Динамика системы тел. Основные теоремы и понятия

Главная / Н. А. Некрасов

Просмотр: эта статья прочитана 18009 раз

Pdf Выберите язык... Русский Украинский Английский

Краткий обзор

Полностью материал скачивается выше, предварительно выбрав язык


Теорема об изменении момента количества движения материальной точки

Момент количества движения

Момент количества движения точки М относительно центра О − это вектор, направленный перпендикулярно плоскости, проходящей через вектор количества движения и центр О в ту сторону, откуда поворот вектора количества движения относительно центра О виден против движения часовой стрелки.

Момент количества движения точки М относительно ос и равен произведению проекции вектора количества движения на плоскость перпендикулярную к оси на плечо этой проекции относительно точки О пересечения оси с плоскостью.

Теорема об изменении момента количества движения материальной точки относительно центра

Производная по времени от момента количества движения материальной точки относительно некоторого неподвижного центра равняется геометрической сумме моментов сил, действующих на точку, относительно того же центра.

Теорема об изменении момента количества движения материальной точки относительно оси

Производная по времени от момента количества движения материальной точки относительно некоторой неподвижной оси равняется алгебраической сумме моментов сил, действующих на точку, относительно этой же оси.

Законы сохранения момента количества движения материальной точки

  1. Если линия действия равнодействующей приложенных к материальной точке сил все время проходит через некоторый неподвижный центр, то момент количества движения материальной точки остается постоянным.
  2. Если момент равнодействующей приложенных к материальной точке сил относительно некоторой оси все время равняется нулю, то момент количества движения материальной точки относительно этой же оси остается постоянным.

Теорема об изменении главного момента количества движения системы

Кинетический момент

Кинетическим моментом или главным моментом количества движения механической системы относительно центра называют вектор, равный геометрической сумме моментов количества движения всех материальных точек системы относительно этого же центра.

Кинетическим моментом или главным моментом количества движения механической системы относительно оси называют алгебраическую сумму моментов количеств движения всех материальных точек относительно той же оси

Проекция кинетического момента механической системы относительно центра О на ось, проходящую через этот центр, равняется кинетическому моменту системы относительно этой оси.

Теорема об изменении главного момента количества движения системы (относительно центра) - теорема моментов

Производная по времени от кинетического момента механической системы относительно некоторого неподвижного центра геометрически равняется главному моменту внешних сил, действующих на эту систему, относительно того же центра

Теорема об изменении кинетического момента механической системы (относительно оси)

Производная по времени от кинетического момента механической системы относительно некоторой оси равняется главному моменту внешних сил относительно этой же оси.

Законы сохранения кинетического момента механической системы

  1. Если главный момент внешних сил относительно некоторого неподвижного центра все время равен нулю, то кинетический момент механической системы относительно этого центра величина постоянная.
  2. Если главный момент внешних сил относительно некоторой оси равен нулю, то кинетический момент механической системы относительно этой же оси величина постоянная.
  1. Теорема моментов имеет большое значение при изучении вращательного движения тел и разрешает не учитывать заведомо неизвестные внутренние силы.
  2. Внутренние силы не могут изменить главный момент количества движения системы.

Кинетический момент вращающейся системы

Для системы, которая вращается вокруг неподвижной оси (или оси, проходящей через центр масс), кинетический момент относительно оси вращения равен произведению момента инерции относительно этой оси и угловой скорости.

Формат: pdf

Язык: русский, украинский

Пример расчета прямозубой цилиндрической передачи
Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.


Пример решения задачи на изгиб балки
В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.


Пример решения задачи на кручение вала
Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается


Пример решения задачи на растяжение-сжатие стержня
Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается


Применение теоремы о сохранении кинетической энергии
Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы



Определение скорости и ускорения точки по заданным уравнениям движения
Пример решение задачи на определение скорости и ускорения точки по заданным уравнениям движения


Определение скоростей и ускорений точек твердого тела при плоскопараллельном движении
Пример решения задачи на определение скоростей и ускорений точек твердого тела при плоскопараллельном движении


Определение усилий в стержнях плоской фермы
Пример решения задачи на определение усилий в стержнях плоской фермы методом Риттера и методом вырезания узлов

Рассмотрим материальную точку M массой m , движущуюся под действием силы F (рисунок 3.1). Запишем и построим вектор момента количества движения (кинетического момента) M 0 материальной точки относительно центра O :

Рисунок 3.1

Дифференцируем выражение момента количества движения (кинетического момента k 0 ) по времени:

Так как dr/dt=V , то векторное произведение V × m∙V (коллинеарных векторов V и m∙V ) равно нулю. В то же время d(m∙V)/dt=F согласно теореме о количестве движения материальной точки . Поэтому получаем, что

dk 0 /dt = r×F , (3.3)

где r×F = M 0 (F) – вектор-момент силы F относительно неподвижного центра O . Вектор k 0 ⊥ плоскости (r, m×V ), а вектор M 0 (F) ⊥ плоскости (r, F ), окончательно имеем

dk 0 /dt = M 0 (F) . (3.4)

Уравнение (3.4) выражает теорему об изменении момента количества движения (кинетического момента) материальной точки относительно центра: производная по времени от момента количества движения (кинетического момента) материальной точки относительно какого-либо неподвижного центра равна моменту действующей на точку силы относительно того же центра.

Проецируя равенство (3.4) на оси декартовых координат, получаем

dk x /dt = M x (F) ;

dk y /dt = M y (F) ;

dk z /dt = M z (F) . (3.5)

Равенства (3.5) выражают теорему об изменении момента количества движения (кинетического момента) материальной точки относительно оси: производная по времени от момента количества движения (кинетического момента) материальной точки относительно какой-либо неподвижной оси равна моменту действующей на эту точку силы относительно той же оси.

Рассмотрим следствия, вытекающие из теорем (3.4) и (3.5).

Следствие 1

Рассмотрим случай, когда сила F во все время движения точки проходит через неподвижный центр O (случай центральной силы), т.е. когда M 0 (F) = 0 . Тогда из теоремы (3.4) следует, что k 0 = const , т.е. в случае центральной силы момент количества движения (кинетический момент) материальной точки относительно центра этой силы остается постоянным по модулю и направлению (рисунок 3.2).

Рисунок 3.2

Из условия k 0 = const следует, что траектория движущейся точки представляет собой плоскую кривую, плоскость которой проходит через центр этой силы.

Следствие 2

Пусть M z (F) = 0 , т.е. сила пересекает ось z или параллельна ей.

В этом случае, как это видно из третьего из уравнений (3.5), k z = const , т.е. если момент действующей на точку силы относительно какой-либо неподвижной оси всегда равен нулю, то момент количества движения (кинетический момент) точки относительно этой оси остается постоянным .

Направление и величина момента количества движенияопределяется точно так же, как в случае оценки момента силы (параграф 1.2.2).

Одновременно определим (главный) момент количества движения как векторную сумму моментов количества движений точек рассматриваемой системы . Он имеет и второе название – кинетический момент :

Найдем производную по времени выражения (3.40), используя правила дифференцирования произведения двух функций, а также то, что производная суммы равна сумме производных (т.е. знак суммы при дифференцировании можно перемещать как коэффициент):

.

Учтем очевидные кинематические равенства: . Тогда: . Используем среднее уравнение из формул (3.26) , а также то, что векторное произведение двух коллинеарных векторов ( и ) равно нулю, получим:

Применяя ко 2-му слагаемому свойство внутренних сил (3.36), получим выражение для теоремы об изменении главного момента количества движения механической системы:

. (3.42)

Производная по времени от кинетического момента равна сумме моментов всех действующих в системе внешних сил .

Эту формулировку часто называют кратко: теорема моментов .

Необходимо заметить, что теорема моментов формулируется в неподвижной системе отсчета относительно некого неподвижного центра О. Если в качестве механической системы рассматривается твердое тело, то удобно выбрать центр О на оси вращения тела.

Следует отметить одно важное свойство теоремы моментов (приведем его без вывода). Теорема моментов выполняется и в движущейся поступательно системе отсчета, если в качестве ее центра выбран центр масс (т. С) тела (механической системы):

Формулировка теоремы в этом случае практически сохраняется.

Следствие 1

Пусть правая часть выражения (3.42) равна нулю =0, - система изолирована. Тогда из уравнения (3.42) следует, что .

Для изолированной механической системы вектор кинетического момента системы со временем не меняется ни направлению, ни по величине .

Следствие 2

При равенстве нулю правой части какого либо из выражений (3.44), например, для оси Oz: =0 (частично изолированная система), то из уравнений (3.44) следует: =const.

Следовательно, если сумма моментов внешних сил относительно какой либо оси равна нулю, то осевой кинетический момент системы по этой оси со временем не меняется .

Приведенные выше в следствиях формулировки есть выражения закона сохранение момента количества движения в изолированных системах .

Кинетический момент твердого тела

Рассмотрим частный случай – вращение твердого тела вокруг оси Oz (рис.3.4).

Рис.3.4

Точка тела, отстоящая от оси вращения на расстояние h k , вращается в плоскости, параллельной Oxy со скоростью . В соответствии с определением осевого момента используем выражение (1.19), заменив проекцию F XY силы на эту плоскость количеством движения точки . Оценим осевой кинетический момент тела:

По теореме Пифагора , поэтому (3.46) можно записать так:

(3.47)

Тогда выражение (3.45) приобретет вид:

(3.48)

Если воспользоваться законом сохранения кинетического момента для частично изолированной системы (следствие 2) применительно к твердому телу (3.48), получим . В этом случае можно рассмотреть два варианта:

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1. Как определяется кинетический момент вращающегося твердого тела?

2. Чем отличается осевой момент инерции от осевого кинетического момента?

3. Как меняется со временем скорость вращения твердого тела при отсутствии внешних сил?

Осевой момент инерции твердого тела

Как мы убедимся впоследствии, осевой момент инерции тела имеет для вращательного движения тела такое же значение, как масса тела при его поступательном движении. Эта одна из важнейших характеристик тела, определяющая инерцию тела при его вращении. Как видно из определения (3.45), эта положительная скалярная величина, которая зависит от масс точек системы, но в большей мере от удаленности точек от оси вращения.

Для сплошных однородных тел простых форм величину осевого момента инерции, как и в случае оценки положения центра масс(3.8), считают методом интегрирования, используя вместо дискретной массы массу элементарного объема dm=ρdV:

(3.49)

Приведем для справки значения моментов инерции для некоторых простых тел:

m и длиной l относительно оси, проходящей перпендикулярно стержню через его середину (рис.3.5).

Рис.3.5

· Момент инерции тонкого однородного стержня массой m и длиной l относительно оси, проходящей перпендикулярно стержню через его торец (рис.3.6).

Рис.3.6

· Момент инерции тонкого однородного кольца массой m и радиусом R относительно оси, проходящей через его центр перпендикулярно плоскости кольца (рис.3.7).

Рис.3.7

· Момент инерции тонкого однородного диска массой m и радиусом R относительно оси, проходящей через его центр перпендикулярно плоскости диска (рис.3.7).

Рис.3.8

· Момент инерции тела произвольной формы.

Для тел произвольной формы момент инерции пишут в такой форме:

где ρ – т.н. радиус инерции тела, или радиус некого условного кольца массой m , осевой момент инерции которого равен моменту инерции данного тела.

Теорема Гюйгенса – Штейнера

Рис.3.9

Свяжем с телом две параллельные системы координат. Первая Cx"y"z", с началом координат в центре масс, называется центральной, и вторая Oxyz, с центром О, лежащей на оси Cx" на расстоянии СО = d (рис.3.9). Легко установить связи координат точек тела у этих систем:

В соответствии с формулой (3.47), момент инерции тела относительно оси Oz:

Здесь постоянные для всех членов 2-й и 3-й сумм правой части сомножители 2d и d вынесены из соответствующих сумм. Сумма масс в третьем слагаемом – это масса тела . Вторая сумма, в соответствии с (3.7), определяет координату центра масс С на оси Cx" (), причем очевидно равенство: . Учтя, что 1-е слагаемое, по определению, является моментом инерции тела относительно центральной оси Cz" (или Z C) , получим формулировку теоремы Гюйгенса - Штейнера:

(3.50)

Момент инерции тела относительно некой оси равен сумме момента инерции тела относительно параллельной центральной оси и произведения массы тела на квадрат расстояния между этими осями .

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1. Приведите формулы для осевых моментов инерции стержня, кольца, диска.

2. Найдите радиус инерции круглого сплошного цилиндра относительно его центральной оси.


Динамика:
Динамика материальной точки
§ 28. Теорема об изменении количества движения материальной точки. Теорема об изменении момента количества движения материальной точки

Задачи с решениями

28.1 Железнодорожный поезд движется по горизонтальному и прямолинейному участку пути. При торможении развивается сила сопротивления, равная 0,1 веса поезда. В момент начала торможения скорость поезда равняется 20 м/с. Найти время торможения и тормозной путь.
РЕШЕНИЕ

28.2 По шероховатой наклонной плоскости, составляющей с горизонтом угол α=30°, спускается тяжелое тело без начальной скорости. Определить, в течение какого времени T тело пройдет путь длины l=39,2 м, если коэффициент трения f=0,2.
РЕШЕНИЕ

28.3 Поезд массы 4*10^5 кг входит на подъем i=tg α=0,006 (где α угол подъема) со скоростью 15 м/с. Коэффициент трения (коэффициент суммарного сопротивления) при движении поезда равен 0,005. Через 50 с после входа поезда на подъем его скорость падает до 12,5 м/с. Найти силу тяги тепловоза.
РЕШЕНИЕ

28.4 Гирька М привязана к концу нерастяжимой нити MOA, часть которой OA пропущена через вертикальную трубку; гирька движется вокруг оси трубки по окружности радиуса MC=R, делая 120 об/мин. Медленно втягивая нить OA в трубку, укорачивают наружную часть нити до длины OM1, при которой гирька описывает окружность радиусом R/2. Сколько оборотов в минуту делает гирька по этой окружности?
РЕШЕНИЕ

28.5 Для определения массы груженого железнодорожного состава между тепловозами и вагонами установили динамометр. Среднее показание динамометра за 2 мин оказалось 10^6 Н. За то же время состав набрал скорость 16 м/с (вначале состав стоял на месте). Найти массу состава, если коэффициент трения f=0,02.
РЕШЕНИЕ

28.6 Каков должен быть коэффициент трения f колес заторможенного автомобиля о дорогу, если при скорости езды v=20 м/с он останавливается через 6 с после начала торможения.
РЕШЕНИЕ

28.7 Пуля массы 20 г вылетает из ствола винтовки со скоростью v=650 м/с, пробегая канал ствола за время t=0,00095 c. Определить среднюю величину давления газов, выбрасывающих пулю, если площадь сечения канала σ=150 мм^2.
РЕШЕНИЕ

28.8 Точка M движется вокруг неподвижного центра под действием силы притяжения к этому центру. Найти скорость v2 в наиболее удаленной от центра точке траектории, если скорость точки в наиболее близком к нему положении v1=30 см/с, а r2 в пять раз больше r1.
РЕШЕНИЕ

28.9 Найти импульс равнодействующей всех сил, действующих на снаряд за время, когда снаряд из начального положения O переходит в наивысшее положение М. Дано: v0=500 м/с; α0=60°; v1=200 м/с; масса снаряда 100 кг.
РЕШЕНИЕ

28.10 Два астероида М1 и М2 описывают один и тот же эллипс, в фокусе которого S находится Солнце. Расстояние между ними настолько мало, что дугу М1М2 эллипса можно считать отрезком прямой. Известно, что длина дуги М1М2 равнялась a, когда середина ее находилась в перигелии P. Предполагая, что астероиды движутся с равными секториальными скоростями, определить длину дуги М1М2, когда середина ее будет проходить через афелий A, если известно, что SP=R1 и SA=R2.
РЕШЕНИЕ

28.11 Мальчик массы 40 кг стоит на полозьях спортивных саней, масса которых равна 20 кг, и делает каждую секунду толчок с импульсом 20 Н*с. Найти скорость, приобретаемую санями за 15 c, если коэффициент трения f=0,01.
РЕШЕНИЕ

28.12 Точка совершает равномерное движение по окружности со скоростью v=0,2 м/с, делая полный оборот за время T=4 c. Найти импульс S сил, действующих на точку, за время одного полупериода, если масса точки m=5 кг. Определить среднее значение силы F.
РЕШЕНИЕ

28.13 Два математических маятника, подвешенных на нитях длин l1 и l2 (l1>l2), совершают колебания одинаковой амплитуды. Оба маятника одновременно начали двигаться в одном направлении из своих крайних отклоненных положений. Найти условие, которому должны удовлетворять длины l1 и l2 для того, чтобы маятники по истечении некоторого промежутка времени одновременно вернулись в положение равновесия. Определить наименьший промежуток времени T.
РЕШЕНИЕ

28.14 Шарик массы m, привязанный к нерастяжимой нити, скользит по гладкой горизонтальной плоскости; другой конец нити втягивают с постоянной скоростью a в отверстие, сделанное на плоскости. Определить движение шарика и натяжение нити T, если известно, что в начальный момент нить расположена по прямой, расстояние между шариком и отверстием равно R, а проекция начальной скорости шарика на перпендикуляр к направлению нити равна v0.
РЕШЕНИЕ

28.15 Определить массу M Солнца, имея следующие данные: радиус Земли R=6,37*106 м, средняя плотность 5,5 т/м3, большая полуось земной орбиты a=1,49*10^11 м, время обращения Земли вокруг Солнца T=365,25 сут. Силу всемирного тяготения между двумя массами, равными 1 кг, на расстоянии 1 м считаем равной gR2/m Н, где m масса Земли; из законов Кеплера следует, что сила притяжения Земли Солнцем равна 4π2a3m/(T2r2), где r расстояние Земли от Солнца.
РЕШЕНИЕ

28.16 Точка массы m, подверженная действию центральной силы F, описывает лемнискату r2=a cos 2φ, где a величина постоянная, r расстояние точки от силового центра; в начальный момент r=r0, скорость точки равна v0 и составляет угол α с прямой, соединяющей точку с силовым центром. Определить величину силы F, зная, что она зависит только от расстояния r. По формуле Бине F =-(mc2/r2)(d2(1/r)/dφ2+1/r), где c удвоенная секторная скорость точки.
РЕШЕНИЕ

28.17 Точка M, масса которой m, движется около неподвижного центра O под влиянием силы F, исходящей из этого центра и зависящей только от расстояния MO=r. Зная, что скорость точки v=a/r, где a величина постоянная, найти величину силы F и траекторию точки.
РЕШЕНИЕ

28.18 Определить движение точки, масса которой 1 кг, под действием центральной силы притяжения, обратно пропорциональной кубу расстояния точки от центра притяжения, при следующих данных: на расстоянии 1 м сила равна 1 Н. В начальный момент расстояние точки от центра притяжения равно 2 м, скорость v0=0,5 м/с и составляет угол 45° с направлением прямой, проведенной из центра к точке.
РЕШЕНИЕ

28.19 Частица M массы 1 кг притягивается к неподвижному центру O силой, обратно пропорциональной пятой степени расстояния. Эта сила равна 8 Н на расстоянии 1 м. В начальный момент частица находится на расстоянии OM0=2 м и имеет скорость, перпендикулярную к OM0 и равную 0,5 м/с. Определить траекторию частицы.
РЕШЕНИЕ

28.20 Точка массы 0,2 кг, движущаяся под влиянием силы притяжения к неподвижному центру по закону тяготения Ньютона, описывает полный эллипс с полуосями 0,1 м и 0,08 м в течение 50 c. Определить наибольшую и наименьшую величины силы притяжения F при этом движении.
РЕШЕНИЕ

28.21 Математический маятник, каждый размах которого длится одну секунду, называется секундным маятником и применяется для отсчета времени. Найти длину l этого маятника, считая ускорение силы тяжести равным 981 см/с2. Какое время покажет этот маятник на Луне, где ускорение силы тяжести в 6 раз меньше земного? Какую длину l1 должен иметь секундный лунный маятник?
РЕШЕНИЕ

28.22 В некоторой точке Земли секундный маятник отсчитывает время правильно. Будучи перенесен в другое место, он отстает на T секунд в сутки. Определить ускорение силы тяжести в новом положении секундного маятника.

Количество движения системы, как векторная величина, определяется формулами (4.12) и (4.13).

Теорема. Производная от количества движения системы по времени равна геометрической сумме всех действующих на нее внешних сил.

В проекциях декартовые оси получим скалярные уравнения.

Можно записать векторное

(4.28)

и скалярные уравнения

Которые выражают теорему об изменении количества движения системы в интегральной форме: изменение количества движения системы за некоторый промежуток времени равно сумме импульсов за тот же промежуток времени. При решении задач чаще используются уравнения (4.27)

Закон сохранения количества движения

Теорема об изменении кинетического момента

Теорема об изменении момента количества движения точки относительно центра: производная по времени от момента количества движения точки относительно неподвижного центра равна векторному моменту, действующей на точку силы относительно того же центра.

Или (4.30)

Сравнивая (4.23) и (4.30), видим, что моменты векторов и связаны такой же зависимостью, какой связаны сами векторы и (рис. 4.1). Если спроектировать равенство на ось , проходящую через центр О, то получим

(4.31)

Это равенство выражает теорему момента количества движения точки относительно оси.

Рис. 4.1.
Теорема об изменении главного момента количества движения или кинетического момента механической системы относительно центра: производная по времени от кинетического момента системы относительно некоторого неподвижного центра равно сумме моментов всех внешних сил относительно того же центра.

(4.32)

Если спроектировать выражение (4.32) на ось , проходящей через центр О, то получим равенство, характеризующее теорему об изменении кинетического момента относительно оси.

(4.33)

Подставляя (4.10) в равенство (4.33) можно записать дифференциальное уравнение вращающегося твердого тела (колес, осей, валов, роторов и т.д.) в трех формах.

(4.34)

(4.35)

(4.36)

Таким образом, теорему об изменении кинетического момента целесообразно использовать для исследования весьма распространенного в технике движения твердого тела, его вращения вокруг неподвижной оси.

Закон сохранения кинетического момента системы

1. Пусть в выражении (4.32) .

Тогда из уравнения (4.32) следует, что , т.е. если сумма моментов всех приложенных к системе вешних сил относительно данного центра равно нулю, то кинетический момент системы относительно этого центра будет численно и по направлению будет постоянен.

2. Если , то . Таким образом, если сумма моментов действующих на систему внешних сил относительно некоторой оси равна нулю, то кинетический момент системы относительно этой оси будет величиной постоянной.

Эти результаты выражают собой закон сохранения кинетического момента.

В случае вращающегося твердого тела из равенства (4.34) следует, что, если , то . Отсюда приходим к следующим выводам:

Если система неизменяема (абсолютно твердое тело), то , следовательно, и и твердое тело вращается вокруг неподвижной оси с постоянной угловой скоростью.

Если система изменяема, то . При увеличении (тогда отдельные элементы системы удаляются от оси вращения) угловая скорость уменьшается, т.к. , а при уменьшении увеличивается, таким образом, в случае изменяемой системы с помощью внутренних сил можно изменить угловую скорость.

Вторая задача Д2 контрольной работы посвящена теореме об изменении кинетического момента системы относительно оси.

Задача Д2

Однородная горизонтальная платформа (круглая радиуса R или прямоугольная со сторонами R и 2R, где R = 1,2м) массой кг вращается с угловой скоростью вокруг вертикальной оси z, отстоящей от центра масс C платформы на расстоянии OC = b (рис. Д2,0 – Д2,9, табл. Д2); размеры для всех прямоугольных платформ показаны на рис. Д2,0а (вид сверху).

В момент времени по желобу платформы начинает двигаться (под действием внутренних сил) груз D массой кг по закону , где s выражено в метрах, t - в секундах. Одновременно на платформы начинает действовать пара сил с моментом M (задан в ньютонометрах; при M < 0 его направление противоположно показанному на рисунках).

Определить, пренебрегая массой вала, зависимость т.е. угловую скорость платформы, как функцию времени.

На всех рисунках груз D показан в положении, при котором s > 0 (когда s < 0, груз находится по другую сторону от точки А). Изображая чертеж решаемой задачи, провести ось z на заданном расстоянии OC = b от центра C.

Указания. Задача Д2 – на применение теоремы об изменении кинетического момента системы. При применении теоремы к системе, состоящей из платформы и груза, кинетический момент системы относительно оси z определяется как сумма моментов платформы и груза. При этом следует учесть, что абсолютная скорость груза складывается из относительной и переносной скоростей, т.е. . Поэтому и количество движения этого груза . Тогда можно воспользоваться теоремой Вариньона (статика), согласно которой ; эти моменты вычисляются так же, как моменты сил. Подробнее ход решения разъяснен в примере Д2.

При решении задачи полезно изобразить на вспомогательном чертеже вид на платформу сверху (с конца z), как это сделано на рис. Д2,0,а – Д2,9, а.

Момент инерции пластины с массой m относительно оси Cz, перпендикулярной пластине и проходящей через ее центр масс, равен: для прямоугольной пластины со сторонами и

;

Для круглой пластины радиуса R


Номер условия b s = F(t) M
R R/2 R R/2 R R/2 R R/2 R R/2 -0.4 0.6 0.8 10 t 0.4 -0.5t -0.6t 0.8t 0.4 0.5 4t -6 -8t -9 6 -10 12

Рис. Д2.0
Рис. Д2.0а

Рис. Д2.1
Рис. Д2.1а

Рис. Д2.2
Рис. Д2.2а

Рис. Д2.3
Рис. Д2.3а

Рис. Д2.4
Рис. Д2.4а

Рис. Д2.5а
Рис. Д2.5

Рис. Д2.6
Рис. Д2.6а

Рис. Д2.7
Рис. Д2.7а

Рис. Д2.8
Рис. Д2.8а

Рис. Д2.9
Рис. Д2.9а

Рис. Д2

Пример Д2 . Однородная горизонтальная платформа (прямоуголь­ная со сторонами 2l и l), имеющая массу жестко скреплена с вертикальным валом и вращается вместе с ним вокруг оси z с угло­вой скоростью (рис. Д2а). В момент времени на вал начинает действовать вращающий момент М, направленный противо­положно ; одновременно груз D массой , находящийся в желобе АВ в точке С, начинает двигаться по желобу (под действием внутрен­них сил) по закону s = CD = F(t).

Дано: m 1 = 16 кг, т 2 = 10 кг, l = 0,5 м, = 2 , s = 0,4t 2 (s - в метрах, t - в секундах), М = kt, где k =6 Нм/с. Опре­делить: - закон изменения угловой скорости платформы.

Решение. Рассмотрим механическую систему, состоящую из плат­формы и груза D. Для определения w применим теорему об изменении кинетического момента системы относительно оси z:

(1)

Изобразим действующие на систему внешние силы: силы тяжести реакции и вращающий момент M. Так как силы и параллельны оси z, а реакции и эту ось пересекают, то их моменты относительно оси z равны нулю. Тогда, считая для момента положительным направление (т. е. против хода часовой стрелки), получим и уравнение (1) примет такой вид.



© 2024 gimn70.ru -- Учимся легко - Портал полезных знаний