото- ром будет вычисляться спектр. Длина отрезка должна быть степенью двойки (для работы БПФ). Иначе сигнал надо дополнить нулями до нужной длины. После этого к выбранному участку сигнала применяют БПФ. Коэффициенты

При вычислении спектра указанным образом возможен следующий нежела- тельный эффект. При разложении функции в ряд Фурье мы полагаем, что функция периодическая, с периодом, равным размеру БПФ. Вычисляется спектр именно такой функции (а не той, из которой мы извлекли кусок). При этом на границах периодов такая функция наверняка будет иметь разрывы (ведь исходная функция не была периодической). А разрывы в функции сильно отражаются на ее спектре, искажая его.

Для устранения этого эффекта применяются так называемые взвешивающие окна. Они плавно сводят на нет функцию вблизи краев анализируемого участ- ка. Весовые окна имеют форму, похожую на гауссиан. Выбранный для анализа участок сигнала домножается на весовое окно, которое устраняет разрывы функции при «зацикливании» данного участка сигнала. Виртуальное «зацикли- вание» происходит при ДПФ, так как алгоритм ДПФ полагает, что функция пе- риодическая. Существует множество весовых окон, названных в честь их соз- дателей. Все они имеют похожую форму и в значительной степени устраняют рассмотренные искажения спектра. Мы приведем формулы двух хороших окон: Хэмминга (Hamming window) и Блэкмана (Blackman window) (рис. 1):

Здесь окно применяется к сигналу с индексами от 0 до N. Окно Хэмминга наи- более часто используется. Окно Блэкмана обладает более сильным действием по устранению рассмотренных искажений, однако имеет свои недостатки.

Рис. 1 Взвешивающие окна Хэмминга (верхнее) и Блэкмана (нижнее).

Важное свойство спектрального анализа заключается в том, что не существует одного, единственно правильного спектра какого-либо сигнала. Спектр можно вычислять с применением различных размеров БПФ и различных весовых окон. Для каждого конкретного приложения предпочтительно использовать свои способы. От выбора размера БПФ зависит разрешение спектра по частоте и по времени. Если выбрать длинный участок сигнала для разложения в спектр, то мы получим хорошее разрешение по частоте, но плохое по времени (т.к. спектр будет отражать усредненное поведение сигнала на всем участке взятия БПФ). Если для разложения в спектр выбрать короткий участок сигнала, то мы получим более точную локализацию по времени, но плохое разрешение по час- тоте (т.к. в преобразовании Фурье будет слишком мало базисных частот). В этом заключается фундаментальный принцип соотношения неопределенно- стей при вычислении спектра: невозможно одновременно получить хорошее разрешение спектра и по частоте, и по времени: эти разрешения обратно про- порциональны.

Еще одно важное свойство спектрального анализа заключается в том, что при разложении в спектр мы находим не те синусоидальные составляющие, из ко- торых состоял исходный сигнал, а лишь находим, с какими амплитудами нуж- но взять определенные кратные частоты, чтобы получить исходный сигнал. Другими словами, разложение проводится не по «частотам исходного сигна- ла», а по «базисным частотам алгоритма БПФ». Однако обычно (особенно при использовании весовых окон) этого почти не заметно по графику спектра, то есть график спектра достаточно адекватно отображает именно частоты исход- ного сигнала.

Рис. 2. Фрагменты различных сигналов (около 800 точек) и спектры более длинных отрезков этих сигналов (4096 точек). Сверху вниз: нота на форте- пиано, голос (пение), барабан (бочка), тарелка (открытый хэт).

6. Вычисление спектральной плотности импульсных сигналов с помощью БПФ

Порядков.

Хотя \alpha и (-\alpha) порождают одинаковые уравнения, обычно договариваются о том, чтобы им соответствовали разные функции (это делается, например, для того, чтобы функция Бесселя была гладкой по \alpha).

Функции Бесселя впервые были определены швейцарским математиком Даниилом Бернулли , а названы в честь Фридриха Бесселя .

Применения

Уравнение Бесселя возникает во время нахождения решений уравнения Лапласа и уравнения Гельмгольца в цилиндрических и сферических координатах. Поэтому функции Бесселя применяются при решении многих задач о распространении волн, статических потенциалах и т. п., например:

  • электромагнитные волны в цилиндрическом волноводе ;
  • теплопроводность в цилиндрических объектах;
  • формы колебания тонкой круглой мембраны;
  • распределение интенсивности света, дифрагированного на круглом отверстии;
  • скорость частиц в цилиндре, заполненном жидкостью и вращающемся вокруг своей оси;
  • волновые функции в сферически симметричном потенциальном ящике.

Функции Бесселя применяются и в решении других задач, например, при обработке сигналов.

Определения

Поскольку приведённое уравнение является линейным дифференциальным уравнением второго порядка, у него должно быть два линейно независимых решения. Однако в зависимости от обстоятельств выбираются разные определения этих решений. Ниже приведены некоторые из них.

Функции Бесселя первого рода

Функциями Бесселя первого рода, обозначаемыми J_\alpha(x), являются решения, конечные в точке x=0 при целых или неотрицательных \alpha. Выбор конкретной функции и её нормализации определяются её свойствами. Можно определить эти функции с помощью разложения в ряд Тейлора около нуля (или в более общий степенной ряд при нецелых \alpha):

J_\alpha(x) = \sum_{m=0}^\infty \frac{(-1)^m}{m!\, \Gamma(m+\alpha+1)} {\left({\frac{x}{2}}\right)}^{2m+\alpha}

Функции Неймана также называются функциями Бесселя второго рода. Линейная комбинация функций Бесселя первого и второго родов являет собой полное решение уравнения Бесселя:

y(x) = C_1 J_\alpha(x) + C_2 Y_\alpha(x).

Ниже приведён график Y_\alpha (x) для \alpha = 0, 1 и 2:

Свойства

Ортогональность

Пусть \mu_1 и \mu_2 - нули функции Бесселя J_{\alpha}(x). Тогда :

\int_{0}^{1}{x J_{\alpha}(\mu_1 x) J_{\alpha}(\mu_2 x) dx} = \left\{ \begin{matrix}

0 & \mbox{;}\quad\mu_1\ne\mu_2 \\ \\ \frac{1}{2}(J"_{\alpha}(\mu_1))^2 & \mbox{;}\quad\mu_1=\mu_2

\end{matrix} \right. .

Асимптотика

Для функций Бесселя первого и второго рода известны асимптотические формулы. При малых аргументах (0 < x \ll \sqrt{\alpha + 1}) и неотрицательных \alpha они выглядят так :

J_\alpha(x) \rightarrow \frac{1}{\Gamma(\alpha+1)} \left(\frac{x}{2} \right) ^\alpha , Y_\alpha(x) \rightarrow \left\{ \begin{matrix} \frac{2}{\pi} \left[ \ln (x/2) + \gamma \right] & \mbox{;}\quad\alpha=0 \\ \\ -\frac{\Gamma(\alpha)}{\pi} \left(\frac{2}{x} \right) ^\alpha & \mbox{;}\quad\alpha > 0

\end{matrix} \right. ,

J_\alpha(z)=\frac{(z/2)^\alpha}{\Gamma(\alpha+1)} {}_0F_1 (\alpha+1; -z^2/4).

Таким образом, при целых \alpha функция Бесселя однозначная аналитическая , а при нецелых - многозначная аналитическая .

Производящая функция

Существует представление для функций Бесселя первого рода и целого порядка через коэффициенты ряда Лорана функции определённого вида, а именно:

e^{\frac{z}{2}\left(w-\frac{1}{w}\right)}=\sum_{n=-\infty}^{+\infty}J_n(z)w^n .

Соотношения

Формула Якоби - Ангера и связанные с ней

Получается выражения для производящей при a=1, t=e^{i\phi}:

e^{iz\sin\phi}=J_0(z)+2\sum_{n=1}^\infty J_{2n}(z)\cos(2n\phi)+2i\sum_{n=1}^\infty J_{2n-1}(z)\sin(2n-1)\phi.

При a=1, t=ie^{i\phi}:

e^{iz\cos\phi}=J_0(z)+2\sum_{n=1}^\infty i^nJ_n(z)\cos(n\phi).

Теорема сложения

Для любого целого n и комплексных z_1 и z_2 выполняется

J_n(z_1+z_2) = \sum_{k=-\infty}^\infty J_k(z_1) J_{n-k}(z_2).

Интегральные выражения

Для любых a и b (в том числе комплексных) выполняется

\int_0^\infty e^{-at}J_n(bt)\mathrm dt = \frac{b^n}{\sqrt{a^2+b^2}(\sqrt{a^2+b^2}+a)^n}.

Частным случаем последней формулы является выражение

\int_0^\infty e^{-at}J_0(bt)\mathrm dt = \frac{1}{\sqrt{a^2+b^2}}.

См. также

Напишите отзыв о статье "Функции Бесселя"

Примечания

Литература

  • Ватсон Г. Теория бесселевых функций. - М .: ИЛ , 1949.
  • Бейтмен Г., Эрдейи А. Функции Бесселя, функции параболического цилиндра, ортогональные многочлены // Высшие трансцендентные функции. Т. 2. 2-е изд / Пер. с англ. Н. Я. Виленкина. - М .: Наука , 1974. - 296 с.
  • Лаврентьев М. А., Шабат Б. В. Методы теории функций комплексного переменного. - М .: Наука , 1973. - 736 с.

Отрывок, характеризующий Функции Бесселя

– Вера, – сказала графиня, обращаясь к старшей дочери, очевидно, нелюбимой. – Как у вас ни на что понятия нет? Разве ты не чувствуешь, что ты здесь лишняя? Поди к сестрам, или…
Красивая Вера презрительно улыбнулась, видимо не чувствуя ни малейшего оскорбления.
– Ежели бы вы мне сказали давно, маменька, я бы тотчас ушла, – сказала она, и пошла в свою комнату.
Но, проходя мимо диванной, она заметила, что в ней у двух окошек симметрично сидели две пары. Она остановилась и презрительно улыбнулась. Соня сидела близко подле Николая, который переписывал ей стихи, в первый раз сочиненные им. Борис с Наташей сидели у другого окна и замолчали, когда вошла Вера. Соня и Наташа с виноватыми и счастливыми лицами взглянули на Веру.
Весело и трогательно было смотреть на этих влюбленных девочек, но вид их, очевидно, не возбуждал в Вере приятного чувства.
– Сколько раз я вас просила, – сказала она, – не брать моих вещей, у вас есть своя комната.
Она взяла от Николая чернильницу.
– Сейчас, сейчас, – сказал он, мокая перо.
– Вы всё умеете делать не во время, – сказала Вера. – То прибежали в гостиную, так что всем совестно сделалось за вас.
Несмотря на то, или именно потому, что сказанное ею было совершенно справедливо, никто ей не отвечал, и все четверо только переглядывались между собой. Она медлила в комнате с чернильницей в руке.
– И какие могут быть в ваши года секреты между Наташей и Борисом и между вами, – всё одни глупости!
– Ну, что тебе за дело, Вера? – тихеньким голоском, заступнически проговорила Наташа.
Она, видимо, была ко всем еще более, чем всегда, в этот день добра и ласкова.
– Очень глупо, – сказала Вера, – мне совестно за вас. Что за секреты?…
– У каждого свои секреты. Мы тебя с Бергом не трогаем, – сказала Наташа разгорячаясь.
– Я думаю, не трогаете, – сказала Вера, – потому что в моих поступках никогда ничего не может быть дурного. А вот я маменьке скажу, как ты с Борисом обходишься.
– Наталья Ильинишна очень хорошо со мной обходится, – сказал Борис. – Я не могу жаловаться, – сказал он.
– Оставьте, Борис, вы такой дипломат (слово дипломат было в большом ходу у детей в том особом значении, какое они придавали этому слову); даже скучно, – сказала Наташа оскорбленным, дрожащим голосом. – За что она ко мне пристает? Ты этого никогда не поймешь, – сказала она, обращаясь к Вере, – потому что ты никогда никого не любила; у тебя сердца нет, ты только madame de Genlis [мадам Жанлис] (это прозвище, считавшееся очень обидным, было дано Вере Николаем), и твое первое удовольствие – делать неприятности другим. Ты кокетничай с Бергом, сколько хочешь, – проговорила она скоро.
– Да уж я верно не стану перед гостями бегать за молодым человеком…
– Ну, добилась своего, – вмешался Николай, – наговорила всем неприятностей, расстроила всех. Пойдемте в детскую.
Все четверо, как спугнутая стая птиц, поднялись и пошли из комнаты.
– Мне наговорили неприятностей, а я никому ничего, – сказала Вера.
– Madame de Genlis! Madame de Genlis! – проговорили смеющиеся голоса из за двери.
Красивая Вера, производившая на всех такое раздражающее, неприятное действие, улыбнулась и видимо не затронутая тем, что ей было сказано, подошла к зеркалу и оправила шарф и прическу. Глядя на свое красивое лицо, она стала, повидимому, еще холоднее и спокойнее.

В гостиной продолжался разговор.
– Ah! chere, – говорила графиня, – и в моей жизни tout n"est pas rose. Разве я не вижу, что du train, que nous allons, [не всё розы. – при нашем образе жизни,] нашего состояния нам не надолго! И всё это клуб, и его доброта. В деревне мы живем, разве мы отдыхаем? Театры, охоты и Бог знает что. Да что обо мне говорить! Ну, как же ты это всё устроила? Я часто на тебя удивляюсь, Annette, как это ты, в свои годы, скачешь в повозке одна, в Москву, в Петербург, ко всем министрам, ко всей знати, со всеми умеешь обойтись, удивляюсь! Ну, как же это устроилось? Вот я ничего этого не умею.
– Ах, душа моя! – отвечала княгиня Анна Михайловна. – Не дай Бог тебе узнать, как тяжело остаться вдовой без подпоры и с сыном, которого любишь до обожания. Всему научишься, – продолжала она с некоторою гордостью. – Процесс мой меня научил. Ежели мне нужно видеть кого нибудь из этих тузов, я пишу записку: «princesse une telle [княгиня такая то] желает видеть такого то» и еду сама на извозчике хоть два, хоть три раза, хоть четыре, до тех пор, пока не добьюсь того, что мне надо. Мне всё равно, что бы обо мне ни думали.
– Ну, как же, кого ты просила о Бореньке? – спросила графиня. – Ведь вот твой уже офицер гвардии, а Николушка идет юнкером. Некому похлопотать. Ты кого просила?
– Князя Василия. Он был очень мил. Сейчас на всё согласился, доложил государю, – говорила княгиня Анна Михайловна с восторгом, совершенно забыв всё унижение, через которое она прошла для достижения своей цели.
– Что он постарел, князь Василий? – спросила графиня. – Я его не видала с наших театров у Румянцевых. И думаю, забыл про меня. Il me faisait la cour, [Он за мной волочился,] – вспомнила графиня с улыбкой.
– Всё такой же, – отвечала Анна Михайловна, – любезен, рассыпается. Les grandeurs ne lui ont pas touriene la tete du tout. [Высокое положение не вскружило ему головы нисколько.] «Я жалею, что слишком мало могу вам сделать, милая княгиня, – он мне говорит, – приказывайте». Нет, он славный человек и родной прекрасный. Но ты знаешь, Nathalieie, мою любовь к сыну. Я не знаю, чего я не сделала бы для его счастья. А обстоятельства мои до того дурны, – продолжала Анна Михайловна с грустью и понижая голос, – до того дурны, что я теперь в самом ужасном положении. Мой несчастный процесс съедает всё, что я имею, и не подвигается. У меня нет, можешь себе представить, a la lettre [буквально] нет гривенника денег, и я не знаю, на что обмундировать Бориса. – Она вынула платок и заплакала. – Мне нужно пятьсот рублей, а у меня одна двадцатипятирублевая бумажка. Я в таком положении… Одна моя надежда теперь на графа Кирилла Владимировича Безухова. Ежели он не захочет поддержать своего крестника, – ведь он крестил Борю, – и назначить ему что нибудь на содержание, то все мои хлопоты пропадут: мне не на что будет обмундировать его.
Графиня прослезилась и молча соображала что то.
– Часто думаю, может, это и грех, – сказала княгиня, – а часто думаю: вот граф Кирилл Владимирович Безухой живет один… это огромное состояние… и для чего живет? Ему жизнь в тягость, а Боре только начинать жить.
– Он, верно, оставит что нибудь Борису, – сказала графиня.
– Бог знает, chere amie! [милый друг!] Эти богачи и вельможи такие эгоисты. Но я всё таки поеду сейчас к нему с Борисом и прямо скажу, в чем дело. Пускай обо мне думают, что хотят, мне, право, всё равно, когда судьба сына зависит от этого. – Княгиня поднялась. – Теперь два часа, а в четыре часа вы обедаете. Я успею съездить.
И с приемами петербургской деловой барыни, умеющей пользоваться временем, Анна Михайловна послала за сыном и вместе с ним вышла в переднюю.
– Прощай, душа моя, – сказала она графине, которая провожала ее до двери, – пожелай мне успеха, – прибавила она шопотом от сына.
– Вы к графу Кириллу Владимировичу, ma chere? – сказал граф из столовой, выходя тоже в переднюю. – Коли ему лучше, зовите Пьера ко мне обедать. Ведь он у меня бывал, с детьми танцовал. Зовите непременно, ma chere. Ну, посмотрим, как то отличится нынче Тарас. Говорит, что у графа Орлова такого обеда не бывало, какой у нас будет.



© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний