Криволинейное движение. Неравномерное движение

Главная / А. С. Пушкин

Простейшим видом движения материи является механическое движение, представляющее собой перемещение в пространстве тел или их частей относительно друг друга.

Различают три вида механического движения тел - поступательное, вращательное и колебательное. При поступательном движении твердого тела все его точки описывают совершенно одинаковые (при наложении совпадающие) линии и имеют одинаковую скорость и одинаковое ускорение (в данный момент времени). Определение вращательного движения тела дано в § 21, колебательного в § 27.

Если форма и размеры тела не оказывают существенного влияния на характер его движения, то такое тело можно рассматривать как материальную точку. Материальной точкой называется тело, формой и размерами которого можно пренебречь в данной задаче. Последняя оговорка весьма существенна: при рассмотрении одного движения тела можно считать его материальной точкой, тогда как при рассмотрении другого движения того же самого тела это может оказаться недопустимым. Например, изучая движение Земли вокруг Солнца, можно и Землю и Солнце считать материальными точками. Изучая же движение Земли вокруг своей оси, нельзя принимать Землю за материальную точку, так как на характер вращательного движения Земли существенно влияют ее форма и размеры.

Перемещение тела можно рассматривать только относительно какого-либо другого тела или группы тел. Поэтому при изучении движения материальной точки необходимо прежде всего выбрать систему отсчета, т. е. систему координат, связанную с телом, относительно которого рассматривается движение материальной точки. Такой системой отсчета может служить, например, прямоугольная система координат XYZ, связанная с какой-нибудь точкой О земной поверхности (рис. 7). Тогда положение материальной точки А в любой момент времени определится координатами xyz. К вопросу о системах отсчета мы еще вернемся в § 14.

Линия, описываемая движущейся материальной точкой, называется траекторией. Отрезок траектории пройденный точкой за некоторый промежуток времени, представляет путь, пройденный точкой

за этот промежуток времени (рис. 7). Движение называется прямолинейным, если траектория - прямая линия, и криволинейным, если траектория - кривая линия.

Пусть материальная точка, двигаясь по криволинейной траектории, прошла за малый промежуток времени малый путь (рис. 8). Проведем касательную к траектории в точке А и хорду А В. Отношение пути, пройденного материальной точкой, к промежутку времени, за который этот путь пройден, называется средней скоростью движения

В общем случае криволинейного (и прямолинейного) движения величина средней скорости может быть различной на разных участках траектории и зависеть от величины рассматриваемого пути или, что то же, от величины промежутка времени Будем бесконечно уменьшать промежуток времени, т. е. положим Тогда точка В будет стремиться к точке хорда к дуге и обе они в пределе совпадут с касательной Таким образом, криволинейное движение по малой дуге перейдет в прямолинейное движение по бесконечно малому отрезку касательной к траектории вблизи точки а средняя скорость на малом пути перейдет в мгновенную, или истинную, скорость в точке А. Поэтому величина мгновенной скорости

Как видно из рис. 8, мгновенная скорость направлена по касательной к траектории.

Итак, мгновенная скорость движения в любой точке траектории есть вектор, направленный по касательной к траектории, а по величине равный пределу средней скорости при стремлении промежутка времени к нулю:

Из формул (1) и (2) следует, что скорость измеряется в Движение материальной точки называется равномерным, если его скорость не изменяется с течением времени; в противном случае движение называется неравномерным. Неравномерность движения характеризуется физической величиной, называемой ускорением.

Пусть материальная точка переместилась за малый промежуток времени из где она имела скорость в В, где она имеет скорость (рис. 9). На рисунке видно, что изменение (приращение) скорости точки есть вектор равный разности векторов конечной и начальной скоростей:

Отношение изменения скорости к промежутку времени, за который это изменение произошло, называется средним ускорением

Из правила деления вектора на скаляр следует, что среднее ускорение направлено так же, как приращение скорости, т. е. под углом к траектории в сторону ее вогнутости (см. рис. 9).

В общем случае величина среднего ускорения может быть различной на различных участках траектории и зависеть от величины промежутка времени, по которому проводится усреднение. Будем уменьшать промежуток времени. В пределе при точка В будет стремиться к точке и среднее ускорение на пути А В превратится в мгновенное, или истинное, ускорение а в точке Поэтому

Итак, мгновенное ускорение движения в любой точке траектории есть вектор, направленный под углом к траектории в сторону ее вогнутости, а по величине равный пределу среднего ускорения при стремлении промежутка времени к нулю.

Из формул (3) и (4) следует, что ускорение измеряется в

Вектор ускорения принято раскладывать на две составляющие, одна из которых направлена по касательной к траектории и называется касательным, или тангенциальным, ускорением другая - по нормали к траектории и называется нормальным, или центростремительным, ускорением (рис. 10). Ускорение и его

составляющие связаны между собой очевидными соотношениями:

Касательное ускорение изменяет только величину скорости, а центростремительное ускорение - только ее направление. Очевидно, что криволинейное движение происходит всегда с ускорением, так как в этом случае скорость обязательно будет изменяться (по крайней мере по направлению).

Пользуясь понятиями высшей математики, можно заменить пределы отношений, стоящих в формулах (2) и (4), производными и написать:

Означают соответственно бесконечно малые изменения (дифференциалы) перемещения, скорости и времени. Следовательно, скорость представляет собой производную перемещения по времени, а ускорение - производную скорости по времени.

Мы ознакомились с общим случаем неравномерного движения материальной точки по криволинейной траектории произвольной формы. В последующих параграфах рассмотрим частные случаи: прямолинейное движение и движение по окружности.


Криволинейное движение - это движение, траектория которого представляет собой кривую линию. (Например, окружность, эллипс, гиперболу, параболу). Примером криволинейного движения является движение планет, конца стрелки часов по циферблату и т.д. В общем случае скорость при криволинейном движении изменяется по величине и по направлению.

Криволинейное движение материальной точки считается равномерным движением, если модуль скорости постоянен (например, равномерное движение по окружности), и равноускоренным, если модуль и направление скорости изменяется (например, движение тела, брошенного под углом к горизонту).

Рис. 1

При движении по криволинейной траектории вектор перемещения направлен по хорде (рис. 1), а l - длина траектории. Мгновенная скорость движения тела (то есть скорость тела в данной точке траектории) направлена по касательной в той точке траектории, где в данный момент находится движущееся тело (рис. 2).

Рис. 2

Криволинейное движение - это всегда ускоренное движение. То естьускорение при криволинейном движении присутствует всегда, даже если модуль скорости не изменяется, а изменяется только направление скорости. Изменение величины скорости за единицу времени - это тангенциальное ускорение:

Где v ф , v 0 - величины скоростей в момент времени t 0 + Дt и t 0 соответственно.

Тангенциальное ускорение в данной точке траектории по направлению совпадает с направлением скорости движения тела или противоположно ему.

Нормальное ускорение - это изменение скорости по направлению за единицу времени:

Нормальное ускорение направлено по радиусу кривизны траектории (к оси вращения). Нормальное ускорение перпендикулярно направлению скорости.

Центростремительное ускорение - это нормальное ускорение при равномерном движении по окружности.

Полное ускорение при равнопеременном криволинейном движении тела равно:

Движение тела по криволинейной траектории можно приближённо представить как движение по дугам некоторых окружностей (рис. 3).

В зависимости от формы траектории, движение делится на прямолинейное и криволинейное. В реальном мире мы чаще всего имеем дело с криволинейным движением, когда траектория представляет собой кривую линию. Примерами такого движения является траектория тела, брошенного под углом к горизонту, движение Земли вокруг Солнца движение планет, конца стрелки часов по циферблату и т.д.

Рисунок 1. Траектория и перемещение при криволинейном движении

Определение

Криволинейное движение -- это движение, траектория которого представляет собой кривую линию (например, окружность, эллипс, гиперболу, параболу). При движении по криволинейной траектории вектор перемещения $\overrightarrow{s}$ направлен по хорде (рис. 1), а l -- длина траектории. Мгновенная скорость движения тела (то есть скорость тела в данной точке траектории) направлена по касательной в той точке траектории, где в данный момент находится движущееся тело (рис. 2).

Рисунок 2. Мгновенная скорость при криволинейном движении

Однако более удобным является следующий подход. Можно представить это движение как совокупность нескольких движений по дугам окружностей (см. рис. 4.). Таких разбиений получится меньше, чем в предыдущем случае, кроме того, движение по окружности само является криволинейным.

Рисунок 4. Разбиение криволинейного движения на движения по дугам окружностей

Вывод

Для того, чтобы описывать криволинейное движение, нужно научиться описывать движение по окружности, а потом произвольное движение представлять в виде совокупностей движений по дугам окружностей.

Задачей исследования криволинейного движения материальной точки является составление кинематического уравнения, описывающего это движение и позволяющего по заданным начальным условиям определить все характеристики этого движения.

Для описания движения в механике используются математические модели: материальная точка и абсолютно твердое тело.

Материальной точкой называется обладающее массой тело, размерами которого можно пренебречь в условиях данной задачи (размеры тела минимум в 10 раз меньше расстояния, которое проходит тело). Например, при вычислении траектории, по которой Земля движется вокруг Солнца, Землю можно рассматривать как материальную точку, так как ее радиус в 24 000 раз меньше радиуса ее орбиты. При рассмотрении движения тел по поверхности Земли она должна рассматриваться как протяженный объект.

Любое тело можно рассматривать как систему материальных точек.

Если деформация тела при его взаимодействии с другими телами в рассматриваемом процессе пренебрежимо мала, то можно пользоваться моделью абсолютно твердого тела.

Абсолютно твердым телом называется тело, расстояние между двумя точками которого в условиях данной задачи можно считать постоянным, т.е. это тело, форма и размеры которого не изменяются при его движении.

Тела могут двигаться поступательно и вращательно. Рассмотрим поступательное движение.

Поступательным движением называется такое движение, при котором любая прямая, проведенная в теле, остается параллельной самой себе. При поступательном движении все точки тела движутся одинаковым образом. Поэтому достаточно рассмотреть движение одной точки тела, например, центра тяжести, чтобы говорить о движении тела в целом.

Для определения положения тела в пространстве нужно использовать систему отсчета. Системой отсчета называется совокупность системы координат и часов, связанных с телом отсчета, по отношению к которому изучается движение.

Существует два способа описания движения тела (точки): векторный способ и координатный.

1) векторный - задается радиус-вектор . Радиус-вектором называется вектор, проведенный из начала координат в данную точку;

2) координатный - задаются три координаты - x,y,z (рис. 1.1).

Если i, j, k – единичные векторы прямоугольной декартовой системы координат, то радиус-вектор запишется следующим образом:

r = xi + yj + zk .

При движении материальной точки М ее координаты x, y, z и r меняются со временем. Поэтому для задания закона движения необходимо знать либо уравнения зависимости координат точки от времени:

x = x(t) y = y(t) z = z(t) либо уравнение r = r (t).

Эти уравнения называются кинематическими уравнениями движения материальной точки.

Исключив из уравнения время, получим уравнение траектории.

Траекторией называется линия, которую описывает в пространстве сама точка при ее движении. В зависимости от формы траектории различают прямолинейное и криволинейное движение. Если все участки траектории лежат в одной плоскости, то движение называется плоским .

Длиной пути S материальной точки называют сумму длин всех участков траектории, пройденных точкой за рассматриваемый промежуток времени.

z s ∆r r 0 r y x рис. 1.2
Перемещением ∆r материальной точки называется вектор, проведенный из начального положения точки в конечное (рис.1.2):

∆r = r – r 0

При прямолинейном движении вектор перемещения совпадает с соответствующим участком траектории. Так как перемещение – вектор, то имеет место закон независимости движений:

Если точка одновременно участвует в нескольких движениях, то результирующее перемещение точки равно векторной сумме перемещений, совершаемых точкой за одно и тоже время в каждом из движений отдельно.

Полное описание движения материальной точки с помощью только вектора перемещения невозможно. Необходимо знать быстроту изменения перемещения.

Пусть материальная точка движется по криволинейной траектории. Вектор перемещения представляет собой приращение радиуса-вектора за время Δt:

Величину, характеризующую быстроту изменения положения точки, определяют отношением: , где – средняя скорость движения. Вектор совпадает по направлению с . Если в выражении для средней скорости перейти к пределу при ∆t → 0, то получим выражение мгновенной скорости , т.е. скорости в данный момент времени:

Это значит, что в данный момент времени равен производной и направлен по касательной к траектории в данной точке (как и ) в сторону движения точки.

Из математики известно, что модуль малого приращения равен длине ds соответствующей ему дуги траектории, т.е.

Из последнего следует понятие путевой скорости:

Для нахождения пути, пройденного телом за промежуток времени Δt, надо найти интеграл:

Поскольку мгновенная скорость – векторная величина, то ее можно разложить на три составляющие по осям координат:

v = v x i + v y j + v z k .

Используя выражение для мгновенной скорости, получим:

Отсюда проекции вектора скорости на оси координат:

Рассмотрим некоторые частные случаи:

1. Скорость материальной точки не зависит от времени (равномерное движение). Для определения перемещения используется уравнение:

для определения пути

2. Скорость материальной точки является функцией времени (неравномерное движение).

для пути аналогично.

Скорость механического движения в большинстве случаев не остается постоянной, а меняется со временем либо по величине, либо по направлению, либо по величине и направлению одновременно.

A
В
Пусть тело двигалось из точки А в точку В. Перенеся вектор в точку А находим приращение скорости : – среднее ускорение - вектор, равный производной от вектора скорости по времени и совпадающий по направлению с вектором изменения скорости ∆v за малый интервал времени ∆t.

Используя предыдущие рассуждения, получим:

– мгновенное ускорение.

Ускорение – физическая величина характеризующая быстроту изменения скорости.

Так как ускорение – это вектор, то: a = a x i + a y j + a z k

Легко показать, что:

а для модуля вектора ускорения получим:

Криволинейное движение .

В общем случае криволинейного неравномерного движения скорость изменяется как по величине, так и по направлению. Полное ускорение, которым обладает движущаяся точка, определяет оба вида изменения скорости. Для рассмотрения движения удобно использовать скользящую систему координат – систему, которая изменяет свое положение в пространстве вместе с движением материальной точки. За начало отсчета принимают саму движущуюся точку. Одна ось направлена по касательной к траектории движения материальной точки в данный момент времени (тангенциальная ось τ ), другая направлена перпендикулярно (нормальная ось n ). Рассмотрим движение материальной точки по криволинейной плоской траектории.

М τ 1 v 1

n 1 N

n 2 τ 2

v 2

Вектор скорости направлен всегда по касательной к траектории. В скользящей системе координат скорость материальной точки можно представить как v = vτ

Учитывая, что, имеем

Таким образом, ускорение материальной точки представляет собой сумму двух векторов, первый их которых показывает быстроту изменения модуля скорости (тангенциальное ускорение), второй – быстроту изменения направления скорости (нормальное ускорение):

Нормальное ускорение направлено перпендикулярно тангенциальной оси и направлено по нормальной оси скользящей системы координат.

Для определения физического смысла нормального ускорения рассматривают равномерное движение точки по окружности, из которого следует, что

Равноускоренное криволинейное движение

Криволинейные движения - движения, траектории которых представляют собой не прямые, а кривые линии. По криволинейным траекториям движутся планеты, воды рек.

Криволинейное движение - это всегда движение с ускорением, даже если по модулю скорость постоянна. Криволинейное движение с постоянным ускорением всегда происходит в той плоскости, в которой находятся векторы ускорения и начальные скорости точки. В случае криволинейного движения с постоянным ускорением в плоскости xOy проекции vxи vy ее скорости на оси Ox и Oy и координаты x и y точки в любой момент времени t определяется по формулам

Неравномерное движение. Скорость при неравномерном движении

Ни одно тело не движется все время с постоянной скоростью. Начиная движение, автомобиль движется быстрее и быстрее. Некоторое время он может двигаться равномерно, но потом он тормозит и останавливается. При этом автомобиль проходит разные расстояния за один и то же время.

Движение, при котором тело за равные промежутки времени проходит неодинаковые отрезки пути, называется неравномерным. При таком движении величина скорости не остается неизменной. В таком случае можно говорить лишь о средней скорости.

Средняя скорость показывает, чему равно перемещение, которое тело проходит за единицу времени. Она равна отношению перемещения тела до времени движения. Средняя скорость, как и скорость тела при равномерном движении, измеряется в метрах, разделенных на секунду. Для того, чтобы характеризовать движение точнее, в физике применяют мгновенную скорость.

Скорость тела в данный момент времени или в данной точке траектории называется мгновенной скоростью. Мгновенная скорость является векторной величиной и направлена так же, как вектор перемещения. Измерить мгновенную скорость можно с помощью спидометра. В Системе Интернациональной мгновенная скорость измеряется в метрах, разделенных на секунду.

точка движение скорость неравномерный

Движение тела по окружности

В природе и технике очень часто встречается криволинейное движение. Оно сложнее прямолинейного, так как существует множество криволинейных траекторий; это движение всегда ускоренное, даже когда модуль скорости не меняется.

Но движение по любой криволинейной траектории можно приблизительно представить как движение по дугам круга.

При движении тела по окружности направление вектора скорости меняется от точки к точке. Поэтому когда говорят о скорости такого движения, подразумевают мгновенную скорость. Вектор скорости направлен по касательной к окружности, а вектор перемещения - по хордам.

Равномерное движение по окружности - это движение, во время которого модуль скорости движения не изменяется, изменяется только ее направление. Ускорение такого движения всегда направлено к центру окружности и называется центростремительным. Для того чтобы найти ускорение тела, которое движется по кругу, необходимо квадрат скорости разделить на радиус окружности.

Помимо ускорения, движение тела по кругу характеризуют следующие величины:

Период вращения тела - это время, за которое тело совершает один полный оборот. Период вращения обозначается буквой Т и измеряется в секундах.

Частота вращения тела - это число оборотов в единицу времени. Частота вращения обозначается буквой? и измеряется в герцах. Для того чтобы найти частоту, надо единицу разделить на период.

Линейная скорость - отношение перемещения тела до времени. Для того чтобы найти линейную скорость тела по окружности, необходимо длину окружности разделить на период (длина окружности равна 2? умножить на радиус).

Угловая скорость - физическая величина, равная отношению угла поворота радиуса окружности, по которой движется тело, до времени движения. Угловая скорость обозначается буквой? и измеряется в радианах, разделенных на секунду. Найти угловую скорость можно, разделив 2? на период. Угловая скорость и линейная между собой. Для того чтобы найти линейную скорость, необходимо угловую скорость умножить на радиус окружности.


Рисунок 6. Движение по окружности, формулы.



© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний